FCC TEST REPORT					
	FCC ID: 2BFDX-YDS80				
Report No.	: <u>SSP24030036-1E</u>				
Applicant	Shenzhen Yadas IOT Technology Co., Ltd				
Product Name	Solar Floodlight Security Camera				
Model Name	: <u>YDS80</u>				
Test Standard	: <u>FCC Part 15.247</u>				
Date of Issue	: 2024-03-25				
	CCUT				
Shenzhen CCUT Quality Technology Co., Ltd.					
1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)					
-	ove client company and the product model only. It may not be duplicated rmitted by Shenzhen CCUT Quality Technology Co., Ltd.				

Г

Test Report Basic Information

	*				
Applicant	Shenzhen Yadas IOT Technology Co., Ltd				
	609 Fengheyuan, No.11-13, 12th Lane, Baolian New Village, Gongle Community, Xixiang				
Address of Applicant	St, Bao an District, Shenzhen, 518000 China				
Manufacturer	Shenzhen Yadas IOT Technology Co., Ltd				
	609 Fengheyuan, No.11-13, 12 th Lane, Baolian New Village, Gongle Community, Xixiang				
Address of Manufacturer:	St, Bao an District, Shenzhen, 518000 China				
Address of Manufacturer	St, Bao an District, Shenzhen, 510000 Chind				
Product Name	Solar Floodlight Security Camera				
Brand Name:	-				
Main Model	YDS80				
Series Models	See section 1.1 (Page 5)				
	FCC Part 15 Subpart C				
	ANSI C63.4-2014				
Test Standard	ANSI C63.10-2013				
Date of Test	2024-03-11 to 2024-03-13				
Test Result	PASS				
	Colin Chen (Colin Chen) Lieber Ouyang (Lieber Ouyang)				
	Colin Chen (Colin Chen) Lieber Ougang (Lieber Ouyang)				
Tested By	COUNT (Colin Chen)				
	Lieber Ougang (Lieber Querre) GAPPROVED				
Reviewed By	Lieber Ougang (Lieber Ouyang)				
	E				
	Lahn Peng (Jahn Pang)				
Authorized Signatory	(Lahm Peng)				
Note : This test report is limited	to the above client company and the product model only. It may not be				
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in					
this test report is only applicable to presented test sample.					
this test report is only applicable to presented test sample.					

CONTENTS

1. General Information	
1.1 Product Information	
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	15
5.3 Test Data and Results	17
6. Band-edge Emissions(Radiated)	21
6.1 Standard and Limit	21
6.2 Test Procedure	21
6.3 Test Data and Results	21
7. Maximum Peak Conducted Output Power	23
7.1 Standard and Limit	23
7.2 Test Procedure	23
7.3 Test Data and Results	24
8. Occupied Bandwidth(-6dB)	27
8.1 Standard and Limit	27
8.2 Test Procedure	27
8.3 Test Data and Results	27
9. Maximum Power Spectral Density	
9.1 Standard and Limit	
9.2 Test Procedure	
9.3 Test Data and Results	
10. Band-edge Emission(Conducted)	
10.1 Standard and Limit	
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure	
11.3 Test Data and Results	42

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-03-25	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Solar Floodlight Security Camera		
Trade Name:	-		
Main Model:	YDS80		
	YDS22, YDS25, YDS26, YDS28, YDS29, YDS32, YDS33, YDS35, YDS36, YDS39		
Series Models:	YDS52, YDS55, YDS56, YDS58, YDS59, YDS62, YDS65, YDS66, YDS68, YDS69		
Series Models:	YDS80, YDS82, YDS86, YDS88, YDS89, YDS90, YDS92, YDS96, YDS98, YDS99,		
YDS50, YDS60			
Rated Voltage:	Input: 5V-18V===1A-3A		
Battery:	DC 3.7V, 20000mAh		
Power Adaptor:	-		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			
Note 2: The color of appearance and model name of series models listed are different from the main model,			
but the circuit and the electronic construction are the same, declared by the manufacturer.			

Wireless Specification	
Wireless Standard:	802.11b/g/n
Operating Frequency:	2412MHz ~ 2462MHz for 802.11b/g/n(HT20)
Operating Frequency:	2422MHz ~ 2452MHz for 802.11n(HT40)
RF Output Power:	11.52dBm
Number of Channel:	11/7
Channel Separation:	5MHz
Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Antenna Gain:	1.22dBi
Type of Antenna:	Monopole Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Modes							
Test Mode	Description			Remark			
TM1	8	302.11b		2412MHz/2437MHz/2462MHz			
TM2	8	302.11g		2412MHz/2437MHz/2462MHz			
TM3	802	.11n(H20)		2412MHz/2437MH	2412MHz/2437MHz/2462MHz		
TM4	802	.11n(H40)		2422MHz/2437MH	z/2452MHz		
List and Detai	List and Details of Auxiliary Cable						
Descrip	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-	-			-	-		
List and Detai	List and Details of Auxiliary Equipment						
Descrip	Description Manufacturer Model Serial Number			Serial Number			
-		-		-	-		
-		-		-	-		

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2412	05	2432	09	2452	13	
02	2417	06	2437	10	2457	14	
03	2422	07	2442	11	2462	15	
04	2427	08	2447	12		16	

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
rec rait 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	nethodology		
FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C65.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30		
		Radiated Emissio	ons				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30		
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30		
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06		
Conducted RF Testing							
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30		

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dedicted Emissions	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Peak Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth(-6dB)	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the ess	ential requirements in the standard	
Failed: The EUT does not comply with	the essential requirements in the standard	
N/A: Not applicable		

3. Antenna Requirement

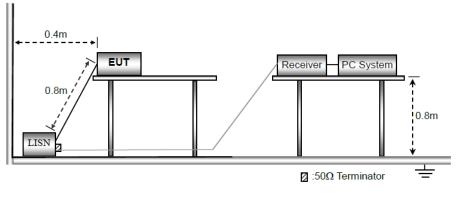
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an Monopole antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)					
(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56	56 to 46				
0.5-5	56	46				
5-30	60	50				
Note 1: Decreases with the log	Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz					
Note 2: The lower limit applies at the band edges						

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case 802.11b_2412MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test P	lots and Data of C	onduc	ted Emissi	ons							
Testeo	d Mode:	TM4									
Test V	oltage:	AC 1	: 120V/60Hz								
Test P	ower Line:	Neut	tral								
Rema	rk:										
90.0	dBuV										
]
80											1
70											-
60									FCC Part15 CE	-Class B_QP	4
50	35								FCC Part15 CE	-Class B ₁ AVe	
2	I MM ~	2				9				m / An	
40 *	V V	MAN	LANNAM.		. www. Martine	WAY WAY	and and an arrest	ANAM	are and the second		peak
30			<u>v</u> - 44.44	Marine a straight	ne se se propio e Intrantabili William M	No. of the second second	MPMATI				-
20	M V W	W	LAMA MANNA		wuuli Wa tu bilku						AVG
10											
0											1
-10 0.1	150	0.5	<u> </u> ;00		(MHz)		5.0	00		30.0	_ JOO
No.		ading BuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark		
1		3.39	9.51	52.90	66.00	-13.10	QP	Р			
2		0.57	9.51	40.08	56.00	-15.92	AVG	P			
3		6.81 8.18	9.59 9.59	46.40 27.77	63.54 53.54	-17.14 -25.77	QP AVG	P P			
5		7.88	9.63	47.51	62.58	-15.07	QP	P			
6		6.08	9.63	35.71	52.58	-16.87	AVG	Р			
7		1.83	9.69	41.52	58.29	-16.77	QP	Р			
8		7.30	9.69	26.99	48.29	-21.30	AVG	Ρ			
9		9.98	10.08	40.06	56.00	-15.94	QP	Ρ			
10		1.17	10.08	31.25	46.00	-14.75	AVG	P			
11		7.72	10.21	47.93	60.00	-12.07	QP	P			
12 *	17.5785 3	3.12	10.21	43.33	50.00	-6.67	AVG	P			

Test Pl	ots and Data o	f Conduct	ed Emissi	ons						
Tested	Mode:	TM4								
Test Vo	oltage:	AC 12	C 120V/60Hz							
Test Po	ower Line:	Live	ve							
Remar	·k:									
90.0	dBuV									
Γ										
80 -								_		
70										_
60									FCC Part15 CE-Class B_QP	
БU										
50 -									FCC Part15 CE-Class B_AVe	-
40	1 2 5		7 9			MARTIN AND	Lu doren al	Maryanter	And the second s	
30 🖻	Å Å	manue		Luck of Management of Mark	and the state of the	Here we want	****	Walder		peak
30	2 4 5	A 4 41.940	. With Ind		UNHUNINY	WIN				
20 🖺	- Anthen	mps som	NAMANA CONTRACT	אווין איזיאיניאיניאיניאיניאיניאיניאין	<u>aut is this is the second sec</u>					AVG
10										_
0										
-10										
0.1	50	0.50)0		(MHz)		5.0	00		30.000
ĺ		D "								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1815	28.09	9.02	37.11	64.42	-27.31	QP	P		
2	0.1815	12.67	9.02	21.69	54.42	-32.73	AVG	Р		
3	0.2265	25.95	9.25	35.20	62.58	-27.38	QP	P		
4	0.2265	11.72	9.25	20.97	52.58	-31.61	AVG QP	P		
5 6	0.2760	25.40 12.17	9.66 9.66	35.06 21.83	60.94 50.94	-25.88 -29.11	AVG	P P		
7	0.2700	24.84	9.95	34.79	56.00	-21.21	QP	P		
8	0.5979	11.70	9.95	21.65	46.00	-24.35	AVG	P		
9	0.6630	25.85	9.88	35.73	56.00	-20.27	QP	Р		
10	0.6630	9.77	9.88	19.65	46.00	-26.35	AVG	P		
11	17.8530	35.60	10.41	46.01	60.00	-13.99	QP	P		
12 *	17.8530	32.16	10.41	42.57	50.00	-7.43	AVG	P		

5. Radiated Emissions

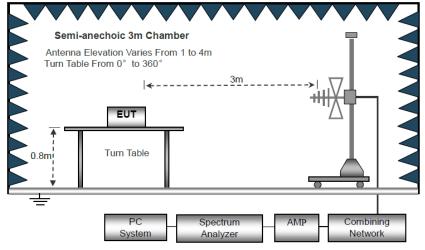
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

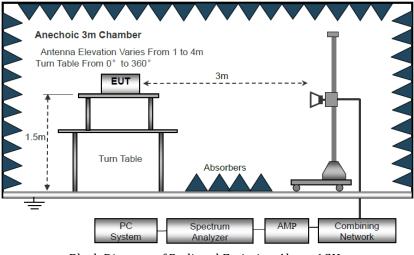
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

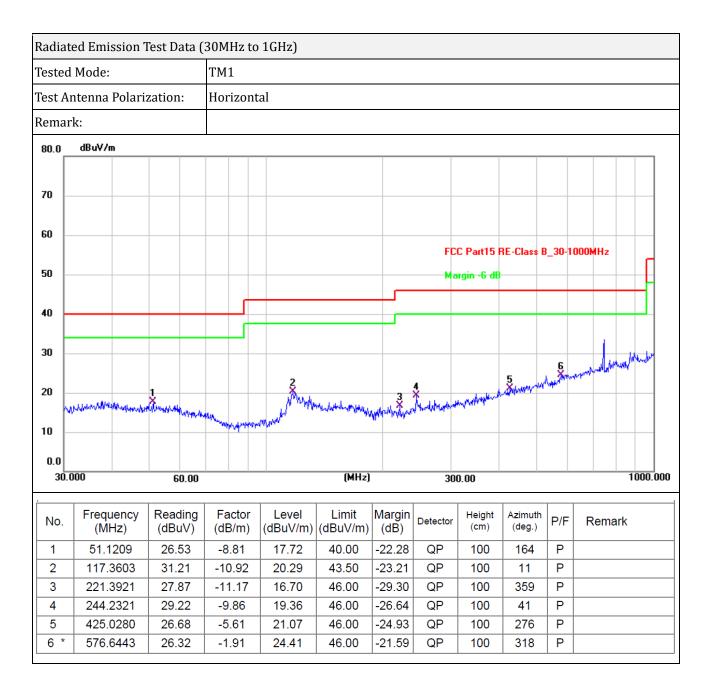
Block Diagram of Radiated Emission Above 1GHz

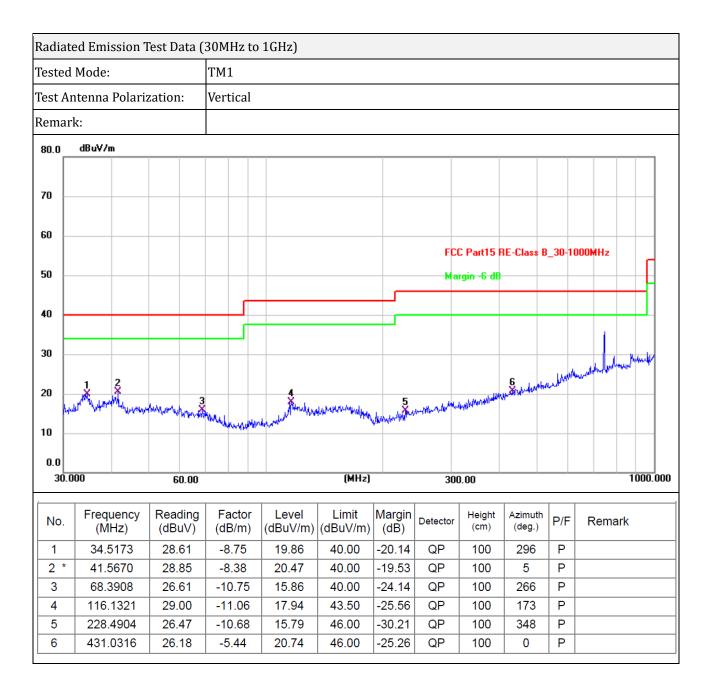
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case 802.11b_2412MHz as below:

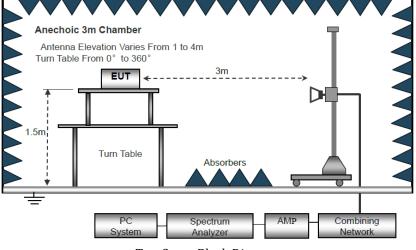
Remark: Level = Reading + Factor, Margin = Level - Limit

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
	u2u1/11		.11b Lowest C				
4824	79.08	-14.72	64.36	74	-9.64	Н	РК
4824	59.76	-14.72	45.04	54	-8.96	Н	AV
7236	65.14	-8.41	56.73	74	-17.27	Н	РК
7236	46.84	-8.41	38.43	54	-15.57	Н	AV
4824	76.38	-14.72	61.66	74	-12.34	V	РК
4824	57.73	-14.72	43.01	54	-10.99	V	AV
7236	65.28	-8.41	56.87	74	-17.13	V	РК
7236	45.93	-8.41	37.52	54	-16.48	V	AV
		802	.11b Middle Cl	nannel (2437M	/Hz)		·
4874	76.32	-14.64	61.68	74	-12.32	Н	РК
4874	59.72	-14.64	45.08	54	-8.92	Н	AV
7311	65.29	-8.28	57.01	74	-16.99	Н	РК
7311	48.04	-8.28	39.76	54	-14.24	Н	AV
4874	77	-14.64	62.36	74	-11.64	V	РК
4874	58.88	-14.64	44.24	54	-9.76	V	AV
7311	63.81	-8.28	55.53	74	-18.47	V	РК
7311	49.56	-8.28	41.28	54	-12.72	V	AV
		802.	11b Highest C	hannel (2462N	MHz)		
4924	75.88	-14.53	61.35	74	-12.65	Н	РК
4924	62.22	-14.53	47.69	54	-6.31	Н	AV
7386	65.12	-8.13	56.99	74	-17.01	Н	РК
7386	50.1	-8.13	41.97	54	-12.03	Н	AV
4924	78.45	-14.53	63.92	74	-10.08	V	РК
4924	57.94	-14.53	43.41	54	-10.59	V	AV
7386	64.29	-8.13	56.16	74	-17.84	V	РК
7386	48.37	-8.13	40.24	54	-13.76	V	AV

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result	
iest mode	MHz	dBuV/dBc	result	
Lowest	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
Uighost	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Emi	ission Test Dat	ta (Band edge	emissions)								
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector				
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV				
802.11b Lowest Channel (2412MHz)											
2310	64.36	-21.34	43.02	74	-30.98	Н	РК				
2310	52.44	-21.34	31.1	54	-22.9	Н	AV				
2390	67.41	-20.96	46.45	74	-27.55	Н	РК				
2390	51.72	-20.96	30.76	54	-23.24	Н	AV				
2400	69.48	-20.91	48.57	74	-25.43	Н	РК				
2400	54.43	-20.91	33.52	54	-20.48	Н	AV				
2310	64.3	-21.34	42.96	74	-31.04	V	РК				
2310	52.44	-21.34	31.1	54	-22.9	V	AV				
2390	66.98	-20.96	46.02	74	-27.98	V	РК				
2390	50.28	-20.96	29.32	54	-24.68	V	AV				
2400	74.42	-20.91	53.51	74	-20.49	V	РК				
2400	52.51	-20.91	31.6	54	-22.4	V	AV				
		802.	11b Highest C	hannel (2462N	/Hz)		•				
2483.50	64.27	-20.51	43.76	74	-30.24	Н	РК				
2483.50	52.73	-20.51	32.22	54	-21.78	Н	AV				
2500	64.64	-20.43	44.21	74	-29.79	Н	РК				
2500	50.91	-20.43	30.48	54	-23.52	Н	AV				
2483.50	65.35	-20.51	44.84	74	-29.16	V	РК				
2483.50	51.69	-20.51	31.18	54	-22.82	V	AV				
2500	68.29	-20.43	47.86	74	-26.14	V	РК				
2500	49.45	-20.43	29.02	54	-24.98	V	AV				

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Maximum Conducted Output Power

7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

7.2 Test Procedure

A spectrum analyzer or similar device shall be used to observe a sample of the modulated transmitter's radio frequency power output.

1) A measurement instrument with an integrated channel bandwidth function may be used to automate the test process.

2) Set center of frequency = operating frequency.

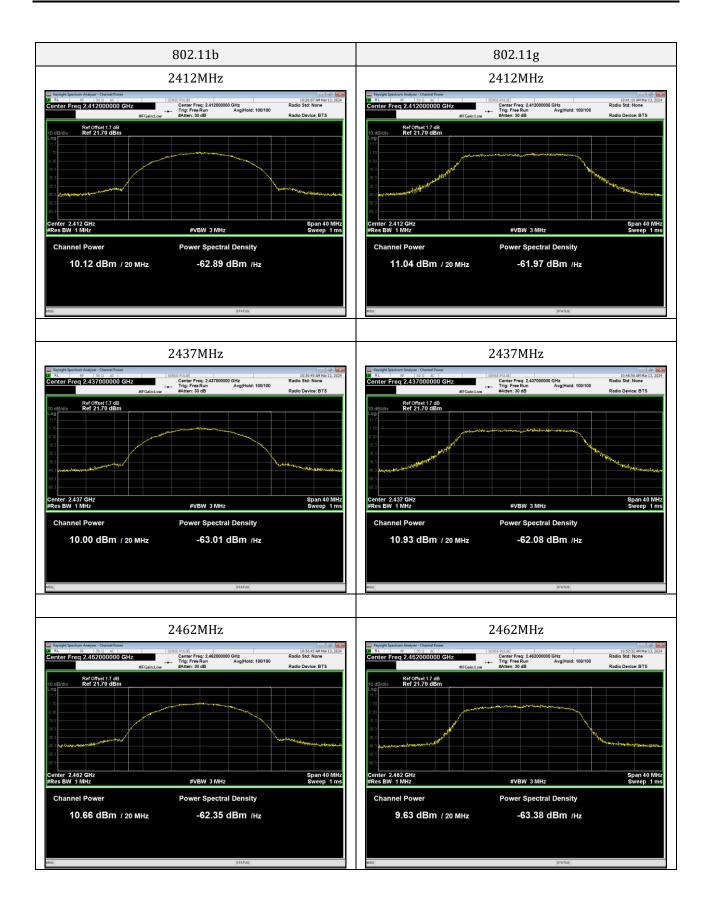

3) Connect the EUT to the RF input of the spectrum analyzer via a low loss RF cable

4) Set the RBW = 1MHz, VBW = 3MHz, Detector = Average, Sweep = Auto.

5) Set the SPAN to 40MHz/80MHz for 20MHz/40MHz emission bandwidth mode.

6) Measure the highest amplitude appearing on spectral display and mark the value.

7) Repeat the above procedures until all frequency measured was complete.



Test Setup Block Diagram

7.3 Test Data and Results

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
	2412	10.12	30	Pass
802.11b	2437	10	30	Pass
	2462	10.66	30	Pass
	2412	11.04	30	Pass
802.11g	2437	10.93	30	Pass
	2462	9.63	30	Pass
	2412	10.65	30	Pass
802.11n(HT20)	2437	10.74	30	Pass
	2462	10.13	30	Pass
	2422	10.6	30	Pass
802.11n(HT40)	2437	10.85	30	Pass
	2452	11.52	30	Pass

Note: The tests are based on the EUT's wireless data transmission under 100% duty cycle.

8. Occupied Bandwidth(-6dB)

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

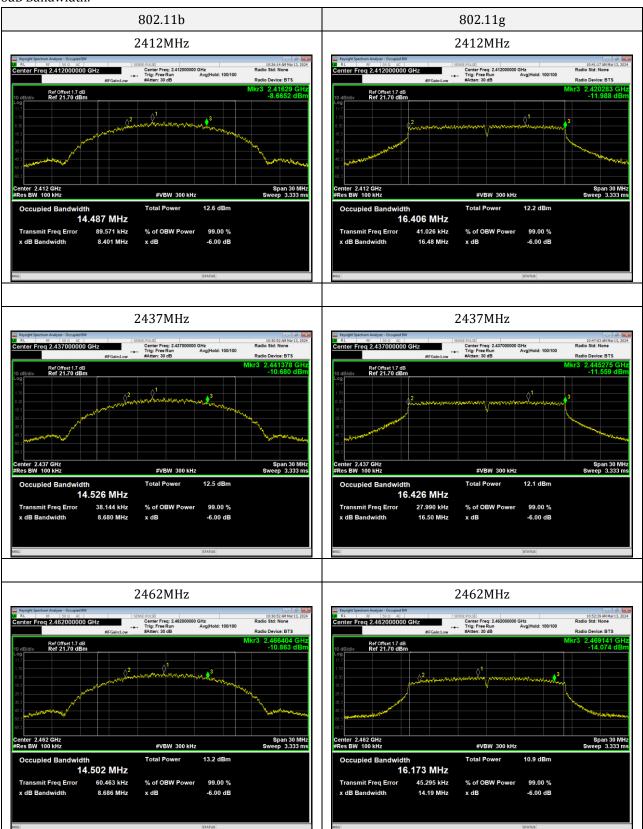
2) Set the spectrum analyzer to any one measured frequency within its operating range.

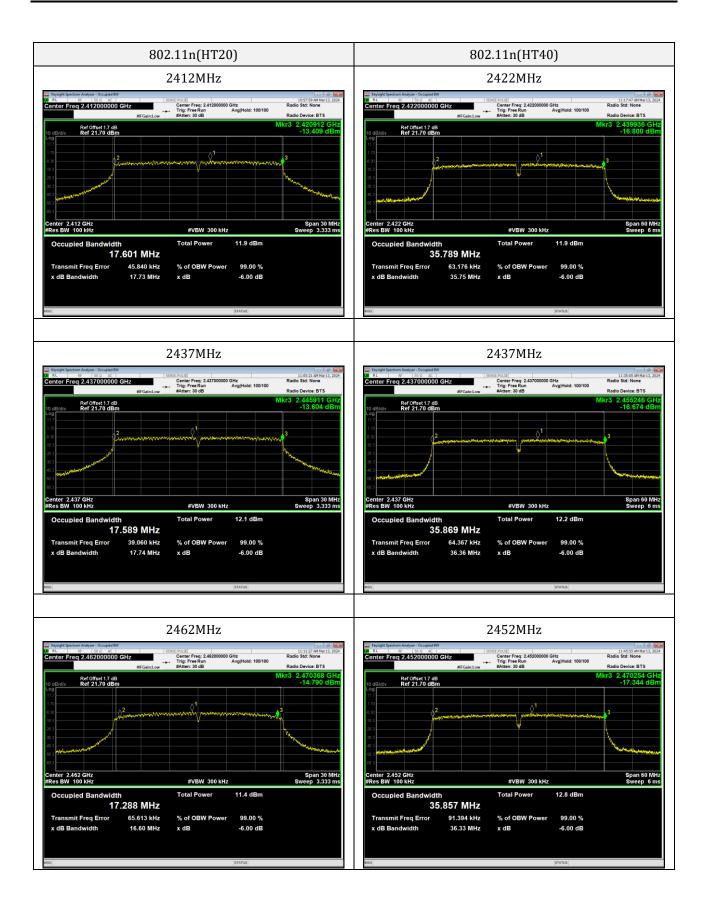
3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.




Test Setup Block Diagram

8.3 Test Data and Results

Test Mode	Test Channel (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	6dBm Limit (MHz)	Test Result
	2412	8.401	14.385	0.5	Pass
802.11b	2437	8.68	14.48	0.5	Pass
	2462	8.686	14.418	0.5	Pass
	2412	16.485	16.453	0.5	Pass
802.11g	2437	16.495	16.474	0.5	Pass
	2462	14.191	16.101	0.5	Pass
	2412	17.731	17.605	0.5	Pass
802.11n(HT20)	2437	17.745	17.594	0.5	Pass
	2462	16.604	17.233	0.5	Pass
	2422	35.746	35.761	0.5	Pass
802.11n(HT40)	2437	36.363	35.905	0.5	Pass
	2452	36.325	35.871	0.5	Pass

6dB Bandwidth:

99% Bandwidth:

9. Maximum Power Spectral Density

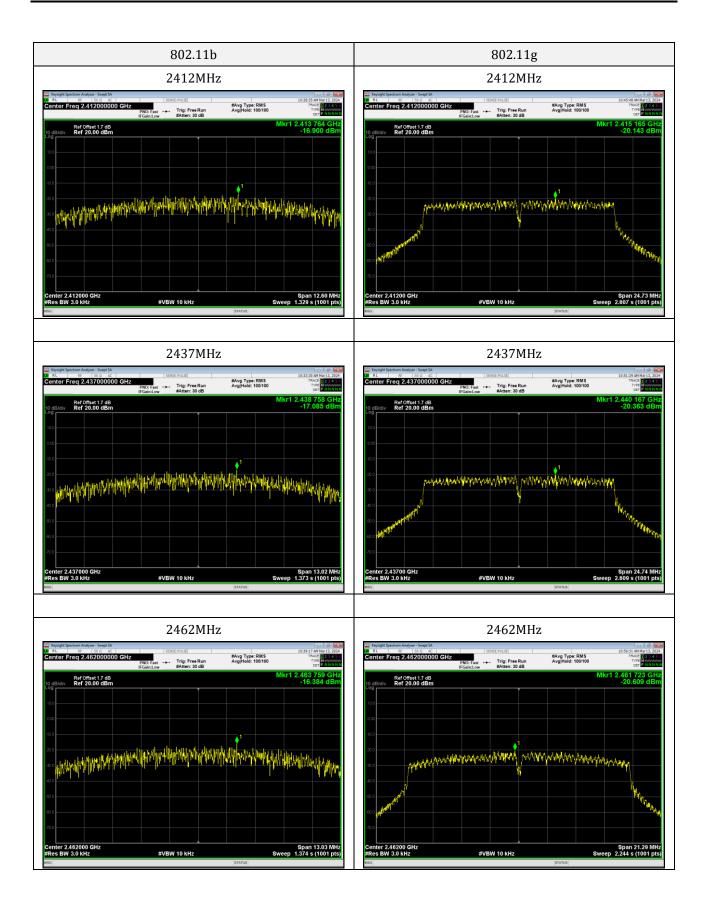
9.1 Standard and Limit

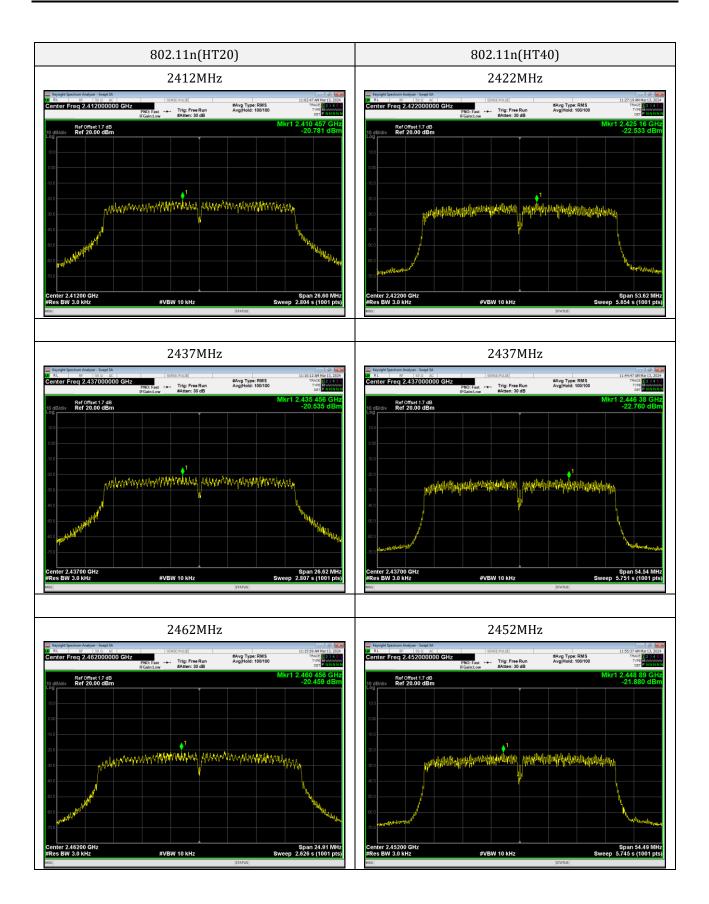
According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.


3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.


- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.

9.3 Test Data and Results

Test Mode	Test Channel MHz	1 5		Test Result
	2412	-16.9	8	Pass
802.11b	2437	-17.09	8	Pass
	2462	-16.38	8	Pass
	2412	-20.14	8	Pass
802.11g	2437	-20.36	8	Pass
	2462	-20.61	8	Pass
	2412	-20.78	8	Pass
802.11n(HT20)	2437	-20.54	8	Pass
	2462	-20.46	8	Pass
	2422	-22.53	8	Pass
802.11n(HT40)	2437	-22.76	8	Pass
	2452	-21.88	8	Pass

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

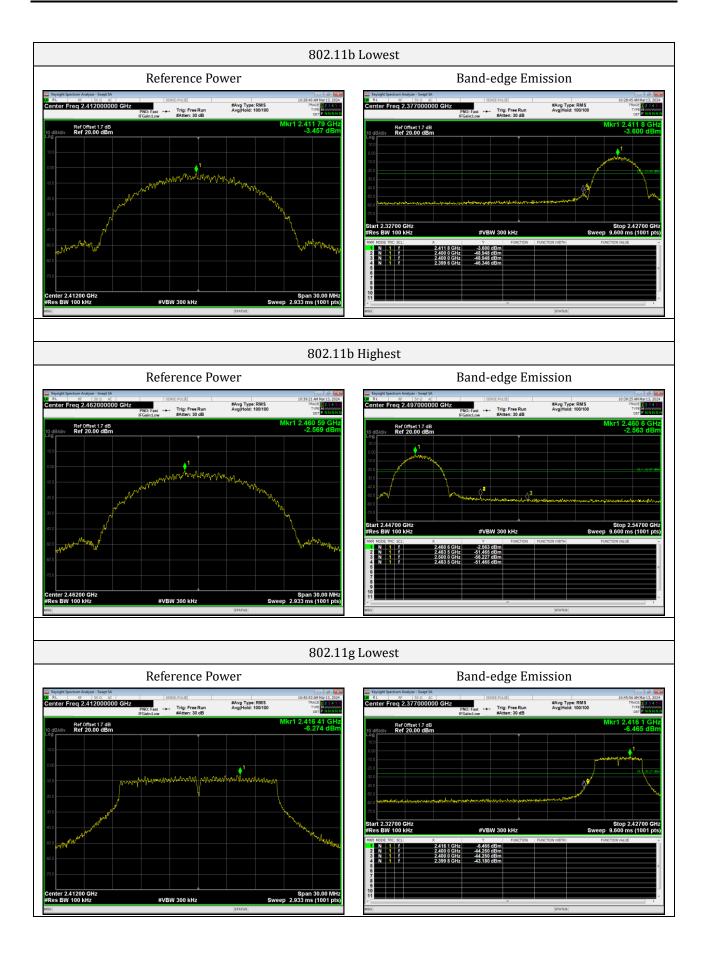
2) Set the spectrum analyzer to any one measured frequency within its operating range.

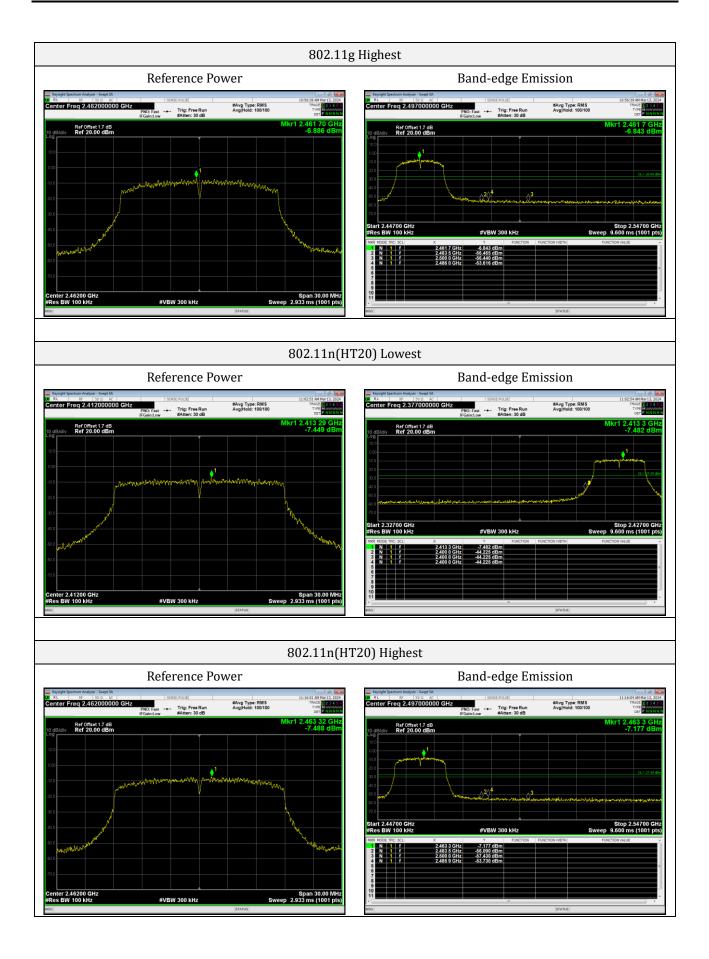
3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.

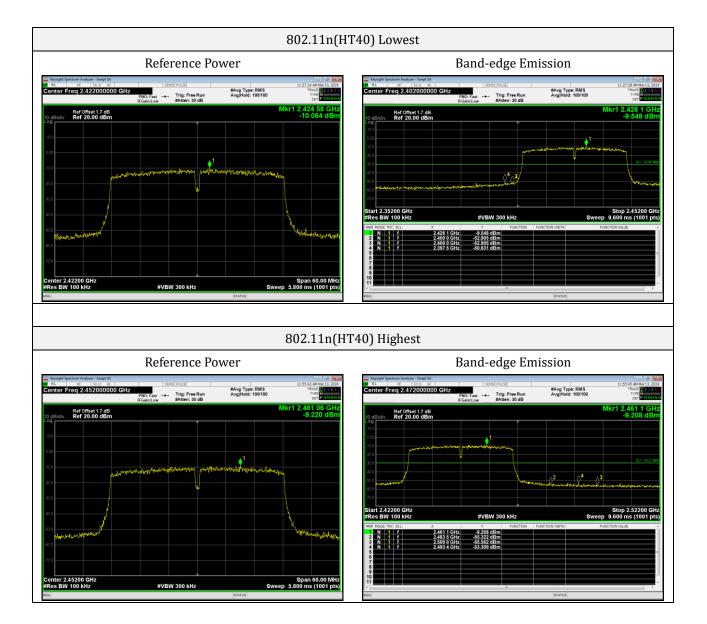
4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.

6) Measure the emission and marking the edge frequency.


7) Repeat above procedures until all frequencies measured were complete.




Test Setup Block Diagram

10.3 Test Data and Results

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
002.111	Lowest	2412	-42.88	-30	Pass
802.11b	Highest	2462	-48.89	-30	Pass
002.11-	Lowest	2412	-36.91	-30	Pass
802.11g	Highest	2462	-46.72	-30	Pass
002 11- (UT20)	Lowest	2412	-36.77	-30	Pass
802.11n(HT20)	Highest	2462	-46.23	-30	Pass
00211=(UT40)	Lowest	2422	-40.77	-30	Pass
802.11n(HT40)	Highest	2452	-44.08	-30	Pass

11. Conducted RF Spurious Emissions

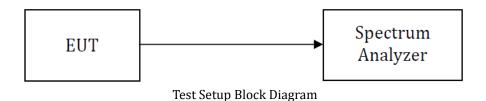
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

11.2 Test Procedure

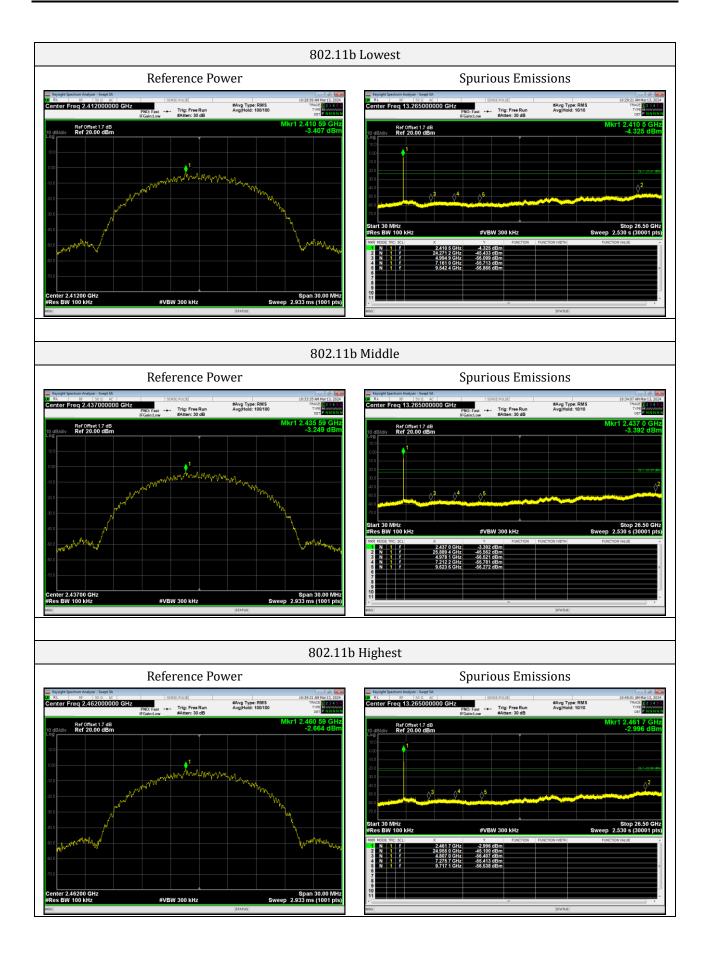
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

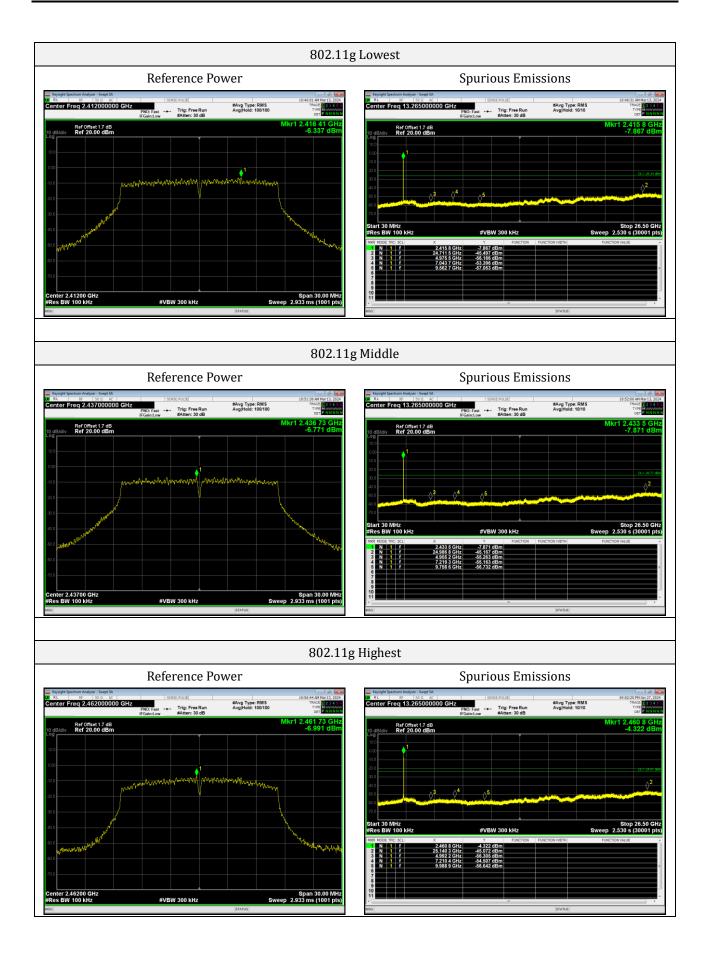
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

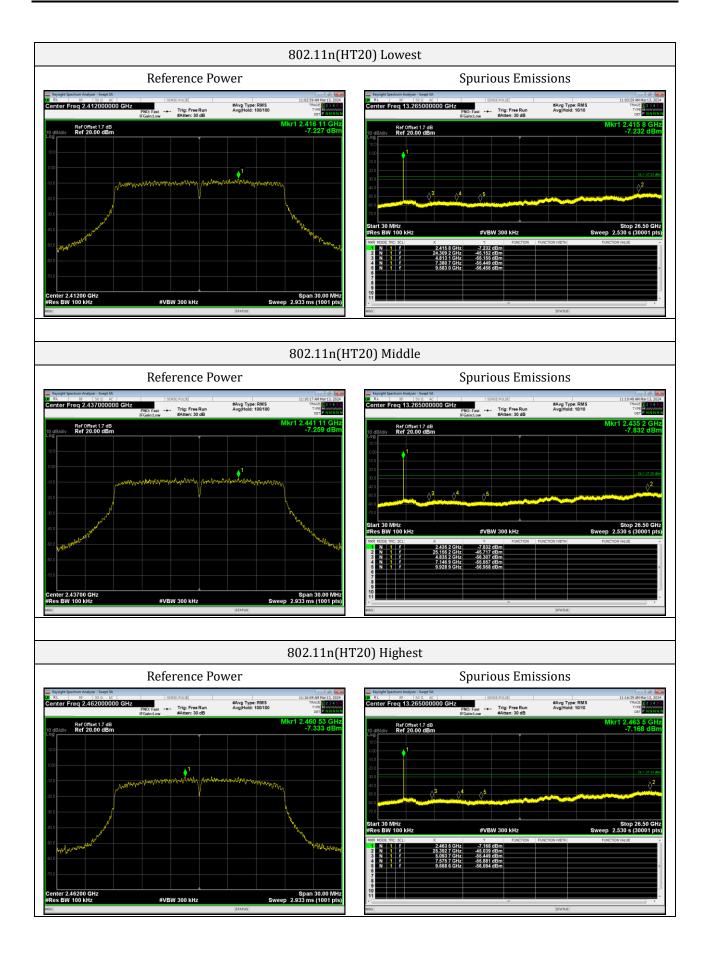

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.


6) Repeat above procedures until all measured frequencies were complete.



11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

