

FCC TEST REPORT

Report No.:	ARFR-ESH-P2004211473B-3
Product:	Smart Zigbee Gateway
Test Model:	THP10-Z
Received:	Apr.21, 2020
ISSUED:	May.23, 2020
Applicant:	Hangzhou Tuya Information Technology Co., Ltd
Address:	Room701, Building3, More Center, No.87 GuDun Road, Hangzhou,
	Zhejiang, China
Issued By:	BUREAU VERITAS ADT (Shanghai) Corporation
Lab Location:	No. 829, Xinzhuan Road, Shanghai, P.R.China (201612)

This test report consists of 22 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA, CNAS, or any government agency. The test results in the report only apply to the tested item. The test results in this report are traceable to the national or international standards.

1.	TEST	PROGRAM	3
2.		nary of Test Procedure and Test Results	
3.		Configuration of Equipment under Test	
	3.1	Manufacturer information	
	3.2	Feature of Equipment under Test	5
	3.3	Description of support units	5
	3.4	Measurement Uncertainty	6
4	Test o	f Conducted Emission	7
	4.1	Test Limit	7
	4.2	Test Procedures	8
	4.3	Typical Test Setup	8
	4.4	Measurement Equipment	9
	4.5	Test Result and Data	.10
	4.6	Test Photographs	.14
5	Test o	f Radiated Emission	.15
	5.1	Test Limit	. 15
	5.2	Test Procedures	.16
	5.3	Typical Test Setup	.16
	5.4	Measurement Equipment	.17
	5.5	Test Result and Data (30MHz ~ 1GHz)	.18
	5.6	Test Result and Data (1GHz ~ 18GHz)	.20
	5.7	Test Photographs (30MHz ~ 1000MHz)	.22
	5.8	Test Photographs (1000MHz ~ 18000MHz)	.23
6	Photo	graphs of EUT	. 24

1. TEST PROGRAM

 PRODUCT: Smart Zigbee Gateway
TEST MODEL: THP10-Z
APPLICANT: Hangzhou Tuya Information Technology Co., Ltd TESTED: Apr.25 to May.12, 2020
STANDARDS: 47 CFR FCC Part15, Subpart B, Class B ANSI C63.4:2014

We, BUREAU VERITAS ADT (Shanghai) Corporation, declare that the equipment above has been tested and found compliance with the requirement limits of applicable standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate under the standards herein specified.

PREPARED BY :_	Will YAN Project Engineer	DATE:	May.23, 2020	
APPROVED BY :_	Daniel Sun EMC Lab Manager	DATE:	May.23, 2020	

2. Summary of Test Procedure and Test Results

EMISSION (47 CFR FCC Part15, Subpart B)						
Test Item	Normative References	Test Result				
Conducted Emission	47 CFR FCC Part15, Subpart B 15.107	Meets the Class B requirements				
Radiated Emission	47 CFR FCC Part15, Subpart B 15.109	Meets the Class B requirements				

3. Test Configuration of Equipment under Test

3.1 Manufacturer information

Manufacturer : Hangzhou Tuya Information Technology Co., Ltd

Address Room701, Building3, More Center, No.87 GuDun Road, Hangzhou, Zhejiang, China

3.2 Feature of Equipment under Test

Product Name: Smart Zigbee Gateway	
Test Model:	THP10-Z
EUT Power Rating:	5VDC/1A with adaptor 100-240Vac~, 50/60Hz

Note: 1.Please refer to user manual.

3.3 Description of support units

NO.	PRODUCT	BRAND	MODEL NO.
1	AC adapter		KA25-0501000US
2	Mobile Phone	Vivo	

3.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Value	
Conducted emissions		2.55 dB
Radiated emissions	30 MHz ~ 1GHz	3.22 dB
	Above 1GHz	2.89 dB

4 Test of Conducted Emission

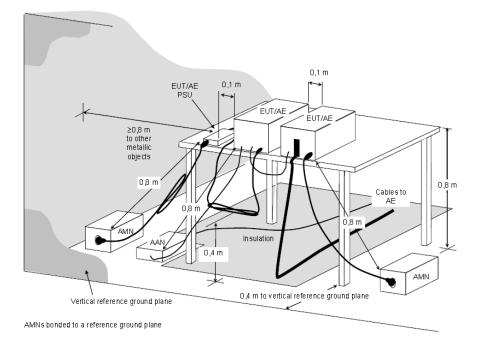
4.1 Test Limit

TEST STANDARD:

CFR 47 FCC Part 15, Subpart B (Section: 15.107)

	Class A (dBµV)		Class B (dBµV)	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

NOTES: 1. The lower limit shall apply at the transition frequencies.


- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2 Test Procedures

- 1. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a Artificial Mains Network (AMN).
- 3. All the support units are connecting to the other AMN.
- 4. The AMN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The CISPR states that a 50 ohm, 50 micro-Henry AMN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched
- 8. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

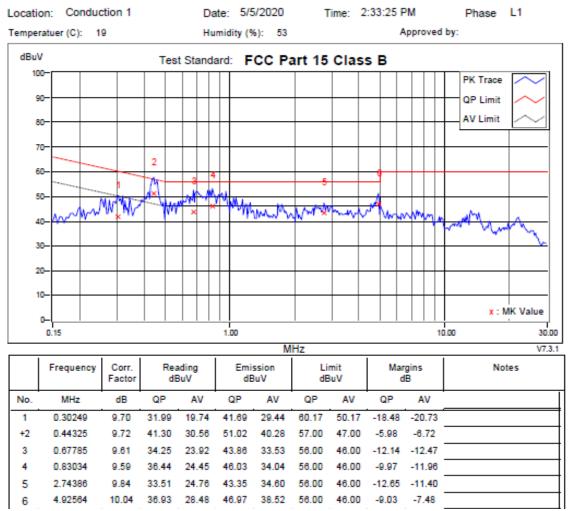
4.3 Typical Test Setup

NOTE The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be \ge 0.8 m.

Figure D.2 – Example measurement arrangement for table-top EUT (Conducted emission measurement – alternative 1)

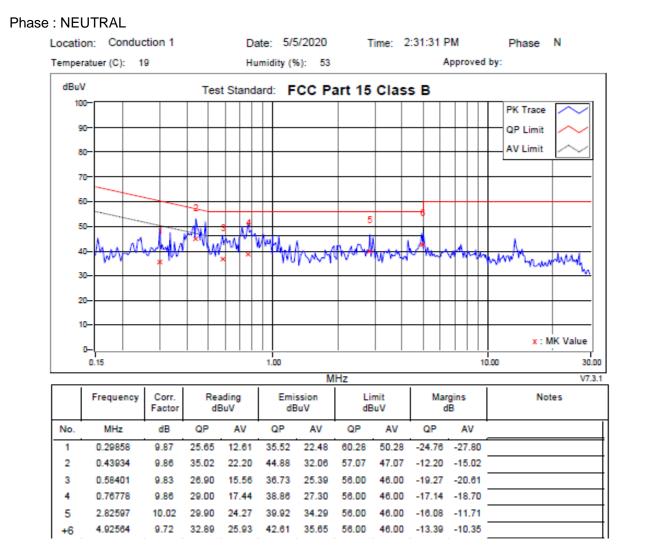
4.4 Measurement Equipment

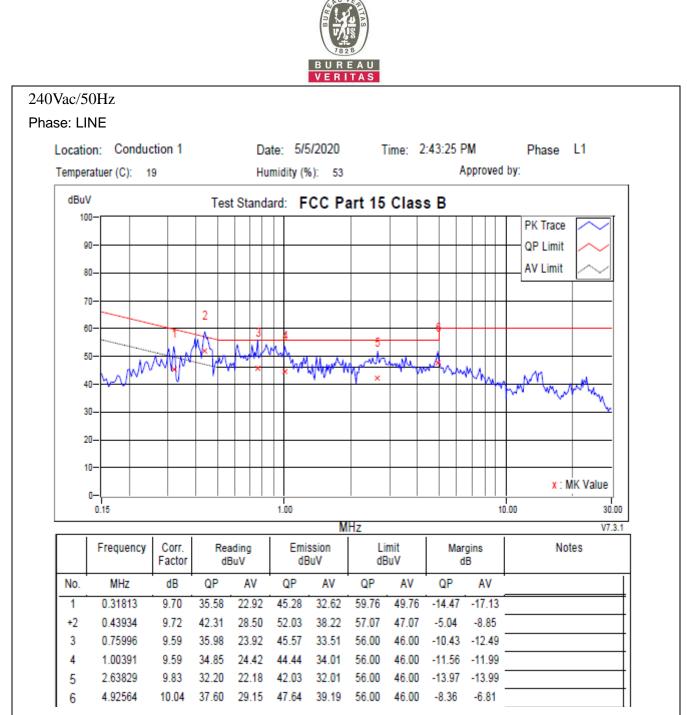
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS30	E1R1001	Mar.03, 2021
LISN ROHDE & SCHWARZ	ENV216	E1L1011	Jul.17, 2020
Software ADT	ADT_Cond_V7.3.0	N/A	N/A



4.5 Test Result and Data

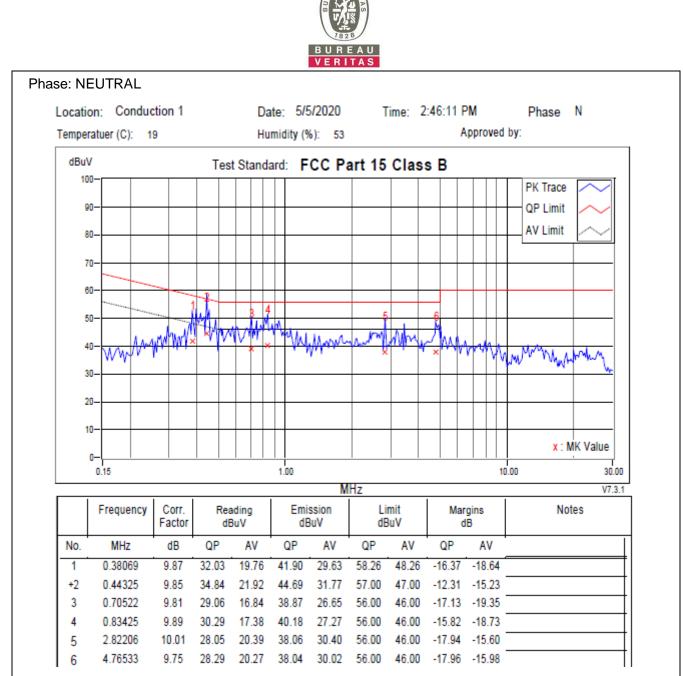
a. Conducted Emission Test Data


120Vac/60Hz



- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

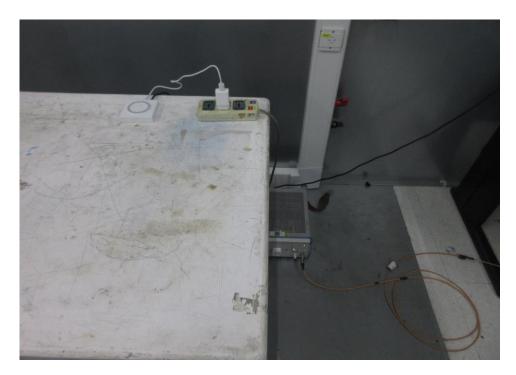
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss


5. Emission Level = Correction Factor + Reading Value.

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.6 Test Photographs

5 Test of Radiated Emission

5.1 Test Limit

TEST STANDARD:

CFR 47 FCC Part 15, Subpart B (Section: 15.109)

FOR FREQUENCY BELOW 1000 MHz

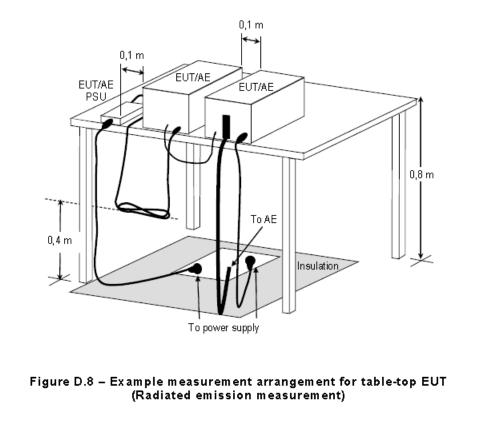
FREQUENCY (MHz)	Class A (at 10m)		Class A (at 1		Class B	(at 3m)
	μV/m	dBµV/m	μV/m	dBµV/m		
30 - 88	90	39.1	100	40.0		
88 – 216	150	43.5	150	43.5		
216 – 960	210	46.4	200	46.0		
960 – 1000	300	49.5	500	54.0		

LIMIT OF RADIATED EMISSION OF FCC PART 15, SUBPART B FOR FREQUENCY ABOVE 1000 MHz

	Class A (dBµV/m) (at 3m)		Class B (dBµV/m) (at 3m)	
FREQUENCY (MHz)	PEAK	AVERAGE	PEAK	AVERAGE
Above 1000	80.0	60.0	74.0	54.0

Note: 1. The lower limit shall apply at the transition frequencies.

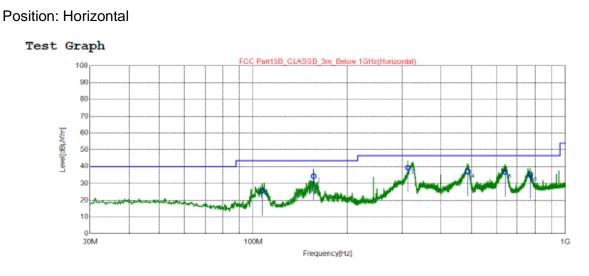
2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.


3. All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

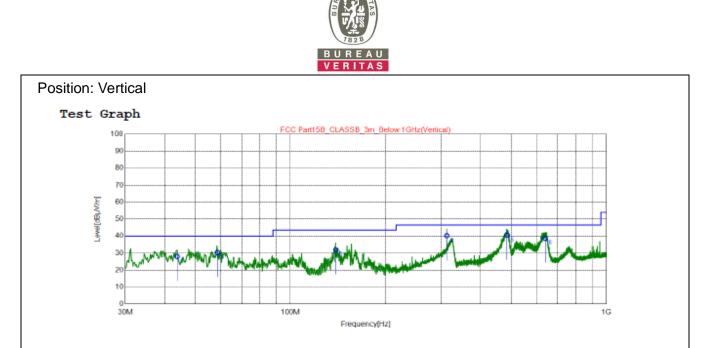
5.2 Test Procedures

- 1. The EUT was placed on a rotatable table top 0.8 meter above ground.
- 2. The EUT was set 3/10 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- 5. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- 6. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

5.3 Typical Test Setup



5.4 Measurement Equipment					
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL		
EMI Test Spectrum ROHDE & SCHWARZ	ESR7	E1R1005	Dec.02, 2020		
Spectrum Analyzer Keysight	N9030B	E1S1003	Jul.22, 2020		
Broad-Band Antenna Schwarzbeck	VULB9168	E1A1012	Aug.25, 2020		
Double Riaged Vroadband Horn Antenna Schwarzbeck	BBHA9120D	E1A1017	Jan.25, 2021		
Preamplifier Agilent	8447D	E1A2001	Oct.13, 2020		
Preamplifier Agilent	EMC051845SE	E1A2009	Jul.18, 2020		

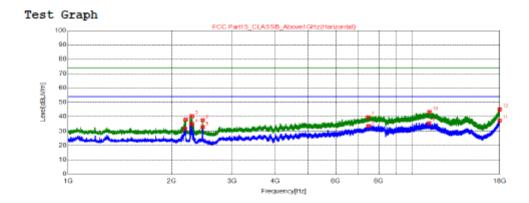

5.5 Test Result and Data (30MHz ~ 1GHz)

o QP Detector

NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity	
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	POIATICY	
1	106.6	37.98	-12.55	25.43	43.50	18.07	200	190	Horizontal	
2	156.1	43.35	-9.08	34.27	43.50	9.23	200	221	Horizontal	
3	312.4	48.16	-8.85	39.31	46.50	7.19	100	312	Horizontal	
4	486.8	42.7	-5.71	36.99	46.50	9.51	200	152	Horizontal	
5	640.7	39.92	-3.25	36.67	46.50	9.83	100	170	Horizontal	
6	772.0	36.53	-1.43	35.10	46.50	11.40	100	139	Horizontal	

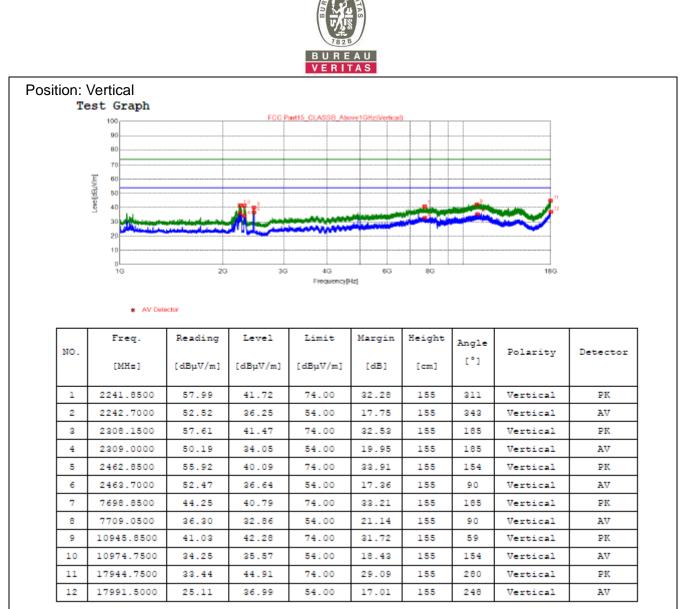
- 1. Q.P. is abbreviation of quasi-peak individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. QP Margin value = QP Limit value QP value.
- 4. Factor = Antenna Factor + Amplifier Factor + Cable loss.
- 5. QP value = Factor + Reading Value.

o QP Detector


NO.	Freq. [MHz]	QP Reading [dBµV/m]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	43.77	37.52	-9.55	27.97	40.00	12.03	100	197	Vertical
2	58.71	40.72	-10.44	30.28	40.00	9.72	100	21	Vertical
3	139.2	42.15	-10.22	31.93	43.50	11.57	100	163	Vertical
4	312.4	49	-8.85	40.15	46.50	6.35	200	289	Vertical
5	484.9	46.17	-5.69	40.48	46.50	6.02	100	228	Vertical
6	640.1	41.97	-3.25	38.72	46.50	7.78	100	10	Vertical

- 1. Q.P. is abbreviation of quasi-peak individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. QP Margin value = QP Limit value QP value
- 4. Factor = Antenna Factor + Amplifier Factor + Cable loss
- 5. QP value = Factor + Reading Value.

5.6 Test Result and Data (1GHz ~ 18GHz)


Position: Horizontal

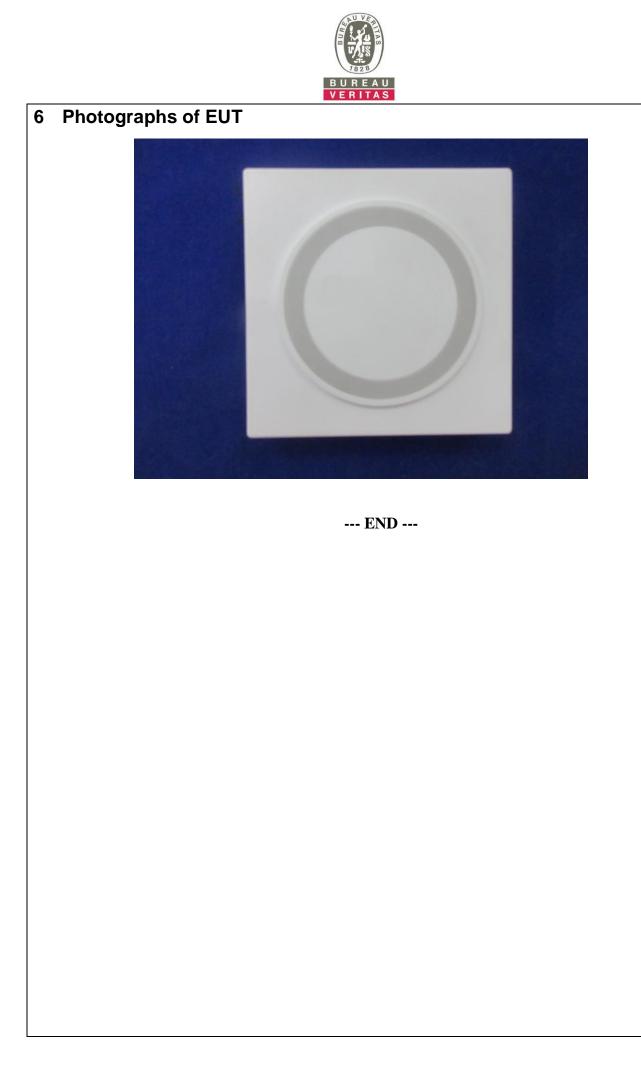
AV Detector

NO.	Freq.	Reading	Level	Limit	Margin	Height	Angle		Detector
	[MHz]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	2187.4500	47.99	31.60	54.00	22.40	155	302	Horisontal	AV
2	2198.5000	54.35	37.99	74.00	36.01	155	302	Horisontal	PK
3	2294.5500	56.53	40.36	74.00	33.64	155	334	Horisontal	PK
4	2295.4000	51.04	34.88	54.00	19.12	155	302	Horisontal	AV
5	2463.7000	48.70	32.87	54.00	21.13	155	302	Horisontal	AV
6	2463.7000	53.37	37.54	74.00	36.46	155	334	Horisontal	PK
7	7454.9000	43.54	39.57	74.00	34.43	155	334	Horisontal	PK
8	7475.3000	37.41	33.50	54.00	20.50	155	145	Horisontal	AV
9	11209.3500	33.87	35.53	54.00	18.47	155	208	Horisontal	AV
10	11240.8000	41.54	43.21	74.00	30.79	155	334	Horisontal	PK
11	17977.0500	25.44	37.19	54.00	16.81	155	113	Horisontal	AV
12	17978.7500	33.28	45.05	74.00	28.95	155	17	Horisontal	PK

- 1. The emission levels of other frequencies were very low against the limit.
- 2. Margin = Limit –Level

1. The emission levels of other frequencies were very low against the limit.

2. Margin = Limit –Level


5.7 Test Photographs (30MHz ~ 1000MHz)

5.8 Test Photographs (1000MHz ~ 18000MHz)

