

RADIO TEST REPORT FCC ID: 2AOWK-3109

Product: Tablet Trade Mark: ulefone Model No.: GQ3109 Family Model: Armor Pad, Armor Pad Pro, Armor Pad Lite Report No.: STR221208002001E Issue Date: Feb 22, 2023

Prepared for

Shenzhen Gotron Electronic CO.,LTD.

7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Table of Contents

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
3.3	MEASUREMENT UNCERTAINTY	5
4 GI	NERAL DESCRIPTION OF EUT	6
5 DH	SCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
	-	
6.1 6.2	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	
6.2 6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TE	ST REQUIREMENTS	
7.1	CONDUCTED EMISSIONS TEST	
7.2	RADIATED SPURIOUS EMISSION	
7.3	NUMBER OF HOPPING CHANNEL	
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
7.6	20DB BANDWIDTH TEST	
7.7	PEAK OUTPUT POWER	
7.8	CONDUCTED BAND EDGE MEASUREMENT	
7.9	SPURIOUS RF CONDUCTED EMISSION	
7.10	ANTENNA APPLICATION	
7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8 TE	ST RESULTS	
8.1	Dwell Time	35
8.2	MAXIMUM CONDUCTED OUTPUT POWER	
8.3	-20DB BANDWIDTH	
8.4	Occupied Channel Bandwidth	
8.5	CARRIER FREQUENCIES SEPARATION	
8.6	NUMBER OF HOPPING CHANNEL	
8.7	BAND EDGE	
8.8	BAND EDGE(HOPPING)	
8.9	CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Gotron Electronic CO.,LTD.
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Manufacturer's Name:	Shenzhen Gotron Electronic CO.,LTD.
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Product description	
Product name:	Tablet
Trade Mark:	ulefone
Model and/or type reference:	GQ3109
Family Model:	Armor Pad, Armor Pad Pro, Armor Pad Lite
Test Sample number :	T221208001R003

Measurement Procedure Used:

APPLICABLE STANDARDS STANDARD/ TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C Complied ANSI C63.10-2013 Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Dec 08, 2022 ~ Feb 22, 2023	
Testing Engineer	:	Mukri Lee	
		(Mukzi Lee)	
		Here	
Authorized Signatory	:	(Alex Li)	_

7

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

NTEK 北测

R

ac-M

ACCREDITED Certificate #4298.01

Product Feature and Specification		
Tablet		
ulefone		
2AOWK-3109		
GQ3109		
Armor Pad, Armor Pad Pro, Armor Pad Lite		
All the model are the same circuit and RF module,only color and model name are different.		
2402MHz~2480MHz		
GFSK, π/4-DQPSK, 8-DPSK		
79 Channels		
PIFA Antenna		
3.55 dBi		
Model: HJ-FC038K7-US Input: 100-240V~50/60Hz 0.6A Output: 5V3.0A OR 9V2.0A OR 12V1.5A		
DC 3.85V, 7650mAh,29.45Wh		
DC 3.85V from battery or DC 5V from adapter		
MB_TP787_A1_V1.1		
Armor Pad_SH1_EEA_V1		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01 Revision History			
Report No.	Version	Description	Issued Date
STR221208002001E	Rev.01	Initial issue of report	Feb 22, 2023

NTEK 北源

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Cartificate #4299 01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y and Z-plane. The X-plane results were found as the worst case and were shown in this report.

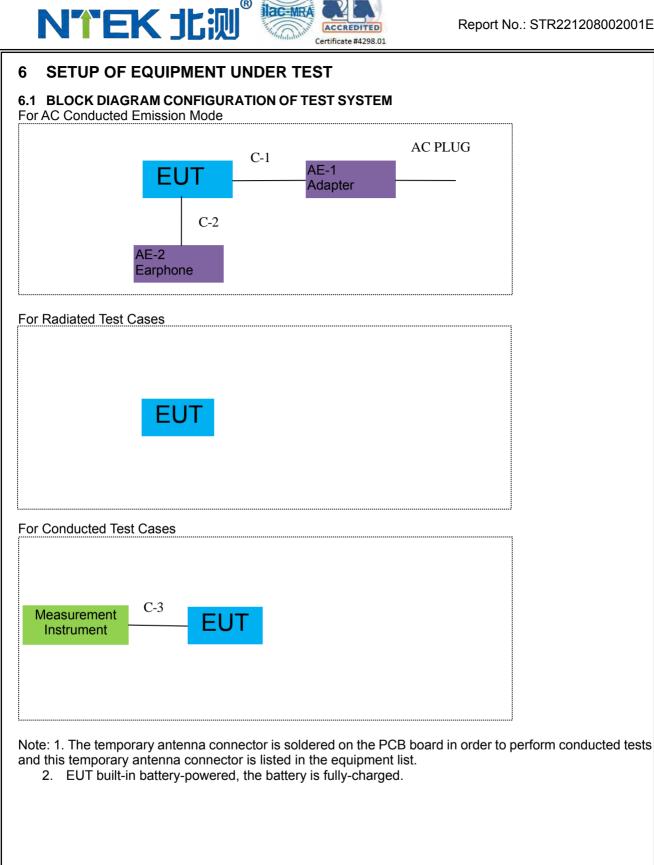
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

R

ac-M

ACCREDITED

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HJ-FC038K7-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

R

ac-M

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-M

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

Vaulatio		iest equipment					
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Ćable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

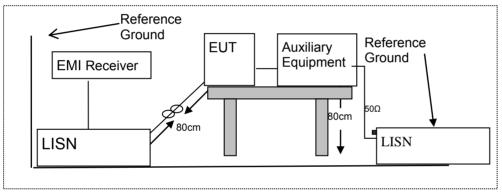
7.1 CONDUCTED EMISSIONS TEST

NTEK 北视

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

ac-N

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

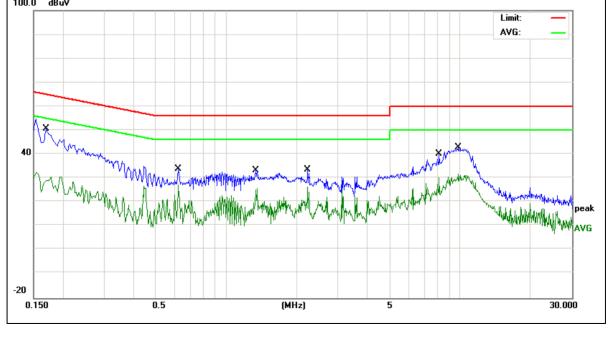
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 **Test Results**

EUT:	Tablet	Model Name :	GQ3109
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

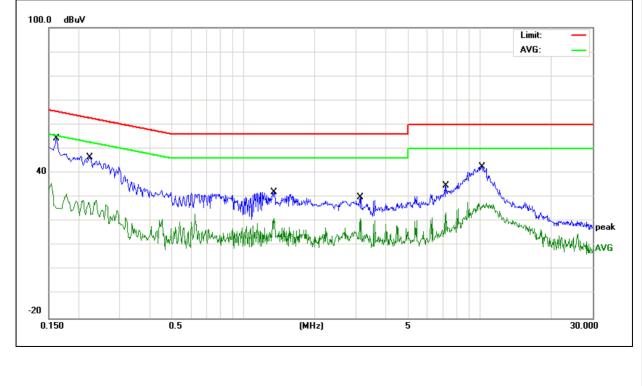

	T					<u> </u>
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	41.00	9.61	50.61	64.96	-14.35	QP
0.1700	19.45	9.61	29.06	54.96	-25.90	AVG
0.6260	24.20	9.67	33.87	56.00	-22.13	QP
0.6260	17.55	9.67	27.22	46.00	-18.78	AVG
1.3380	23.60	9.68	33.28	56.00	-22.72	QP
1.3380	15.32	9.68	25.00	46.00	-21.00	AVG
2.2259	23.86	9.69	33.55	56.00	-22.45	QP
2.2259	16.72	9.69	26.41	46.00	-19.59	AVG
8.1178	30.21	9.87	40.08	60.00	-19.92	QP
8.1178	20.34	9.87	30.21	50.00	-19.79	AVG
9.7939	33.06	9.92	42.98	60.00	-17.02	QP
9.7939	18.81	9.92	28.73	50.00	-21.27	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

100.0 dBuV


EUT:	Tablet	Model Name :	GQ3109
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	44.67	9.65	54.32	65.36	-11.04	QP
0.1620	15.87	9.65	25.52	55.36	-29.84	AVG
0.2230	36.81	9.63	46.44	62.70	-16.26	QP
0.2230	17.00	9.63	26.63	52.70	-26.07	AVG
1.3500	22.53	9.67	32.20	56.00	-23.80	QP
1.3500	11.59	9.67	21.26	46.00	-24.74	AVG
3.1099	20.29	9.69	29.98	56.00	-26.02	QP
3.1099	10.61	9.69	20.30	46.00	-25.70	AVG
7.1977	24.86	9.82	34.68	60.00	-25.32	QP
7.1977	13.96	9.82	23.78	50.00	-26.22	AVG
10.2217	32.71	9.91	42.62	60.00	-17.38	QP
10.2217	16.44	9.91	26.35	50.00	-23.65	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

NTEK 北测

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Cartificate #4299 01

According to FOC Fait 15.200, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov/(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

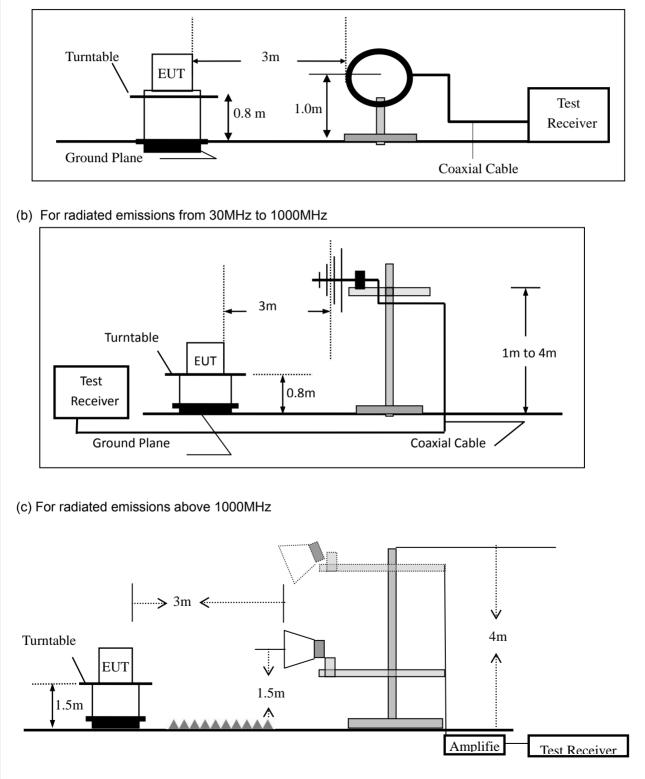
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

NTEK 北源


The Measuring equipment is listed in the section 6.3 of this test report.

act

ACCREDITED

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ah awa 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

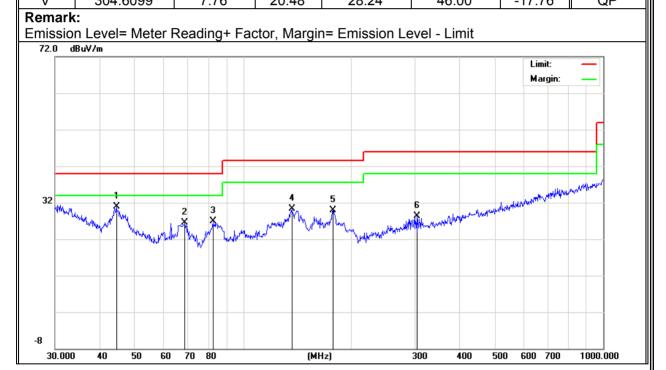
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Tablet	Model No.:	GQ3109
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	(dB)
(MHz)	H/V	PK ÀV Í		PK	AV	PK	AV


Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

 Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:
 EUT: Tablet Model Name : GQ3109
 Temperature 25[°]

Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	44.4307	12.88	18.08	30.96	40.00	-9.04	QP
V	68.8721	13.20	13.32	26.52	40.00	-13.48	QP
V	82.3588	11.30	15.51	26.81	40.00	-13.19	QP
V	136.4598	11.33	18.94	30.27	43.50	-13.23	QP
V	177.5089	12.82	17.17	29.99	43.50	-13.51	QP
V	304.6099	7.76	20.48	28.24	46.00	-17.76	QP

NTEK 北测

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	123.2655	7.56	18.85	26.41	43.50	-17.09	QP
Н	141.8262	9.88	18.41	28.29	43.50	-15.21	QP
Н	156.4576	9.18	18.31	27.49	43.50	-16.01	QP
Н	178.7581	11.17	17.06	28.23	43.50	-15.27	QP
Н	293.0842	12.18	20.00	32.18	46.00	-13.82	QP
Н	612.0642	6.56	26.46	33.02	46.00	-12.98	QP
						Limit: Margin:	
32 	mula harman	when the state		A Maria and M	5 5	6 salarana and a salarana and a a salarana and a salar	and the second
-8	40 50 60	70 80	(MH		300 400 5	500 600 700	1000.000

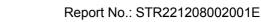
ACCREDITED Certificate #4298.01

NTEK 北测 [®]	ACCREDITED Certificate #4298.01
----------------------	------------------------------------

Spurious	Emission	Above 1	GHz (1GH	z to 25GI	Hz)					
EUT:	Tab	olet		Mode	el No.:		GQ31	09		
Temperature:	20	č		Rela	tive Humidity	/:	48%			
Test Mode:	Мо	de2/Mod	e3/Mode4	Test	By:	-	Mukzi	Lee		
All the modula					-	t was			/:	
				-,						
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lii	mits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBj	uV/m)	(dB)		
			Low Char	inel (2402	MHz)(GFSK)-	Abo	ve 1G			
4804	69.67	5.21	35.59	44.30	66.17	74	4.00	-7.83	Pk	Vertical
4804	47.35	5.21	35.59	44.30	43.85	54	4.00	-10.15	AV	Vertical
7206	68.19	6.48	36.27	44.60	66.34	74	4.00	-7.66	Pk	Vertical
7206	50.03	6.48	36.27	44.60	48.18	54	4.00	-5.82	AV	Vertical
4804	70.31	5.21	35.55	44.30	66.77	74	4.00	-7.23	Pk	Horizontal
4804	46.31	5.21	35.55	44.30	42.77	54	4.00	-11.23	AV	Horizontal
7206	68.3	6.48	36.27	44.52	66.53	74	4.00	-7.47	Pk	Horizontal
7206	50.43	6.48	36.27	44.52	48.66	54	4.00	-5.34	AV	Horizontal
			Mid Chan	nel (2441	MHz)(GFSK)-	-Abov	/e 1G			
4882	68.34	5.21	35.66	44.20	65.01	74	4.00	-8.99	Pk	Vertical
4882	50.14	5.21	35.66	44.20	46.81	-	4.00	-7.19	AV	Vertical
7323	68.31	7.10	36.50	44.43	67.48	74	4.00	-6.52	Pk	Vertical
7323	47.33	7.10	36.50	44.43	46.50	54	4.00	-7.50	AV	Vertical
4882	69.05	5.21	35.66	44.20	65.72	74	4.00	-8.28	Pk	Horizontal
4882	48.36	5.21	35.66	44.20	45.03	54	4.00	-8.97	AV	Horizontal
7323	70.52	7.10	36.50	44.43	69.69	74	4.00	-4.31	Pk	Horizontal
7323	46.87	7.10	36.50	44.43	46.04	54	4.00	-7.96	AV	Horizontal
<u>.</u>			High Chan	nel (2480	MHz)(GFSK)-	- Abo	ve 1G			
4960	68.06	5.21	35.52	44.21	64.58	74	4.00	-9.42	Pk	Vertical
4960	48.49	5.21	35.52	44.21	45.01	54	4.00	-8.99	AV	Vertical
7440	68.05	7.10	36.53	44.60	67.08	74	4.00	-6.92	Pk	Vertical
7440	48.2	7.10	36.53	44.60	47.23	54	4.00	-6.77	AV	Vertical
4960	70.86	5.21	35.52	44.21	67.38	74	4.00	-6.62	Pk	Horizontal
4960	49.16	5.21	35.52	44.21	45.68	54	4.00	-8.32	AV	Horizontal
7440	68.62	7.10	36.53	44.60	67.65	74	4.00	-6.35	Pk	Horizontal
7440	49.55	7.10	36.53	44.60	48.58	54	4.00	-5.42	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.


EU	T:	Tablet			Мо	del No.:		GQ3	3109					
Ten	nperature	20 ℃			Re	lative Humidi	ty:	48%	48%					
Tes	t Mode:	Mode2/ N	lode4		Te	st By:		Muk	zi Lee					
All	the modul	ation mod	es have	been test	ed, and	the worst res	sult wa	s rep	ort as be	elow:				
			Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment				
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре				
					1Mbps(G	FSK)-Non-hopp	ing							
	2310.00	68.74	2.97	27.80	43.80	55.71	74	4	-18.29	Pk	Horizontal			
	2310.00	45.38	2.97	27.80	43.80	32.35	54	4	-21.65	AV	Horizontal			
	2310.00	70.41	2.97	27.80	43.80	57.38	74	4	-16.62	Pk	Vertical			
	2310.00	46.83	2.97	27.80	43.80	33.80	54	4	-20.20	AV	Vertical			
	2390.00	68.81	3.14	27.21	43.80	55.36	74		-18.64	Pk	Vertical			
	2390.00	46.75	3.14	27.21	43.80	33.30	54	4	-20.70	AV	Vertical			
	2390.00	68.94	3.14	27.21	43.80	55.49	74	74	-18.51	Pk	Horizontal			
	2390.00	47.12	3.14	27.21	43.80	33.67	54		-20.33	AV	Horizontal			
	2483.50	68.96	3.58	27.70	44.00	56.24	74	4	-17.76	Pk	Vertical			
	2483.50	48	3.58	27.70	44.00	35.28	54	4	-18.72	AV	Vertical			
	2483.50	68.18	3.58	27.70	44.00	55.46	74	4	-18.54	Pk	Horizontal			
	2483.50	45.71	3.58	27.70	44.00	32.99	54	4	-21.01	AV	Horizontal			
					1Mbps	(GFSK)-hopping	1							
	2310.00	70.04	2.97	27.80	43.80	57.01	74	4	-16.99	Pk	Horizontal			
	2310.00	50.28	2.97	27.80	43.80	37.25	54	4	-16.75	AV	Horizontal			
Ē	2310.00	70.39	2.97	27.80	43.80	57.36	74	4	-16.64	Pk	Vertical			
	2310.00	50.84	2.97	27.80	43.80	37.81	54	4	-16.19	AV	Vertical			
	2390.00	69.26	3.14	27.21	43.80	55.81	74	4	-18.19	Pk	Vertical			
	2390.00	47.96	3.14	27.21	43.80	34.51	54	4	-19.49	AV	Vertical			
	2390.00	70.88	3.14	27.21	43.80	57.43	74	4	-16.57	Pk	Horizontal			
	2390.00	48.77	3.14	27.21	43.80	35.32	54	4	-18.68	AV	Horizontal			
	2483.50	70.48	3.58	27.70	44.00	57.76	74	4	-16.24	Pk	Vertical			
	2483.50	48.31	3.58	27.70	44.00	35.59	54	4	-18.41	AV	Vertical			
	2483.50	69.54	3.58	27.70	44.00	56.82	74	4	-17.18	Pk	Horizontal			
-	2483.50	46.53	3.58	27.70	44.00	33.81	54	4	-20.19	AV	Horizontal			

Note: (1) All other emissions more than 20dB below the limit.

UT:	Ta	ablet		Model No.: GQ3109									
emperature	e: 20) °C			Relat	ive Humidity	y:	48%					
est Mode:	M	ode2/ Mod	le4		Test I	Зу:		Mukz	i Lee				
All the modu	ulation m	odes have	e been test	ed, a	and th	e worst resi	ult wa	is repo	ort as belo	W:			
Frequency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lir	nits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре			
3260	70.07	4.04	29.57	44	4.70	58.98	74		-15.02	Pk	Vertical		
3260	45.34	4.04	29.57	57 44.70		34.25	54		-19.75	AV	Vertical		
3260	69.99	4.04	29.57	44	4.70	58.90	74		-15.10	Pk	Horizonta		
3260	45.07	4.04	29.57	44.70		33.98	5	54	-20.02	AV	Horizonta		
3332	69.5	4.26	29.87	44	4.40	59.23	7	74	-14.77	Pk	Vertical		
3332	49.63	4.26	29.87	44	4.40	39.36	5	54	-14.64	AV	Vertical		
3332	68.43	4.26	29.87	44	4.40	58.16	7	74	-15.84	Pk	Horizonta		
3332	47.62	4.26	29.87	44	4.40	37.35	5	54	-16.65	AV	Horizonta		
17797	53.54	10.99	43.95	43	3.50	64.98	7	74	-9.02	Pk	Vertical		
17797	37.93	10.99	43.95	43	3.50	49.37	5	54	-4.63	AV	Vertical		
17788	50.58	11.81	43.69	44	4.60	61.48	7	74	-12.52	Pk	Horizonta		
17788	32.89	11.81	43.69	44	4.60	43.79	Ę	54	-10.21	AV	Horizonta		

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Tablet	Model No.:	GQ3109
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Tablet	Model No.:	GQ3109
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Tablet	Model No.:	GQ3109	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee	

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Tablet	Model No.:	GQ3109
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Tablet	Model No.:	GQ3109
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Tablet	Model No.:	GQ3109
Temperature:	20 °C	Relative Humidity:	
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

7.9.1 Applicable Standard

NTEK 北视

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Cartificate #4299 01

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 3.55 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

7.11.2 Frequency Hopping System

NTEK 北测

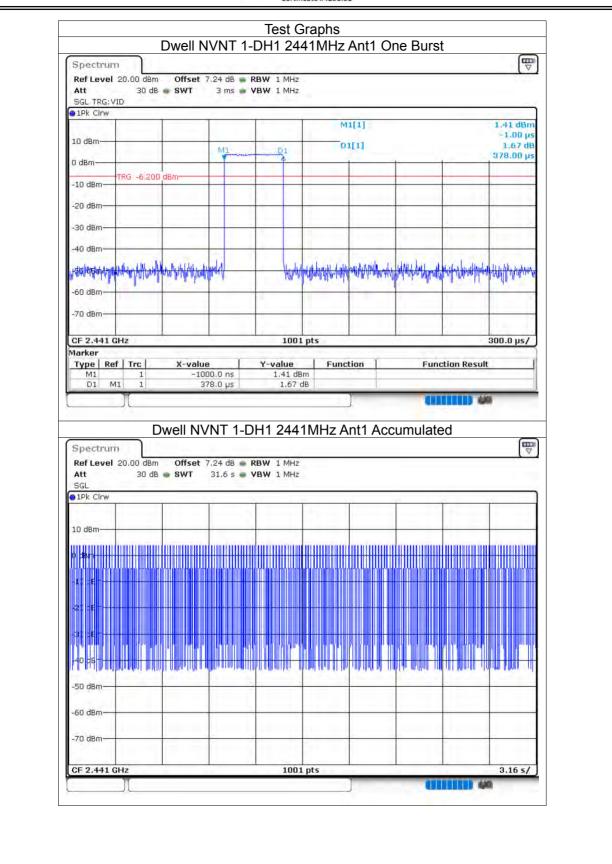
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

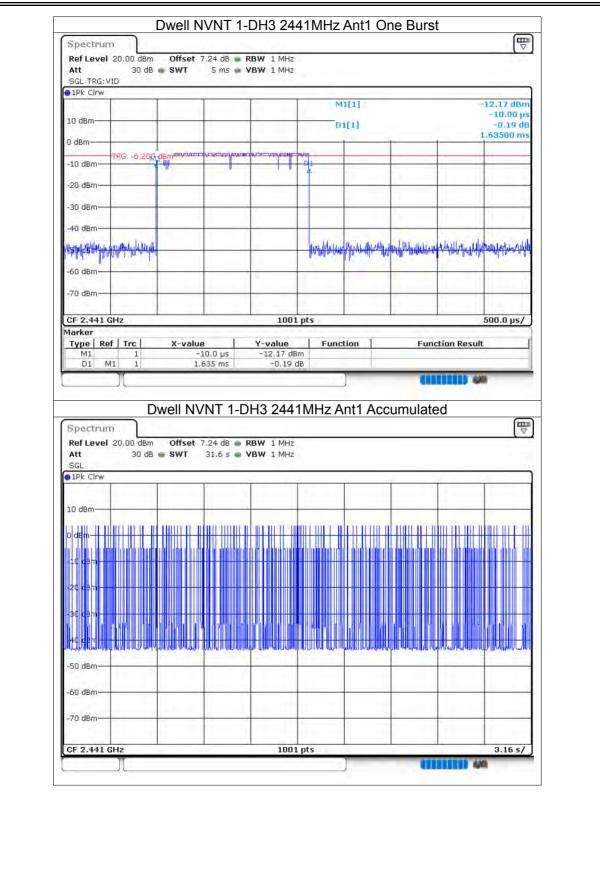
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

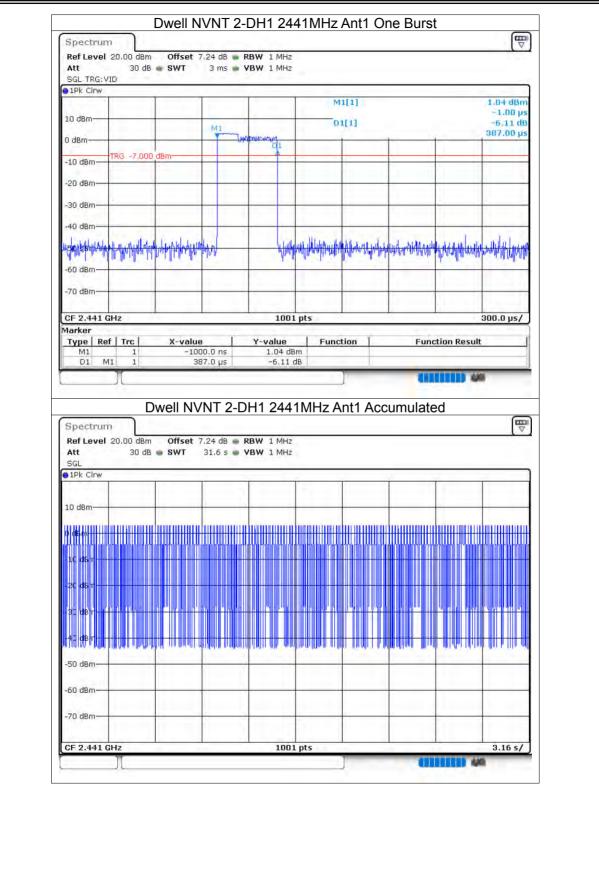
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


8 TEST RESULTS

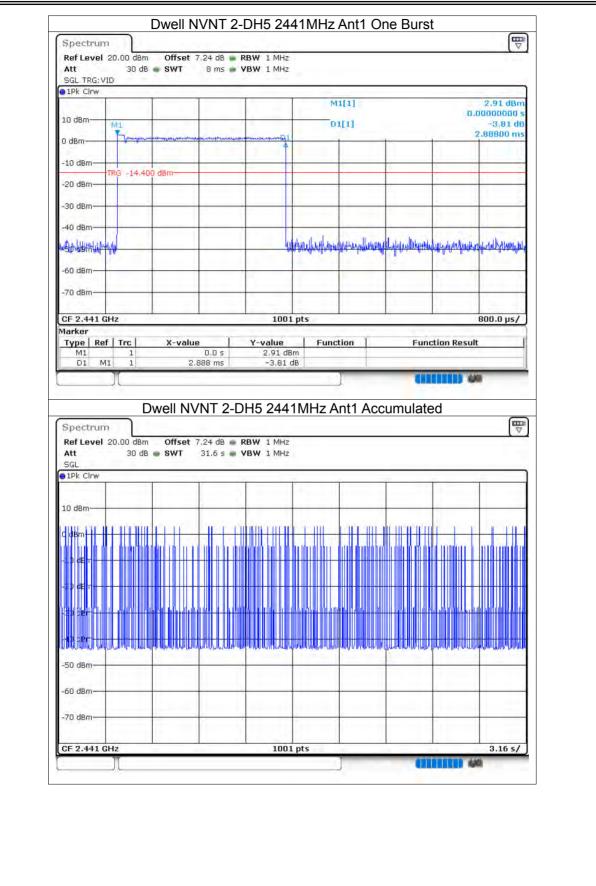
8.1 DWELL TIME

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.378	80.514	213	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.635	210.915	129	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.88	244.8	85	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.387	77.4	200	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.635	210.915	129	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	248.368	86	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.387	79.722	206	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	215.82	132	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	236.816	82	31600	400	Pass

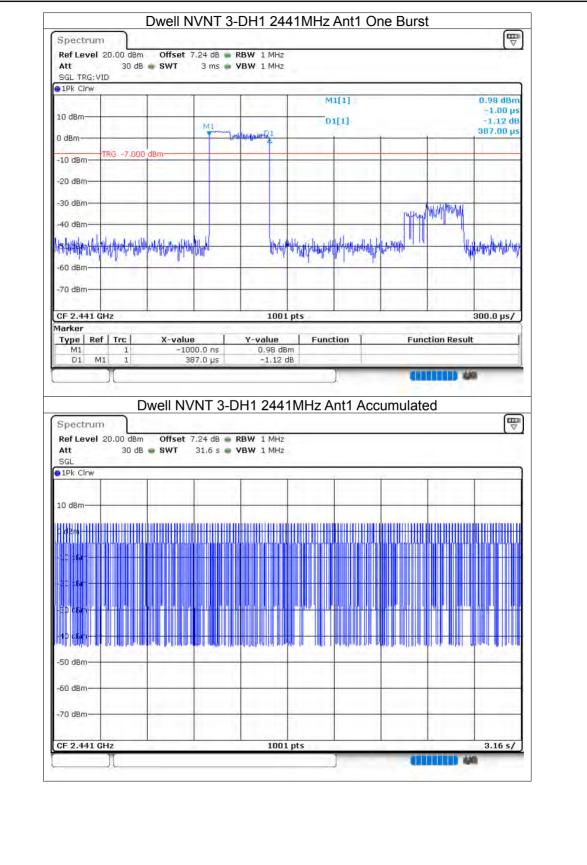


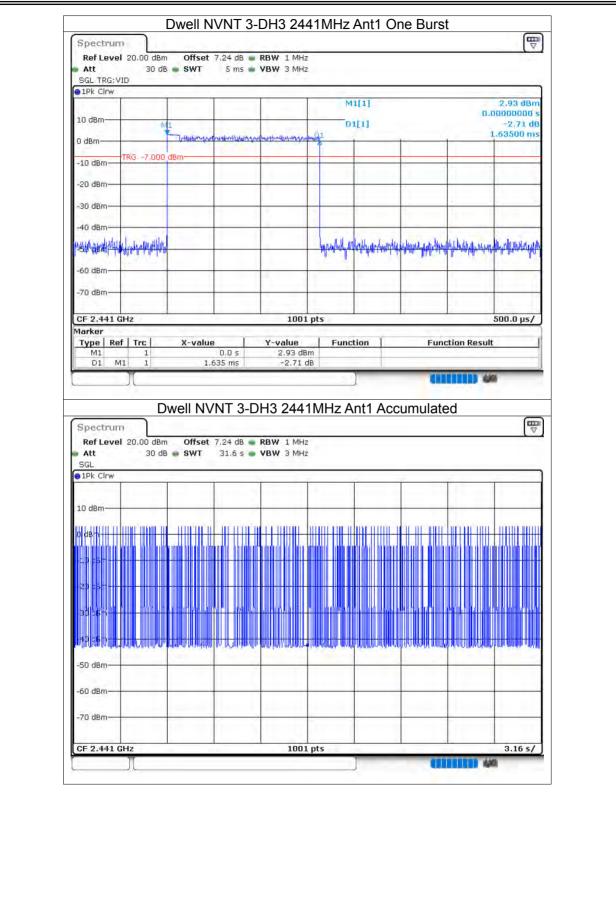


a tob class	ID			277.0222					
•1Pk Clrw	-			-	M	[1]			-6.86 dBm
10 dBm					01	[1]			-8.00 µs 1.13 dB
0 dBm	Mt		-			-		1 3	.88000 ms
-10 dBm		dBmacence		pour un with	_				
-20 dBm						1		11	1 5
			1 1	1		1	1	1 = 1	1 == 5
-30 dBm							· · · · · ·	h	1
-40 dBm	11				i	10.0.0	in a sin	1	
NHE BANK BANK	(hu)				and from the states	MANAGARAN	in chardly states for the	enter interneting	erally that a lot of the
-60 dBm	-								
-70 dBm			-	-	_				
CF 2.441 (21.1.2			1001	ntc				800.0 µs/
Marker									
Type Re M1	f Trc 1	X-value	e -8.0 μs	Y-value -6.86 dB	m Funct	ion	Fund	ction Result	
D1 N		2	.88 ms	1.13 c	в				
	1					6			
	D	well NV	'NT 1-D	H5 244 ⁻	MHz A	nt1 Acc	umulate	ed	
Att SGL 1Pk Clrw	30 46	SWT	31.6 s 🖷 🕻	VBW 1 MHz		1	í -	T.	
SGL				VBW 1 MHz					
SGL									
SGL									
SGL									
SGL									
SGL					pts				3.16 s/
SGL					pts				3.16 s/
SGL					pts				3.16 s/



●1Pk Clrw						
10 dBm			M1[1]		0.00000	
0 dBm			01[1]		-3. 1.635	19 dB 00 ms
	dBm####################################	And the second second second	841			
			43			
-20 dBm						\equiv [
-30 dBm						1
-40 dBm			male He hadden hat had he	d a mar le a trasfante a de	ais allow in sub-	uha berd
and a locate of			and concerned and had not	Marie Arliken, Addar II.		Anor MA
-60 dBm						
-70 dBm			Contraction of the second			
CF 2.441 GHz Marker		1001	nts	1	500.0	0 µs/
Type Ref Trc	X-value	Y-value	Function	Func	tion Result	1
M1 1 D1 M1 1	0.0 s 1.635 ms					
				CIII		
D	well NVNT 2	2-DH3 2441	MHz Ant1 A	ccumulate	d	
Spectrum					•	₽
Ref Level 20.00 dBm	Offset 7.24 dB	RBW 1 MHz				
	- All and a second second second	In 1975 - COloma de Lute a				
Att 30 dB SGL	SWT 31.6 s	• VBW 1 MHz				
Att 30 dB	9 SWT 31.6 s	• VBW 1 MHz	- î	1 1	1	
Att 30 dB SGL	SWT 31.6 s	• VBW 1 MHz		Ĩ		
Att 30 dB SGL 1Pk Clrw 10 dBm	• SWT 31.6 s	• VBW 1 MHz				
Att 30 dB SGL 1Pk Clrw	• SWT 31.6 s	• VBW 1 MHz				
Att 30 dB SGL 1Pk Clrw 10 dBm	• SWT 31.6 s	• VBW 1 MHz				
Att 30 dB SGL ● 1Pk Clrw 10 dBm 0 d2m +1C =3m						
Att 30 dB SGL ● 1Pk Clrw 10 dBm 0 d2m +1C =3m						
Att 30 dB SGL						
Att 30 dB SGL						
Att 30 dB SGL						
Att 30 dB SGL ● 1Pk Clrw 10 dBm 0 dem +10 z3m +20 z3m -20 z3m -20 z3m -20 z3m -20 z3m -20 z3m						
Att 30 dB SGL ■ ● 1Pk Clrw ■ 10 dBm ■ 0 dem ■ +1C s3m ■ +2C s3m ■ +3C dem ■ +3C dem ■ +50 dBm ■						
Att 30 dB SGL • ● 1Pk Clrw • 10 dBm • • •						
Att 30 dB SGL ■ ● 1Pk Clrw ■ 10 dBm ■ 0 dem ■ +1C s3m ■ +2C s3m ■ +3C dem ■ +3C dem ■ +50 dBm ■					30-41/4 (Musel Musel 30-41/4 (Musel Musel 30-51/5 (Musel Musel Musel 30-51/5 (Musel Musel Musel 30-51/5 (Musel Musel Musel 30-51/5 (Musel Musel Musel Musel Musel 30-51/5 (Musel Musel	
Att 30 dB SGL ■ ● 1Pk Clrw ■ 10 dBm ■ 0 dBm ■ -10 dBm ■ -20 dBm ■ -50 dBm ■ -70 dBm ■					90	

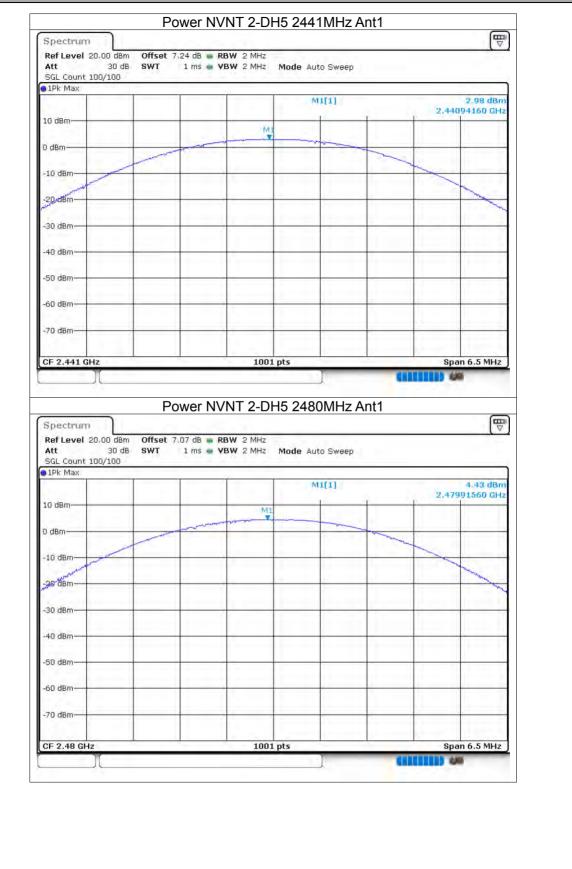


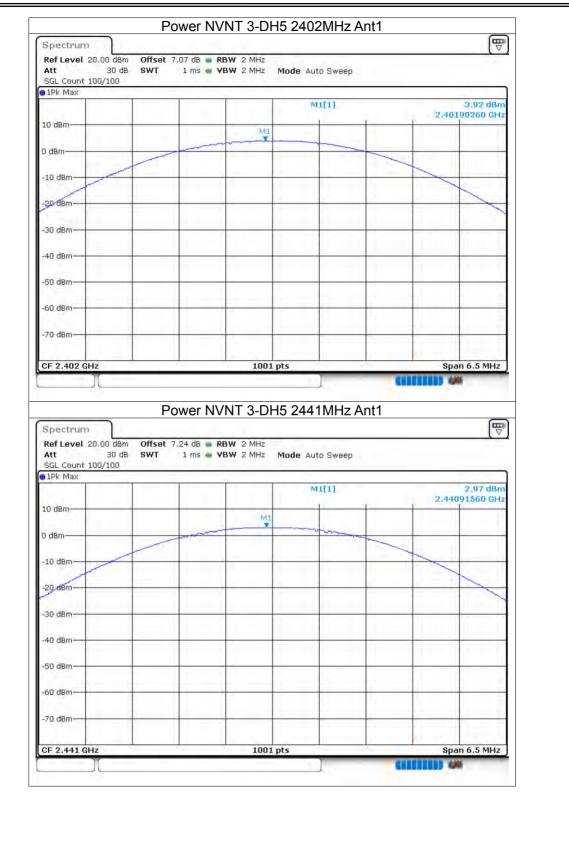


1Pk Clrw				_			
			M1[1]				-6.41 dBm 0000000 s
10 dBm			01[1]			2	-4.99 dB .88800 ms
0 dBm M1	dBm manage - aparticition	www.					
-10 dBm	dom	4					
-20 dBm							
-30 dBm				-			
-40 dBm							1.5.7.2
all and a state of the state of		141	the all many the particular	How And	n Miller Marked Baller Hyper	urff hereby plant of	un maileallan and
-60 dBm				-			1
-70 dBm							
CF 2.441 GHz		1001 p	te				300.0 µs/
Marker							soo.u µs7
Type Ref Trc M1 1	X-value 0.0 s	Y-value -6.41 dBm	Function		Functio	n Result	
D1 M1 1	2.888 ms	-4,99 dB		- 0			
Spectrum Ref Level 20.00 dBm	Offset 7.24 dB F SWT 31.6 5 SWT		MHz Ant1	Accur	nulated		₽
Spectrum Ref Level 20.00 dBm Att 30 dB SGL	Offset 7.24 dB 🖷 I	RBW 1 MHz	MHz Ant1	Accur			
Spectrum Ref Level 20.00 dBm Att 30 dB SGL • 1Pk Cirw 10 dBm • dBm	Offset 7.24 dB • F • SWT 31.6 s • V	RBW 1 MHz					
Spectrum Ref Level 20.00 dBm Att 30 dB SGL 1Pk Clrw 10 dBm 0 dBm - 10 dBm - 20 dBm - 20 dBm - 10 dBm -	Offset 7.24 dB • F • SWT 31.6 s • V	RBW 1 MHz VBW 1 MHz					
Spectrum Ref Level 20.00 dBm Att 30 dB SGL IPk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -50 dBm -60 dBm	Offset 7.24 dB • F • SWT 31.6 s • V	RBW 1 MHz VBW 1 MHz					
Spectrum Ref Level 20.00 dBm Att 30 dB SGL IPk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 7.24 dB • F • SWT 31.6 s • V	RBW 1 MHz VBW 1 MHz					
Spectrum Ref Level 20.00 dBm Att 30 dB SGL IPk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -50 dBm -60 dBm	Offset 7.24 dB • F • SWT 31.6 s • V	RBW 1 MHz VBW 1 MHz					3.16 s/
Spectrum Ref Level 20.00 dBm Att 30 dB SGL ID dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 7.24 dB • F • SWT 31.6 s • V	RBW 1 MHz YBW 1 MHz					3.16 s/

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	4.35	21	Pass
NVNT	1-DH5	2441	Ant1	3.62	21	Pass
NVNT	1-DH5	2480	Ant1	5.19	21	Pass
NVNT	2-DH5	2402	Ant1	3.86	21	Pass
NVNT	2-DH5	2441	Ant1	2.98	21	Pass
NVNT	2-DH5	2480	Ant1	4.43	21	Pass
NVNT	3-DH5	2402	Ant1	3.92	21	Pass
NVNT	3-DH5	2441	Ant1	2.97	21	Pass
NVNT	3-DH5	2480	Ant1	4.43	21	Pass


	Po	ower NVN	Test Gra NT 1-DH	5 2402MHz	Ant1		
Spectrum)						
Ref Level 20.00		7.07 dB 🖷 RB		and a state of			
Att SGL Count 100/:		1 ms 🖷 VB	W 2 MHZ N	1ode Auto Sweep			
1Pk Max	1	1 7					
				M1[1]		2,40	4,35 dBm 197000 GHz
10 dBm			M			1	
D dBm							
o dom						-	1
10 dBm			-		-		
-20 dBm							
Loubin							
-30 dBm	-	-	-		-		
-40 dBm							
is sen							1 1
-50 dBm							
-60 dBm							
as donn							
-70 dBm							
				,			1 777.1
			1001 p	te		Sna	an 5.0 MHz
Spectrum		co. A	NT 1-DH	5 2441MHz	Ant1		
Spectrum Ref Level 20.00 Att	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH]			10
Spectrum Ref Level 20.00 Att SGL Count 100/1	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH	5 2441MHz 10de Auto Sweep			(\
Spectrum Ref Level 20.00 Att SGL Count 100/1	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH	5 2441MHz			10
Spectrum Ref Level 20.00 Att SGL Count 100/; 1Pk Max	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/; 1Pk Max	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH w 2 MHz w 2 MHz N	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/; 01Pk Max 10 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/; 01Pk Max 10 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: 1Pk Max 10 dBm 0 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: 1Pk Max 10 dBm 	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: 1Pk Max 10 dBm 	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz 10de Auto Sweep			(₩) 3,62 dBm
Spectrum Ref Level 20.00 Att SGL Count 100/: DPk Max 10 dBm 0 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH	5 2441MHz		2,44	3.62 dBm 094010 GHz
Spectrum Ref Level 20.00 Att SGL Count 100/: 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH W 2 MHz W 2 MHz N M1	5 2441MHz		2.440	(₩) 3.62 dBm 094010 GHz
Spectrum Ref Level 20.00 Att SGL Count 100/: DPk Max 10 dBm 0 dBm	D dBm Offset 7 30 dB SWT	7.24 dB 💼 RB1	NT 1-DH	5 2441MHz		2.440	3.62 dBm 094010 GHz

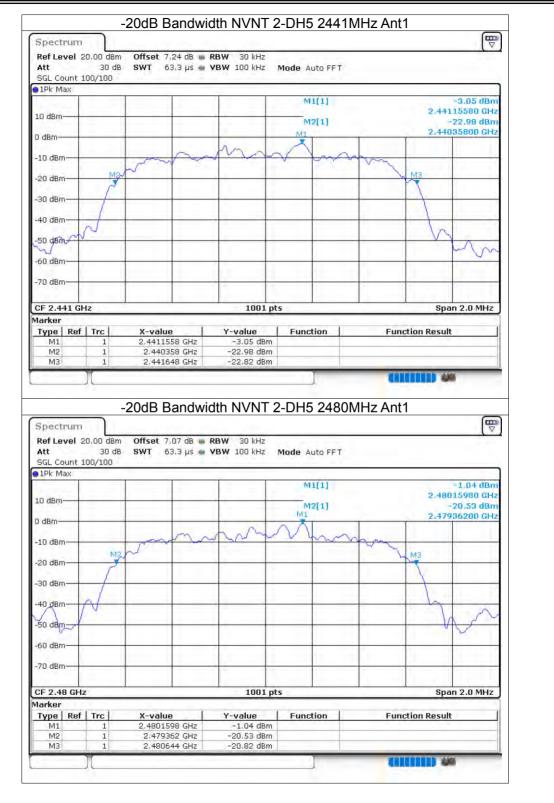

Ref Level 20.00 dBm Att 30 dB SGL Count 100/100		dB BRBW 2 MHz ms BW 2 MHz	Mode Auto Sweep	-	
1Pk Max		(in the second se	M1[1]		5,19 dBm
.0 dBm		Ma	1	I	2.47991010 GHz
		M1			
) dBm					
10 dBm-				1	
20 dBm					
30 dBm					
40 dBm					= 101 == 0
50 dBm					
60 dBm		-			
70 dBm					
42.			·	, · · · · · · · · · ·	- 1 A
CF 2.48 GHz		1001	pts		Span 5.0 MHz
RefLevel 20.00 dBm Att 30 dB	Offset 7.07	er NVNT 2-D	H5 2402MHz A	.nt1	(The second seco
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100	Offset 7.07	dB 💼 RBW 2 MHz	Mode Auto Sweep	nt1	
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max	Offset 7.07	dB 💼 RBW 2 MHz	the state of the state	.nt1	
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max	Offset 7.07	dB 💼 RBW 2 MHz	Mode Auto Sweep M1[1]	nt1	3.86 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 10 dBm- 0 dBm-	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 I1Pk Max 30 dBm I0 dBm 30 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]	nt1	3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 10 dBm 10 dBm 10 dBm 20 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 30 dBm 10 dBm 30 dBm 10 dBm 30 dBm 30 dBm 30 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 10 dBm 10 dBm 10 dBm 20 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 30 dBm 10 dBm 30 dBm 10 dBm 30 dBm 30 dBm 30 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 I1Pk Max I0 dBm 0 dBm 10 dBm 30 dBm 30 dBm 30 dBm 40 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max .0 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep M1[1]		3.86 dBm
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max	Offset 7.07	dB RBW 2 MHz ms VBW 2 MHz	Mode Auto Sweep	nt1	3.86 dBm 2,40198050 GHz
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 IPK Max .0 dBm .0 dBm	Offset 7.07	dB B RBW 2 MHz ms 9 YBW 2 MHz	Mode Auto Sweep		3.96 dBm 2.40198050 GHz
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 0 0 dBm 0 dBm 0 dBm 0 30 dBm 0 30 dBm 0 30 dBm 0 40 dBm 0 50 dBm 0 70 dBm 0	Offset 7.07	dB RBW 2 MHz ms VBW 2 MHz	Mode Auto Sweep		3.86 dBm 2,40198050 GHz

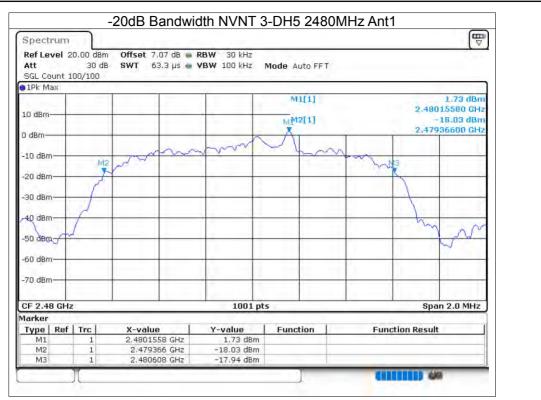
Mode Auto Sweep	7.07 dB 🔳 RBW 2 MHz	0.00 dam Offcot	
	1 ms 🖷 YBW 2 MHz	30 dB SWT	Ref Level 20.0 Att SGL Count 100/
	· · · · · · · · · · · · · · · · · · ·		1Pk Max
M1[1]		1.1.1	
	M		10 dBm
	apart and a second s		0 dBm
			-10 dBm
			20 dBm
		_	-30 dBm
			-40 dBm
		1	-50 dBm
			-60 dBm
· · · · · ·			-70 dBm
pts	1001		CF 2.48 GHz

8.3 -20DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.86	Pass
NVNT	1-DH5	2441	Ant1	0.854	Pass
NVNT	1-DH5	2480	Ant1	0.854	Pass
NVNT	2-DH5	2402	Ant1	1.278	Pass
NVNT	2-DH5	2441	Ant1	1.29	Pass
NVNT	2-DH5	2480	Ant1	1.282	Pass
NVNT	3-DH5	2402	Ant1	1.254	Pass
NVNT	3-DH5	2441	Ant1	1.286	Pass
NVNT	3-DH5	2480	Ant1	1.242	Pass

ACCREDITED Certificate #4298.01

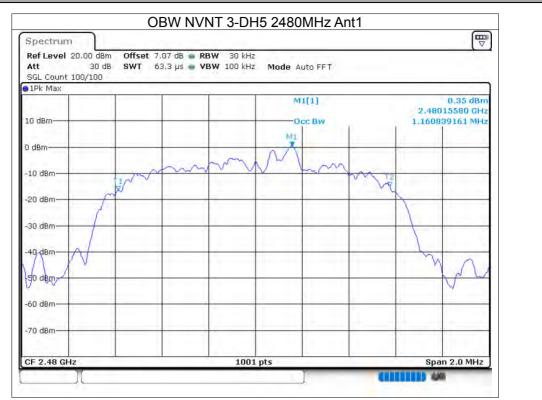






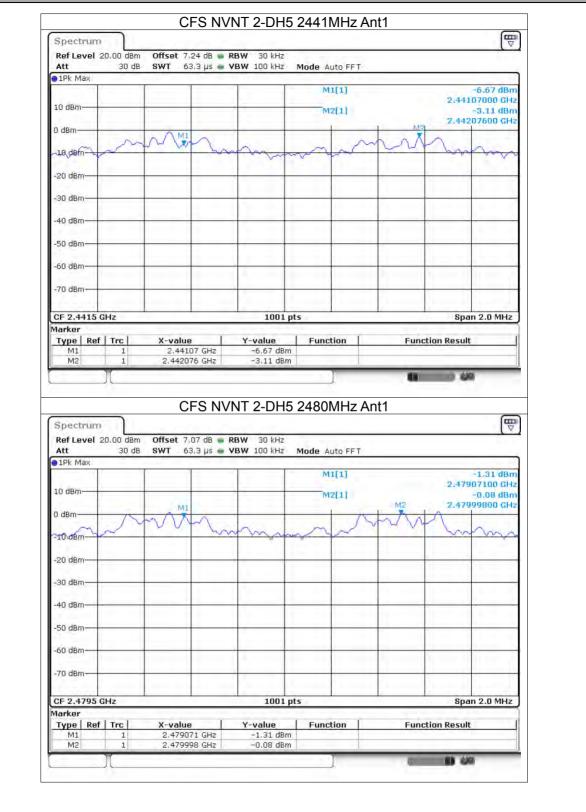
8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.755
NVNT	1-DH5	2441	Ant1	0.775
NVNT	1-DH5	2480	Ant1	0.769
NVNT	2-DH5	2402	Ant1	1.155
NVNT	2-DH5	2441	Ant1	1.159
NVNT	2-DH5	2480	Ant1	1.173
NVNT	3-DH5	2402	Ant1	1.151
NVNT	3-DH5	2441	Ant1	1.181
NVNT	3-DH5	2480	Ant1	1.161



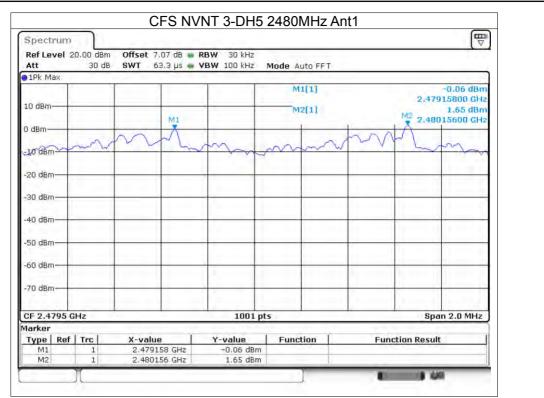
8.5 CARRIER FREQUENCIES SEPARATION

•••••							
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.966	2403.042	1.076	0.573	Pass
NVNT	1-DH5	Ant1	2441.048	2442.006	0.958	0.569	Pass
NVNT	1-DH5	Ant1	2478.968	2480.052	1.084	0.569	Pass
NVNT	2-DH5	Ant1	2402.006	2403.158	1.152	0.025	Pass
NVNT	2-DH5	Ant1	2441.07	2442.076	1.006	0.86	Pass
NVNT	2-DH5	Ant1	2479.071	2479.998	0.927	0.855	Pass
NVNT	3-DH5	Ant1	2402.158	2403.158	1	0.836	Pass
NVNT	3-DH5	Ant1	2440.972	2441.972	1	0.857	Pass
NVNT	3-DH5	Ant1	2479.158	2480.156	0.998	0.828	Pass

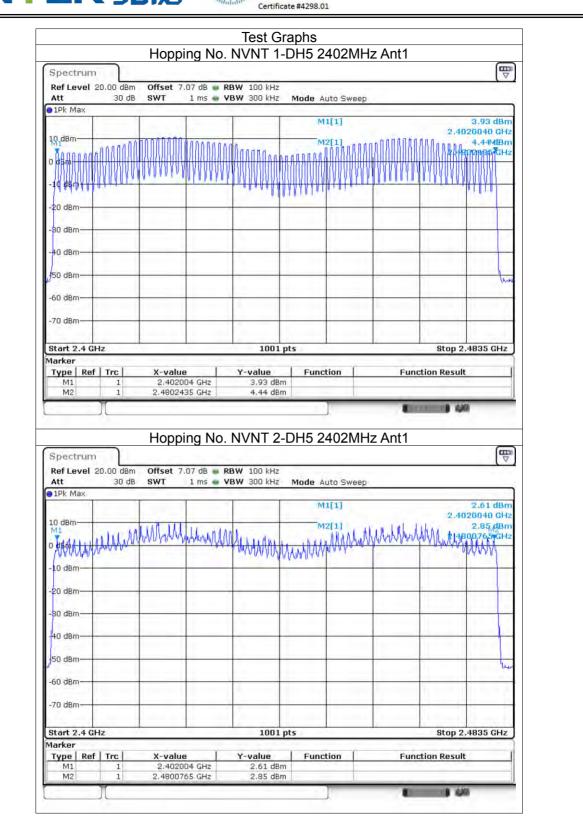




NTEK JLW®



NTEK LID®



8.6 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

ACCREDITED

H									Spectr
			A. Trade of	3W 100 kHz			0.00 dB 30 0	/el 20	Ref Lev
-		зер	lode Auto Swee	BW 300 kHz 1	1 ms 🖷	IB SWT	30 0		Att 1Pk Ma
Bm	1.69 d		M1[1]		1	10.00		10	TER MG
	2.4028390 0								10 40-
Bm	4.07/4	ALL ALABAR	M2[1]	4	JI JA H	UL JAULT	140		10 dBm- M1
GHZ	VALLEAR PART	WANA MANA MANA MANA	111 Marsh	Buch	robally la	and grand the sea	ALAN	1.116	AMA C
	**** AAAAA		Wardlanga	White the	1		Au	WAND.	THIRD.
-			242			-			10 dBm
									1.00
					-	1	_	-	20 dBm
								-	-30 dBm
				1		· · · · · · · · · · · · · · · · · · ·			40 dBm
	h				1				40 GBM
								_	50 dBm
1 mar	1 ···· 1 1 ···								
-							_	-	-60 dBm
					-	-			-70 dBm
	A CORE AND A STREET							1	
Hz	Stop 2.4835 GH			1001 pt			z	4 GHz	Start 2.
								1000	1arker
_	tion Result	Func	Function	Y-value		X-value		Ref	
-				1.69 dBm 4.07 dBm	2839 GHz 2435 GHz		1		M1 M2
-	100			nor upin		2170027		-	14)2

NTEK 北觊

υ.									
	Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict	
	NVNT	1-DH5	2402	Ant1	No-Hopping	-59.89	-20	Pass	
	NVNT	1-DH5	2480	Ant1	No-Hopping	-61.13	-20	Pass	
	NVNT	2-DH5	2402	Ant1	No-Hopping	-59.22	-20	Pass	
	NVNT	2-DH5	2480	Ant1	No-Hopping	-61.61	-20	Pass	
	NVNT	3-DH5	2402	Ant1	No-Hopping	-58.95	-20	Pass	
	NVNT	3-DH5	2480	Ant1	No-Hopping	-60.22	-20	Pass	

ACCREDITED Certificate #4298.01

Spectrum									ſ	
Ref Level				RBW 100 kHz		AS real				
Att SGL Count		SWT	18'a hz 🖷	VBW 300 kHz	Mode A	uto FF I				
1Pk Max		-	1	1 1						
					WI	[1]		2,405	7.11 di 203200 G	
10 dBm				N1		-		-		
0 dBm)					
o dan				1	5					
-10 dBm					1	-	-		-	
20 d0m							_			
-20 dBm				17						
-30 dBm			-			-				-
10.10										
-40 dBm	· · · · · · ·		· · · · ·		1	2.00				
-50 dBm			A			An				
m	mm	mm	M.			Vm	m	m	mm	~
-60 dBm										
-70 dBm			-			-	-	-	-	11
			1		1.1					11
Spectrum	and Edg			1001 p H5 2402M]	1 No-H	opping			tz
Bi Spectrum Ref Level Att	and Edg 20.00 dBm 25 dB	Offset 1	0.62 dB 🖷		Hz Ant	75.7.5	opping		on	
Bi Spectrum Ref Level Att SGL Count	and Edg 20.00 dBm 25 dB	Offset 1	0.62 dB 🖷	H5 2402M	Hz Ant	75.7.5	opping		on	
Bi Spectrum Ref Level Att SGL Count	and Edg 20.00 dBm 25 dB	Offset 1	0.62 dB 🖷	H5 2402M	Hz Ant	uto FFT	opping	Emissic	on (1 7.11 di	Bm
Bi Spectrum Ref Level Att SGL Count SGL Count	and Edg 20.00 dBm 25 dB	Offset 1	0.62 dB 🖷	H5 2402M	Hz Ant Mode A	uto FFT	opping	Emissic	on (Bm ∺Hz
Bi Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm-	and Edg 20.00 dBm 25 dB	Offset 1	0.62 dB 🖷	H5 2402M	Hz Ant' Mode A	uto FFT	opping	Emissic	7.11 di	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 1 SWT 2	0.62 dB 🖷	H5 2402M	Hz Ant Mode A	uto FFT	opping	Emissic	7.11 di 7.11 di 195000 C	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	and Edg 20.00 dBm 25 dB	Offset 1 SWT 2	0.62 dB 🖷	H5 2402M	Hz Ant Mode A	uto FFT	opping	Emissic	7.11 di 7.11 di 195000 C	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 1 SWT 2	0.62 dB 🖷	H5 2402M	Hz Ant Mode A	uto FFT	opping	Emissic	7.11 di 7.11 di 195000 C	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 1 SWT 2	0.62 dB 🖷	H5 2402M	Hz Ant Mode A	uto FFT	opping	Emissic	7.11 di 7.11 di 195000 C	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 1 SWT 2	0.62 dB 27.5 μs	H5 2402M	Hz Ant Mode A	uto FFT	opping	Emissic	7.11 di 7.11 di 195000 C	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 11 SWT 2	0.62 dB	H5 2402M	Mode AI	uto FFT (1) (1)		2.400	7.11 dl 195009 G -55.16 M 900000 3	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count IPk Max ID dBm ID dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 1 SWT 2	0.62 dB	H5 2402M	Mode AI	uto FFT		Emissic	7.11 dl 195009 G -55.16 M 900000 3	Bm HHz Bm
Bi Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	and Edg 20.00 dBm 25 dB 100/100	Offset 11 SWT 2	0.62 dB	H5 2402M	Mode AI	uto FFT (1) (1)		2.400	7.11 dl 195009 G -55.16 M 900000 3	Bm HHz Bm
B Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm	DI -12.890	Offset 11 SWT 2	0.62 dB	H5 2402M	Mode Al	uto FFT (1) (1)		2.401 2.400	7.11 di 195000 c 555.16 a 100000 c 	Bm Hz Bm Hz
B Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm	DI -12.890	Offset 11 SWT 2	0.62 dB	H5 2402M	Mode Al	uto FFT (1) (1)		2.401 2.400	7.11 dl 195009 G -55.16 M 900000 3	Bm Hz Bm Hz
Bi Spectrum Ref Level Att SGL Count IPk Max ID dBm O dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 d	and Edg 20.00 dBm 25 dB 100/100 D1 -12,890	Offset 1 SWT 2	0.62 dB 27.5 µs	H5 2402M	Hz Ant Mode A M1 M2	uto FFT [1] [1]	Merciphiero	2.401 2.400	2.406 GH	Bm Hz Bm Hz
Bi Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 d	and Edg 20.00 dBm 25 dB 100/100 01 -12.890 01 -12.890 my.dM.my, 5 GHz f Trc 1 1	Offset 1 SWT 2 dBm dBm x-value 2.401	0.62 dB	H5 2402M	Hz Ant [*] Mode A M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto FFT [1] [1]	Merciphiero	Emissic 2.400 2.400	2.406 GH	Bm Hz Bm Hz
Bi Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 20 dBm 20 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 50 dBm 70 dBm 70 dBm 70 dBm 70 dBm	and Edg 20.00 dBm 25 dB 100/100 D1 -12,890 m/1.LMmmp 5 GHz f Trc 1 1	Offset 1 SWT 2 dBm dBm X-value 2.401 2 2.	0.62 dB	H5 2402M	Mode A Mode A M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto FFT [1] [1]	Merciphiero	Emissic 2.400 2.400	2.406 GH	Bm Hz Bm Hz

Ref Level Att SGL Count	25 dB			RBW 100 kHz VBW 300 kHz		Auto FFT			
1Pk Max	100/100			î î	M	1[1]			8.03 dBm
10 dBm	<u> </u>		2	M	1			2,480	102400 GHz
0 dBm			-		1				
					1				
-10 dBm				1					
-20 dBm				1	1				
-30 dBm	-		-	1					
-40 dBm			-					-	
-50 dBm			m			my			
-60 dBm-	m	wind	4				nm	mm	m
-70 dBm						1			
-yo ubin						1.11			100.0
				1001	nte			Cna	n 8.0 MHz
Spectrum	ال and Edg			15 2480N	1Hz Ant] :1 No-H	opping l		8
Ba Spectrum Ref Level Att SGL Count	20.00 dBm 25 dB	Offset 10.	.62 dB 🖷		1Hz Ant		opping I		on
Ba Spectrum Ref Level Att SGL Count • 1Pk Max	20.00 dBm 25 dB	Offset 10.	.62 dB 🖷	15 2480N RBW 100 kHz	1Hz Ant 2 2 Mode v		opping I	Emissic	0 N (₩ 8.01 dBm
Bi Spectrum Ref Level Att SGL Count 10 cbm	20.00 dBm 25 dB	Offset 10.	.62 dB 🖷	15 2480N RBW 100 kHz	1Hz Ant ² Mode , M	Auto FFT	opping I	Emissic	8.01 dBm 05500 GHz 56.22 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 10 dBm • 0 dBm	20.00 dBm 25 dB	Offset 10.	.62 dB 🖷	15 2480N RBW 100 kHz	1Hz Ant ² Mode , M	Auto FFT 1[1]	opping I	Emissic	0N ₩ 8.01 dBm 005000 GHz
Ba Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 25 dB	Offset 10. SWT 22	.62 dB 🖷	15 2480N RBW 100 kHz	1Hz Ant ² Mode , M	Auto FFT 1[1]	opping I	Emissic	8.01 dBm 05500 GHz 56.22 dBm
Ba Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm	20.00 dBm 25 dB 100/100	Offset 10. SWT 22	.62 dB 🖷	15 2480N RBW 100 kHz	1Hz Ant ² Mode , M	Auto FFT 1[1]	opping I	Emissic	8.01 dBm 05500 GHz 56.22 dBm
Ba Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 cBm	20.00 dBm 25 dB 100/100	Offset 10. SWT 22	.62 dB 🖷	15 2480N RBW 100 kHz	1Hz Ant ² Mode , M	Auto FFT 1[1]	opping I	Emissic	8.01 dBm 05500 GHz 56.22 dBm
Bi Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 25 dB 100/100	Offset 10. SWT 22 ⁻	.62 dB ● 7.5 μs ●	I5 2480N	1Hz Ant	Auto FFT		2.480 2.483	8.01 dBm 005000 GH2 56.22 dBm 550000 GH2
Ba Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 25 dB 100/100	Offset 10. SWT 22 ⁻	.62 dB ● 7.5 μs ●	I5 2480N	1Hz Ant	Auto FFT		2.480 2.483	8.01 dBm 05500 GHz 56.22 dBm
Ba Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	20.00 dBm 25 dB 100/100	Offset 10. SWT 22 ⁻	.62 dB ● 7.5 μs ●	I5 2480N	1Hz Ant	Auto FFT		2.480 2.483	8.01 dBm 005000 GH2 56.22 dBm 550000 GH2
Bi Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 cBm -20 cBm -30 dBm -40 dBm -40 dBm -40 dBm	20.00 dBm 25 dB 100/100	Offset 10. SWT 22 ⁻	.62 dB ● 7.5 μs ●	I5 2480N	1Hz Ani	Auto FFT		2.480 2.483	8.01 dBm 005000 GH2 56.22 dBm 550000 GH2
Ba Spectrum Ref Level Att SGL Count ID dBm D dBm -10 dBm -20 cBm -20 cBm -20 cBm -20 cBm -20 cBm -20 dBm -20 dBm -30 dBm -40 dBm -70 dBm Start 2.4766 Marker Type Ref M1	20.00 dBm 25 dB 100/100 01 -11,972 01 -11,972 0 GHz 1 Trc 1	Offset 10. SWT 22'	.62 dB 7.5 μs	15 2480N RBW 100 kHz VBW 300	1Hz An1	Auto FFT	number of the	2.480 2.483	00 8.01 dBm 005000 GHz 556.22 dBm 556.22 dBm 556.000 GHz
Ba Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -	20.00 dBm 25 dB 100/100	Offset 10. SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	.62 dB ● 7.5 μs ● 	15 2480N	1Hz An1	Auto FFT	number of the	Emissic 2.480 2.483	00 8.01 dBm 005000 GH2 56.22 dBm 550200 GH2

Ref Level 2 Att SGL Count 1	25 dB			RBW 100 kH VBW 300 kH		Auto FFT			
					М	1[1]		2 405	6.77 dBm
10 dBm					1			2.102	
0 dBm				and a	have				
				1					
-10 dBm				1			-		1
-20 dBm	-	()	_	1				-	
-30 dBm			-			4	1	122	1
1.1			Λ			\wedge			1
-40 dBm			1			×			
-50 dBm			nd	-		in			
-60 dBm	min	m					mon	my	min
-70 dBm									
Spectrum	nd Edg	-	-	15 2402N] :1 No-H	opping I	•	nn 8.0 MHz
Ba Spectrum Ref Level 2 Att SGL Count 1	nd Edg	Offset 10	.62 dB 🖷		/Hz Ant		opping I	•	on
Ba Spectrum Ref Level 2 Att	nd Edg	Offset 10	.62 dB 🖷	15 2402N RBW 100 KH	/Hz Ant ^z ^z Mode		opping I	Emissic	5.10 dBm
Ba Spectrum Ref Level 2 Att SGL Count 1	nd Edg	Offset 10	.62 dB 🖷	15 2402N RBW 100 KH	/Hz Ant ^z Mode . M	Auto FFT	opping I	Emissic	5.10 dBm 205000 CHz 54.11 4Bm
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	nd Edg	Offset 10	.62 dB 🖷	15 2402N RBW 100 KH	/Hz Ant ^z Mode . M	Auto FFT 1[1]	opping I	Emissic	5.10 dBm 205000, CHz
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm- 0 dBm- -10 dBm-	nd Edg	Offset 10 SWT 22	.62 dB 🖷	15 2402N RBW 100 KH	/Hz Ant ^z Mode . M	Auto FFT 1[1]	opping I	Emissic	5.10 dBm 205000 CHz 54.11 4Bm
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm- 0 dBm- -10 dBm-	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🖷	15 2402N RBW 100 KH	/Hz Ant ^z Mode . M	Auto FFT 1[1]	opping I	Emissic	5.10 dBm 205000 CHz 54.11 4Bm
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm- 0 dBm- -10 dBm- 0	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🖷	15 2402N RBW 100 KH	/Hz Ant ^z Mode . M	Auto FFT 1[1]	opping I	Emissic	5.10 dBm 205000 CHz 54.11 4Bm
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm • dBm • dBm • 20 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🖷	15 2402N RBW 100 kH VBW 300 kH	/Hz Ant ^z Mode . M	Auto FFT 1[1]	opping I	Emissic	5.10 dBm 205000 CHz 54.11 4Bm
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🔹	15 2402N RBW 100 kH VBW 300 kH	/Hz Ant z Mode a M	Auto FFT		2.402 2.400	5.10 dBm 205000 CHz 54.11 4Bm 206000 CHz
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🔹	15 2402N RBW 100 kH VBW 300 kH	/Hz Ant z Mode a M	Auto FFT 1[1]		2.402 2.400	5.10 dBm 205000 CHz 54.11 4Bm 206000 CHz
Ba Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🔹	15 2402N RBW 100 kH VBW 300 kH	/Hz Ant z Mode a M	Auto FFT		2.402 2.400	5.10 dBm 205000 CHz 54.11 4Bm 206000 CHz
Ba Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 🔹	15 2402N RBW 100 kH VBW 300 kH	/Hz Ant z Mode . M	Auto FFT		2.402 2.400	5.10 dBm 205000 CHz 54.11 4Bm 206000 CHz
Ba Spectrum Ref Level 2 Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm Start 2.306 Marker	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	.62 dB 7.5 μs 	15 2402N	AHz Ani z Mode מש אינעוויזייעעוויא pts	Auto FFT 1[1] 2[1] 	myn-shadywh	2.402 2.400	DN 5.10 dBm 25.10 dBm 254.11 /Bm 100000 CH2 -54.11 /Bm 10000 CH2 -54.11 /Bm 100000 CH2 -54.11 /Bm 10000 CH2 -54.11 /Bm 10000 CH2 -54.11 /B
Ba Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -70 d	nd Edg 0.00 dBm 25 dB 00/100 1 -13.227 	Offset 10 SWT 22 dBm uh/V(,	.62 dB 7.5 μs 	15 2402N RBW 100 kH YBW 300 kH	/Hz Ani	Auto FFT 1[1] 2[1] 	myn-shadywh	2.402 2.400	DN 5.10 dBm 25.10 dBm 254.11 /Bm 100000 CH2 -54.11 /Bm 10000 CH2 -54.11 /Bm 100000 CH2 -54.11 /Bm 10000 CH2 -54.11 /Bm 10000 CH2 -54.11 /B
Ba Spectrum Ref Level 2 Att SGL Count 1 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 Marker Type Ref	nd Edg 0.00 d8m 25 d8 00/100 1 -13.227	Offset 10 SWT 22 dBm dBm x-value 2.4020 2.3	.62 dB 7.5 μs 	15 2402N RBW 100 kH VBW 300 kH 100 kH VBW 300 kH 100 kH N4 N4 N4 N4 1001 Y-value	AHz Ani 2 Mode م میکمیریاریا pts	Auto FFT 1[1] 2[1] 	myn-shadywh	2.402 2.400	DN 5.10 dBm 25.10 dBm 254.11 /Bm 100000 CH2 -54.11 /Bm 10000 CH2 -54.11 /Bm 100000 CH2 -54.11 /Bm 10000 CH2 -54.11 /Bm 10000 CH2 -54.11 /B

Ref Level 20 Att SGL Count 10 1Pk Max	25 dB			RBW 100 kHz VBW 300 kHz		Auto FFT	-		
					M	1[1]		2,479	7.12 dBm 84020 GHz
10 dBm				MI	À				
0 dBm				- prod " V	lag				
-10 dBm									
-20 dBm			_						
6.000						4			
-30 dBm			A		1	0			
-40 dBm			- P		-	V	-		
-50 dBm		~	r-l			hm	n in h	1.7	1
-60 dBm	v	man			_	-	- m	NAM	mm
-70 dBm									
			-						
1									
Spectrum	nd Edg			1001 5 2480M	IHz Ant] t1 No-H	opping		n 8.0 MHz n n ₩
Ba Spectrum Ref Level 20 Att SGL Count 10	nd Edg 0.00 dBm 25 dB	Offset 10).62 dB 🖷 🖡	15 2480M	IHz Ant		opping		n
Bal Spectrum Ref Level 20 Att SGL Count 10 • 1Pk Max	nd Edg 0.00 dBm 25 dB	Offset 10).62 dB 🖷 🖡	5 2480M	IHz Ant		opping	Emissio	n (▽ 7.37 dBm
Bal Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dbm	nd Edg 0.00 dBm 25 dB	Offset 10).62 dB 🖷 🖡	5 2480M	IHz Ant Mode	Auto FFT	opping	Emissio	7.37 dBm 15000 GHz 56.51 dBm
Ba Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	nd Edg 0.00 dBm 25 dB	Offset 10).62 dB 🖷 🖡	5 2480M	IHz Ant Mode	Auto FFT 1[1]	opping	Emissio	n (↓ 7.37 dBm 15000 GHz
Ba Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm	nd Edg 0.00 dBm 25 dB	Offset 10 SWT 22).62 dB 🖷 🖡	5 2480M	IHz Ant Mode	Auto FFT 1[1]	opping	Emissio	7.37 dBm 15000 GHz 56.51 dBm
Bai Spectrum Ref Level 20 Att SGL Count 10 O IPK Max 10 GBm 0 datn -10 cBm -20 aBm	nd Edg 0.00 dBm 25 dB 000/100	Offset 10 SWT 22).62 dB 🖷 🖡	5 2480M	IHz Ant Mode	Auto FFT 1[1]	opping	Emissio	7.37 dBm 15000 GHz 56.51 dBm
Ba Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm	nd Edg 0.00 dBm 25 dB 000/100	Offset 10 SWT 22).62 dB 🖷 🖡	5 2480M	IHz Ant Mode	Auto FFT 1[1]	opping	Emissio	7.37 dBm 15000 GHz 56.51 dBm
Bai Spectrum Ref Level 20 Att SGL Count 10 IPk Max 10 cBm 0 dBm -10 cBm -20 qBm -30 dBm -40 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	0.62 dB - Γ	15 2480M	Mode	Auto FFT 1[1] 2[1]		2.480 2.483	7.37 dBm 15000 GHz 56.51 dBm 50000 GHz
Bai Spectrum Ref Level 20 Att SGL Count 10 IPk Max 10 cBm 0 dBm -10 cBm -20 qBm -30 dBm -40 dBm	nd Edg 0.00 dBm 25 dB 000/100	Offset 10 SWT 22	0.62 dB - Γ	5 2480M	Mode	Auto FFT 1[1] 2[1]		2.480 2.483	7.37 dBm 15000 GHz 56.51 dBm 50000 GHz
Bal Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	0.62 dB - Γ	15 2480M	Mode	Auto FFT 1[1] 2[1]		2.480 2.483	7.37 dBm 15000 GHz 56.51 dBm 50000 GHz
Bai Spectrum Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm	nd Edg 0.00 dBm 25 dB 00/100	Offset 10 SWT 22	0.62 dB - Γ	15 2480M	Mode . Mode . M	Auto FFT 1[1] 2[1]		2.480 2.483	7.37 dBm 15000 GHz 56.51 dBm 50000 GHz
Bai Spectrum Ref Level 20 Att SGL Count 10 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	nd Edg 0.00 d8m 25 d8 00/100	Offset 10 SWT 22 dBm dBm	0.62 dB • F 27.5 μs • Y	5 2480M	IHz Ant Mode	Auto FFT 1[1] 2[1]	himmed the state	2.480 2.483	7.37 dBm 15000 GHz 56.51 dBm 50000 GHz
Ball Spectrum Ref Level 20 Att SGL Count 10 1Pk Max 10 GBm 0 dBm -10 GBm -20 GBm -20 GBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.476 C Marker	nd Edg 0.00 dBm 25 dB 100/100 1 -12.881 	Offset 10 SWT 22 dBm- dBm- x-value X-value 2.480 2.483	0.62 dB • F 27.5 μs • Y	5 2480M	IHz Ani Mode : M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]	himmed the state	Emissio	7.37 dBm 15000 GHz 56.51 dBm 50000 GHz

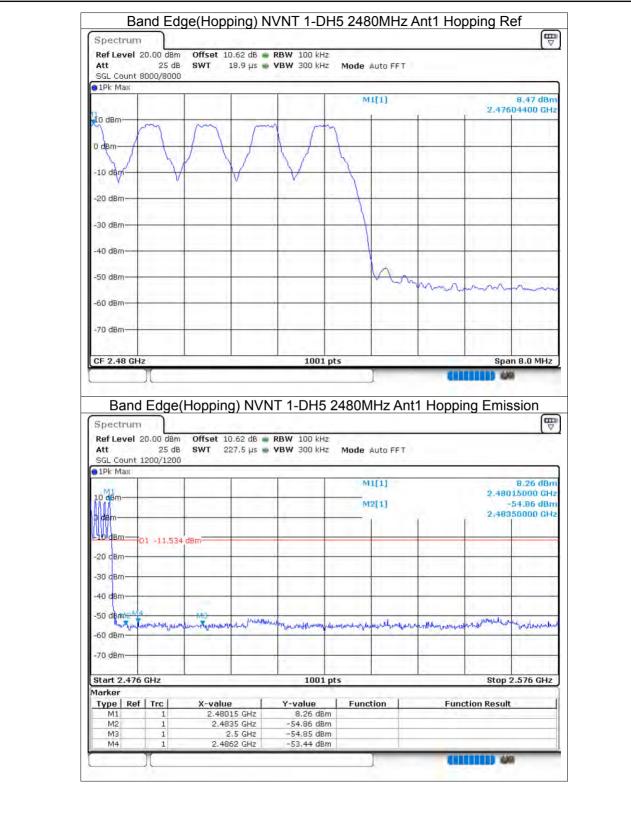
Ref Level 20.00 dB Att 25 c SGL Count 100/100 1Pk Max			BW 100 kHz BW 300 kHz	Mode .	Auto FFT	~			₽
				M	1[1]		2.401	6,13 d	
10 dBm			MA						
0 dBm			party	m		-	-	-	
-10 dBm									
-10 dam			1		-				
-20 dBm			1				-		-
-30 dBm-				-	14	_	1	1	
		M			A		1		
-40 dBm				-					
-50 dBm	3-2-2	\sim			long		~		-
-60 dem	mm				1	mm	m	m	m
					1				11
-70 dBm								1	
									1.1
Spectrum	dge NVN] t1 No-H	opping		n 8.0 M	Hz
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100		.62 dB 👜 R	5 2402M	Hz Ant		opping		8	
Band E Spectrum Ref Level 20.00 dB Att 25 c	m Offset 10.	.62 dB 👜 R	5 2402M	Hz Ant		opping		8	
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100	m Offset 10.	.62 dB 👜 R	5 2402M	Hz Ant Mode	Auto FFT	opping	Emissic	6.15 d	Bm ⊊Hz
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 • 1Pk Max	m Offset 10.	.62 dB 👜 R	5 2402M	Hz Ant Mode	Auto FFT	opping	Emissic	on 6.15 d	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm	m Offset 10. B SWT 22	.62 dB 👜 R	5 2402M	Hz Ant Mode	Auto FFT	opping	Emissic	6.15 d 21500q 54.65	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 1Pk Max 10 dBm- 0 dBm-	m Offset 10. B SWT 22	.62 dB 👜 R	5 2402M	Hz Ant Mode	Auto FFT	opping	Emissic	6.15 d 21500q 54.65	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 of SGL Count 100/100 • IPk Max 10 dBm -10 dBm -10 dBm DI -13.8	m Offset 10. B SWT 22	.62 dB 👜 R	5 2402M	Hz Ant Mode	Auto FFT	opping	Emissic	6.15 d 21500q 54.65	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 • IPk Max 10 dBm -10 dBm -20 dBm	m Offset 10. B SWT 22	.62 dB 👜 R	5 2402M	Hz Ant Mode	Auto FFT	opping	Emissic	6.15 d 21500q 54.65	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 cl SGL Count 100/100 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	m Offset 10. B SWT 22	.62 dB R 7,5 μs V	5 2402MI BW 100 kHz BW 300 kHz	Mode .	Auto FFT 1[1] 2[1]		2.402	6.15 d 6.15 d 54.65 a 06000	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m Offset 10. B SWT 22	.62 dB 👜 R	5 2402MI BW 100 kHz BW 300 kHz	Mode .	Auto FFT 1[1] 2[1]		2.402	6.15 d 6.15 d 54.65 a 06000	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m Offset 10. B SWT 22	.62 dB R 7,5 μs V	5 2402MI BW 100 kHz BW 300 kHz	Mode .	Auto FFT 1[1] 2[1]		2.402	6.15 d 6.15 d 54.65 a 06000	Bm GHz Bm
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	m Offset 10. B SWT 22	.62 dB R 7,5 μs V	5 2402MI BW 100 kHz BW 300 kHz	Mode M	Auto FFT 1[1] 2[1]		2.400	0.15 d 21500q 554.65 000000000000000000000000000000000000	Bm GHz GHz
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.306 GHz	m Offset 10. B SWT 22 68 dBm 68 dBm	.62 dB R 7,5 μs V	5 2402M	Mode . Mode . M	Auto FFT 1[1] 2[1]	hunder	Emissic 2.402 2.400	000 6.15 d 21500 (A 54.65) 0 54.65) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bm GHz GHz
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 GHz	m Offset 10. B SWT 22	.62 dB R R 7,5 μs V	5 2402MI BW 100 kHz BW 300 kHz	Hz Ant Mode a M M M M	Auto FFT 1[1] 2[1]	hunder	2.400	000 6.15 d 21500 (A 54.65) 0 54.65) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bm GHz GHz
Band E Spectrum Ref Level 20.00 dB Att 25 c SGL Count 100/100 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.306 GHz Marker Type Type	т Offset 10. В SWT 22 68 dBm 668 dBm цияли у но и у х-value 2.4021 2.	.62 dB R R 7,5 μs V	5 2402MI BW 100 kHz BW 300 kHz	Hz Ant Mode (M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]	hunder	Emissic 2.402 2.400	000 6.15 d 21500 (A 54.65) 0 54.65) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bm GHz GHz

Ref Level Att	20.00 dBm			RBW 100 kHz VBW 300 kHz		uto FFT			[□ □
SGL Count		341 1	rova he 🖷 .	VBW 300 KH2	2 Mode A				
1Pk Max					MJ	(1)		-	6,64 dBn
10 dBm	-			- Prila		1		2.479	98400 GH:
	1 2			- A	n.				
0 dBm				r	pul				· · · · ·
-10 dBm		-			\rightarrow		-		
-20 dBm				1			_		
-20 0011									
-30 dBm	1		0			A			
-40 dBm		-	A			V			
			nd.			ha			
-50 dBm	A	non	Jose -				m	www	A
-60 dBm-	h rm	V V		-			~	Manual	Mar. P
-70 dBm							-	-	:
, o ubiii									1.000
				1001				0	
CF 2.48 G	Hz			1001	pts			spa	n 8.0 MHz
B	Sand Ed	_		5 2480M	/Hz Ant	1 No-H	opping l		1
Spectrur Ref Level Att	Band Ed	Offset 10).62 dB 📦 I		<u>/IHz Ant</u> 2		opping l		'n
Spectrur Ref Level	Band Ed	Offset 10).62 dB 📦 I	15 2480N	/Hz Ant z z Mode 4	uto FFT	opping I		n ſŢ
Spectrum Ref Level Att SGL Count	Band Ed	Offset 10).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	n (₩ 4.26 dBm 95000 GHz
E Spectrur Ref Level Att SGL Count 1Pk Max 10/dBm-	Band Ed	Offset 10).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	n ₩ 4.26 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 10/dBm- 0 dBm-	Band Ed	Offset 10 SWT 22).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	4.26 dBm 95000 GH2 56.78 dBm
B Spectrur Ref Level Att SGL Count 10/dBm- 0 dBm- -10 dBm-	Band Ed	Offset 10 SWT 22).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	4.26 dBm 95000 GH2 56.78 dBm
E Spectrum Ref Level Att SGL Count IPk Max 10/dBm- 0 dBm- -10 dBm- -20 dBm-	Band Ed	Offset 10 SWT 22).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	4.26 dBm 95000 GH2 56.78 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 10/dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	Band Ed	Offset 10 SWT 22).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	4.26 dBm 95000 GH2 56.78 dBm
E Spectrur Ref Level Att SGL Count 10rdBm- 0 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm-	Band Ed	Offset 10 SWT 22).62 dB 📦 I	15 2480N	/Hz Ant ² z Mode 4	uto FFT	opping I	Emissio	4.26 dBm 95000 GH2 56.78 dBm
E Spectrur Ref Level Att SGL Count 1Pk Max 10rdBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -30 dBm- -30 dBm-	Band Ed	Offset 10 SWT 22	0.62 dB • 1 27.5 μs • 1	5 2480M	/Hz Ant	2[1]		2.479 2.483	4.26 dBn 95000 GH2 56.79 dBn 56000 GH2
E Spectrur Ref Level Att SGL Count 1Pk Max 10/dBm- 0 dBm- -20 dBm- -20 dBm- -20 dBm- -40 dBm- -50 dBm- -50 dBm- -50 dBm-	Band Ed	Offset 10 SWT 22	0.62 dB • 1 27.5 μs • 1	5 2480M	/Hz Ant	2[1]		2.479 2.483	4.26 dBn 95000 GH2 56.79 dBn 56000 GH2
E Spectrur Ref Level Att SGL Count 1Pk Max 10rdBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -30 dBm- -30 dBm-	Band Ed	Offset 10 SWT 22	0.62 dB • 1 27.5 μs • 1	5 2480M	/Hz Ant	2[1]		2.479 2.483	4.26 dBn 95000 GH2 56.79 dBn 56000 GH2
B Spectrur Ref Level Att SGL Count 1Pk Max 1D/dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -70 dBm- -70 dBm-	20.00 dBm 25 dB 100/100	Offset 10 SWT 22	0.62 dB • 1 27.5 μs • 1	5 2480M	AHz Ant	2[1]		2.479 2.483	4.26 dBn 95000 GH2 56.79 dBn 56000 GH2
E Spectrum Ref Level Att SGL Count IPk Max IDrdBm- 0 dBm- -20 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm- Start 2.47 Marker Type Ref	Band Ed n 20.00 dBm 25 dB 100/100 01 -13.361 01 -13.361 01 -13.361 01 -13.361 01 -13.361 01 -13.361	Offset 10 SWT 22 dBm dBm	0.62 dB 27.5 μs 27.5	15 2480N	AHz Ant	גענס FFT נ[1] נ[1]		2.479 2.483	4.26 dBm 95000 GH2 56.78 dBm 56000 GH2
E Spectrur Ref Level Att SGL Count IPK Max 10/dBm- 0 dBm- -20 dBm- -20 dBm- -20 dBm- -30 dBm- -70 dBm- -70 dBm- -70 dBm-	Band Ed n 20.00 dBm 25 dB 100/100 	Offset 10 SWT 22 dBm dBm wrtwory4baa wrtwory4baa X-value 2.4795	0.62 dB 27.5 μs 127.5 μs 1	100 kH2 KBW 100 kH2 VBW 300 kH2 100	AHz Ant	גענס FFT נ[1] נ[1]		Emissio 2.479 2.483 مراسیا	4.26 dBm 95000 GH2 56.78 dBm 56000 GH2
E Spectrur Ref Level Att SGL Count 1Pk Max 10/dBm -0 dBm -20 cBm -20 cBm -20 cBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Band Ed n 20.00 dBm 25 dB 25 dB 100/100 	Offset 10 SWT 22 dBm dBm wrwwwy44000 x-value 2.4793 2.4433 2	0.62 dB 27.5 μs 27.5	15 2480N RBW 100 kHz yBW 300 kHz 100	AHz Ant	גענס FFT נ[1] נ[1]		Emissio 2.479 2.483 مراسیا	4.26 dBm 95000 GH2 56.78 dBm 56000 GH2

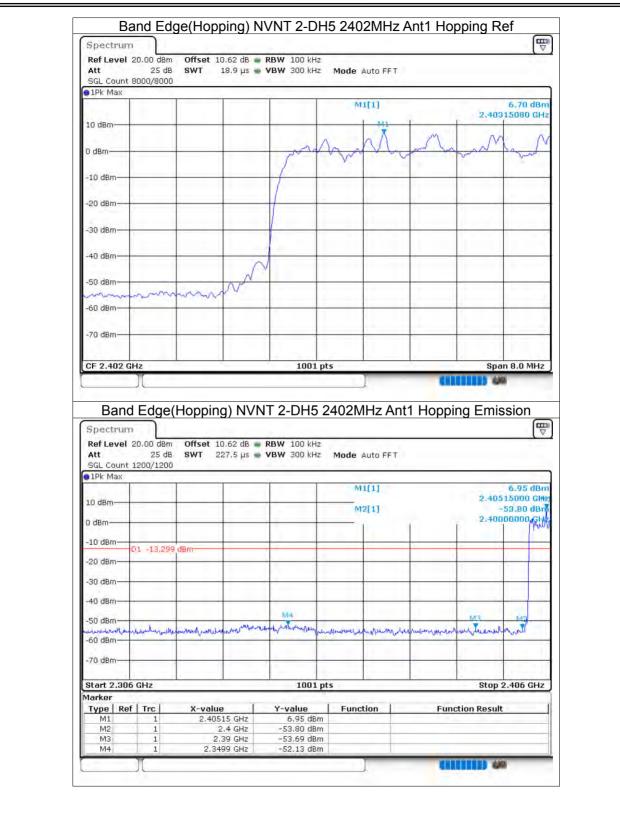
8.8 BAND EDGE(HOPPING)

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-58.93	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-61.91	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-58.82	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-61.6	-20	Pass
NVNT	3-DH5	2402	Ant1	Hopping	-58.53	-20	Pass
NVNT	3-DH5	2480	Ant1	Hopping	-61.43	-20	Pass

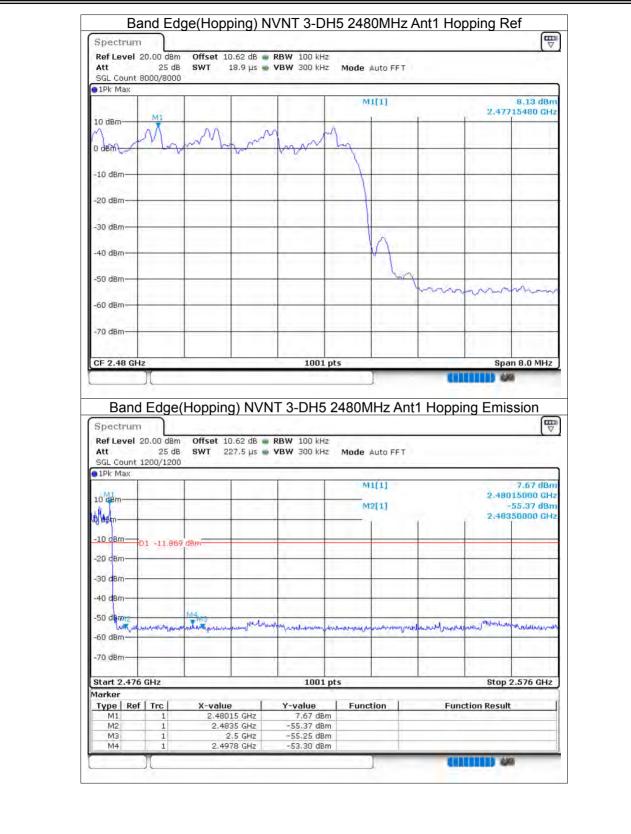
ACCREDITED Certificate #4298.01



Spectrum		ge(i iopp	ing) N	/NT 1-D	10 240				
Ref Level 3		Offset 10).62 dB 🖷 🖡	BW 100 kHz	5				
Att SGL Count 8	25 dB			/BW 300 kHz		Auto FFT			
1Pk Max	8000/8000								
					M	1[1]		2 40	7,47 dBm 183220 GHz
10 dBm	_			MI	-		-	2,40	103220 GHZ
				M			M	(m	1
0 dBm				1			1		
-10 dBm				/	\rightarrow			\checkmark	\mathcal{N}
					ų		_	×	v.
-20 dBm									
-30 dBm	-	-	-	1					
-40 dBm					22.21			1 == 1	122 5
-40 aBm			1-00						
-50 dBm	_	15.00	mA						
-60 dBm	mm	mon					_		
-00 060			1			1			1.1.1.1
-70 dBm						-	-	-	
								0	
Band	∬ Edge(_		1001 T 1-DH5	2402M] IHz Ant ²	1 Hoppi		ssion
Band Spectrum Ref Level 3 Att	Edge(20.00 dBm 25 dB	Offset 10).62 dB 🖷 F		2402M		1 Hoppi		ssion
Band Spectrum Ref Level 2 Att SGL Count 3	Edge(20.00 dBm 25 dB	Offset 10).62 dB 🖷 F	T 1-DH5	2402M		1 Hoppi		ssion
Band Spectrum Ref Level 2 Att SGL Count 3	Edge(20.00 dBm 25 dB	Offset 10).62 dB 🖷 F	T 1-DH5	2402M		1 Hoppi	ng Emis	ssion (₩) 7,10 dBm
Band Spectrum Ref Level 2 Att SGL Count : 1Pk Max	Edge(20.00 dBm 25 dB	Offset 10).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT	1 Hoppi	ng Emis 2.403	7,10 dBm 95000(GHz 55.56 Ppm
Band Spectrum Ref Level 2 Att SGL Count 2 1Pk Max	Edge(20.00 dBm 25 dB	Offset 10).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT 1[1]	1 Hoppi	ng Emis 2.403	5SiON (♥) 7,10 dBm 195000/GHz
Band Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 10 dBm 0 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT 1[1]	1 Hoppi	ng Emis 2.403	7,10 dBm 95000(GHz 55.56 Ppm
Band Spectrum Ref Level 2 Att SGL Count 2 DIPk Max 10 dBm 0 dBm	Edge(20.00 dBm 25 dB	Offset 10 SWT 22).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT 1[1]	1 Hoppi	ng Emis 2.403	7,10 dBm 95000(GHz 55.56 Ppm
Band Spectrum Ref Level 2 Att SGL Count 3 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT 1[1]	1 Hoppi	ng Emis 2.403	7,10 dBm 95000(GHz 55.56 Ppm
Band Spectrum Ref Level 2 Att SGL Count 2 DIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT 1[1]	1 Hoppi	ng Emis 2.403	7,10 dBm 95000(GHz 55.56 Ppm
Band Spectrum Ref Level 2 Att SGL Count 2 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22).62 dB 🖷 F	T 1-DH5	2402M Mode /	Auto FFT 1[1]	1 Hoppi	2.40	7,10 dBm 195000;GHz 55,56 0pm 00000 GHz
Band Spectrum Ref Level 2 Att SGL Count 2 IPk Max ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22).62 dB 🖷 F	T 1-DH5 RBW 100 kHz rBW 300 kHz M4	2402M Mode /	Auto FFT 1[1]	1 Hoppi	ng Emis 2.403	7,10 dBm 195000;GHz 55,56 0pm 00000 GHz
Band Spectrum Ref Level 3 Att SGL Count 2 SGL Count 2 SGL Count 2 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22	0.62 dB — F 27.5 µs — V	T 1-DH5 RBW 100 kHz rBW 300 kHz M4	2402M Mode / M	Auto FFT		2.40	7,10 dBm 195000;GHz 55,56 0pm 00000 GHz
Band Spectrum Ref Level 3 Att SGL Count 2 SGL Count 2 SGL Count 2 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22	0.62 dB — F 27.5 µs — V	T 1-DH5 RBW 100 kHz rBW 300 kHz M4	2402M Mode / M	Auto FFT		2.40	7,10 dBm 195000;GHz 55,56 0pm 00000 GHz
Band Spectrum Ref Level 2 Att SGL Count 2 SGL Count 2	Edge(20.00 dBm 25 dB 1200/1200	Offset 10 SWT 22	0.62 dB — F 27.5 µs — V	T 1-DH5 RBW 100 kHz rBW 300 kHz M4	2402M Mode / M	Auto FFT		2.401 2.400	7,10 dBm 195000;GHz 55,56 0pm 00000 GHz
Band Spectrum Ref Level 2 Att SGL Count 2 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Edge(20.00 dBm 25 dB 1200/1200	dBm	0.62 dB 27.5 μs N	M4 1001	2402M	Auto FFT	Julion pulling	2.400 2.400 2.400 5top	SSION 7,10 dBm 195009 GHz -55.56 0Pm 000000 444 -55.56 0Pm -55.56 0Pm
Spectrum Ref Level 3 Att SGL Count 3 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.306 Marker Type Ref	Edge(20.00 dBm 25 dB 1200/1200 01 -12,533 01 -12,533 01 -12,533 01 -12,533 01 -12,533	Offset 10 SWT 22	0.62 dB 27.5 μs X X X X X X X X X X X X X	T 1-DH5 RBW 100 kHz rBW 300 kHz 300 kHz M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	2402M Mode / M M M	Auto FFT	Julion pulling	2.401 2.400	SSION 7,10 dBm 195009 GHz -55.56 0Pm 000000 444 -55.56 0Pm -55.56 0Pm
Band Spectrum Ref Level 2 Att SGL Count 3 SGL Count 3 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70	Edge(20.00 dBm 25 dB 1200/1200 01 -12,533 01 -12,533 0	Offset 10 SWT 22 dBm dBm dBm z.4014 2.4014 2	0.62 dB •• F 27.5 μs •• V	T 1-DH5	2402M	Auto FFT	Julion pullips	2.400 2.400 2.400 5top	SSION 7,10 dBm 195009 GHz -55.56 0Pm 000000 444 -55.56 0Pm -55.56 0Pm
Band Spectrum Ref Level 3 Att SGL Count 3 SGL Count 3 IPk Max ID dBm ID	Edge(20.00 dBm 25 dB 1200/1200 01 -12,533 01 -12,533 0	Offset 10 SWT 22 dBm dBm vy++wij,du-y z,4015 2,30	27.5 μs • V 27.5 μs • V	Г 1-DH5 КВW 100 kHz /ВW 300 kHz 300 kHz ////////////////////////////////////	2402M Mode / M M M M	Auto FFT	Julion pullips	2.400 2.400 2.400 5top	SSION 7,10 dBm 195009 GHz -55.56 0Pm 000000 444 -55.56 0Pm -55.56 0Pm



Att 25 df SGL Count 8000/800		s 💼 VBW 300 kHz	Mode Auto F	τ		
			M1[1]	a.i	2.47	8,11 dB 683520 GH
10 dBm	1 1 1	A. 00				
0 dBinon hom	mon	man 11	m	-	-	
-10 dBm						
-20 dBm-						
C. D						
-30 dBm						
-40 dBm			hA	-		
-50 dBm			ľ,	1		
-60 dBm-				Ima	mm	mm
-60 0611-						
-70 dBm						
CF 2.48 GHz		1001 p	its	_	Sn	an 8.0 MHz
Band Edge	n Offset 10.62 da 3 SWT 227.5 µ:	VNT 2-DH5 2 B RBW 100 kHz s VBW 300 kHz	6.05	-	oping Emi	
Band Edge	n Offset 10.62 da 3 SWT 227.5 µ:	8 🖷 RBW 100 kHz	Mode Auto F	-	oping Emi	E
Band Edge Spectrum Ref Level 20.00 dBr Att 25 df SGL Count 1200/120 1Pk Max	n Offset 10.62 da 3 SWT 227.5 µ:	8 🖷 RBW 100 kHz	Mode Auto F	-		7.25 dB/
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dt SGL Count 1200/120 • 1Pk Max	n Offset 10.62 da 3 SWT 227.5 µ:	8 🖷 RBW 100 kHz	Mode Auto F	-	2.47	7.25 dB 805000 GH -55.12 dB 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dl SGL Count 1200/120 1Pk Max	n Offset 10.62 dt 3 SWT 227.5 μ	8 🖷 RBW 100 kHz	Mode Auto F	-	2.47	7.25 dBi 805000 GH -55.12 dBi
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dt SGL Count 1200/120 • 1Pk Max	n Offset 10.62 dt 3 SWT 227.5 μ	8 🖷 RBW 100 kHz	Mode Auto F	-	2.47	7.25 dBi 805000 GH -55.12 dBi
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dl SGL Count 1200/120 1Pk Max 10 dBm -10 cBm 01 -11.89	n Offset 10.62 dt 3 SWT 227.5 μ	8 🖷 RBW 100 kHz	Mode Auto F	-	2.47	7.25 dBi 805000 GH -55.12 dBi
Band Edge Spectrum Ref Level 20.00 dBr Att 25 dI SGL Count 1200/120 1Pk Max 10 dBm -10 cBm -20 cBm -20 cBm	n Offset 10.62 dt 3 SWT 227.5 μ	8 🖷 RBW 100 kHz	Mode Auto F	-	2.47	7.25 dBi 805000 GH -55.12 dBi
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dl SGL Count 1200/120 IPk Max 10 dBm In dBm In dBm -20 cBm -30 dBm	9 Offset 10.62 db	B RBW 100 kHz s VBW 300 kHz	Mode Auto F	- T	2.47	7.25 dBi 805000 GH -55.12 dBi 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dl SGL Count 1200/120 Ib' dBm Ib' dBm -20 dBm -30 dBm -40 dBm	a Offset 10.62 db	B RBW 100 kHz s VBW 300 kHz	Mode Auto F	- T	2.47	7.25 dBi 805000 GH -55.12 dBi 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dI SGL Count 1200/120 IPk Max ID dBm ID dBm -10 cBm -20 cBm -30 dBm -40 dBm -50 dBm -50 dBm	9 Offset 10.62 db	B RBW 100 kHz s VBW 300 kHz	Mode Auto F	- T	2.47	7.25 dBi 805000 GH -55.12 dBi 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 di SGL Count 1200/120 IPK Max 10 dBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm	9 Offset 10.62 db	B RBW 100 kHz s VBW 300 kHz	Mode Auto F	- T	2.47 2.48	7.25 dBi 805000 GH -55.12 dBi 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dl SGL Count 1200/120 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Offset 10.62 df 3 SWT 227.5 µ 3 dBm 3 dBm X-value	B RBW 100 kHz VBW 300 kHz	Mode Auto F	- T	2.47 2.48	7.25 dB 805000 GH -55.12 dB 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 dl SGL Count 1200/120 IPk Max 10 dBm -10 cBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc M2 1	Offset 10.62 db 3 SWT 227.5 µ 3 dBm 3 dBm 2 x-value 2.47805 GHz 2.4835 GHz	B RBW 100 kHz S VBW 300 kHz 	Mode Auto F	- T	2.47 2.48 	7.25 dBi 805000 GH -55.12 dBi 350000 GH
Band Edge Spectrum Ref Level 20.00 dBn Att 25 di SGL Count 1200/120 IPK Max Id dBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc M1 1	Offset 10.62 db 3 SWT 227.5 µ 3 dBm 3 dBm X-value 2.47805 GHz	B RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 p 100 p 2 7.25 dBm 2 7.25 dBm 2 55.50 dBm 2 55.50 dBm	Mode Auto F	- T	2.47 2.48 	7.25 dBi 805000 GH -55.12 dBi 350000 GH



Att SGL Coun	m I 20.00 dBm 25 dB t 8000/8000	SWT		RBW 100 kHz VBW 300 kHz		uto FFT			(₩)
• 1Pk Max	1				MI	11		_	6.39 dBm
10 dBm					104	141		2.403	315080 GHz
TO UDIT				1		N	m	0	
0 dBm	1			And	my	pot	A	m	Mond
-10 dBm—					_	-	-	4.	
-20 dBm	_		_				_		
20 40-			_		_				
-30 dBm—			Λ	-					1223
-40 dBm—									
-50 dBm	and the second		ma						
-60 dBm-	hum	m					_		
-70 dBm—						1			
. o dom	1.1								Det 3
CF 2.402	GHz			1001 p	pts			Spa	an 8.0 MHz
Spectru	m		a. –	T 3-DH5		Hz Ant	l Hoppi	ng Emi	ssion
Spectrui Ref Level Att SGL Coun	m	Offset 10 SWT 22).62 dB 🖷 I	T 3-DH5 RBW 100 kHz VBW 300 kHz			l Hoppi	ng Emi	
Spectrui Ref Level Att SGL Coun	m 1 20.00 dBm 25 dB	Offset 10 SWT 22).62 dB 🖷 I	RBW 100 kHz	Mode Au	uto FFT	l Hoppi	ng Emi	
Spectrui Ref Level Att SGL Coun	m 1 20.00 dBm 25 dB	Offset 10 SWT 22).62 dB 🖷 I	RBW 100 kHz	Mode Au M1[uto FFT	l Hoppi	2.40	5.47 dBm 215000,GHz
Spectrui Ref Level Att SGL Coun 1Pk Max	m 1 20.00 dBm 25 dB	Offset 10 SWT 22).62 dB 🖷 I	RBW 100 kHz	Mode Au	uto FFT	Hoppi	2.40	5.47 dBm
Spectrui Ref Level Att SGL Coun 1Pk Max	m 25.00 dBm 25 dB t 1200/1200	Offset 10 SWT 23).62 dB 🖷 I	RBW 100 kHz	Mode Au M1[uto FFT	Hoppi	2.40	5.47 dBm 215000,⊊Hz -53.67 # Bm
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm- 0 dBm-	m 1 20.00 dBm 25 dB	Offset 10 SWT 23).62 dB 🖷 I	RBW 100 kHz	Mode Au M1[uto FFT	Hoppi	2.40	5.47 dBm 215000,⊊Hz -53.67 # Bm
Spectrum Ref Level Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm	m 25.00 dBm 25 dB t 1200/1200	Offset 10 SWT 23).62 dB 🖷 I	RBW 100 kHz	Mode Au M1[uto FFT	Hoppi	2.40	5.47 dBm 215000,⊊Hz -53.67 # Bm
Spectrum Ref Level Att SGL Coun 1Pk Max 1D dBm- 0 dBm- -10 dBm- -20 dBm-	m 25.00 dBm 25 dB t 1200/1200	Offset 10 SWT 23	0.62 dB 27.5 μs	RBW 100 kHz	Mode Au M1[uto FFT	Hoppi	2.40	5.47 dBm 215000,⊊Hz -53.67 # Bm
Spectrum Ref Level Att SGL Coun PIPk Max 10 dBm	m 25.00 dBm 25 dB t 1200/1200	Offset 10 SWT 23).62 dB 🖷 I	RBW 100 kHz	Mode Au M1[uto FFT		2.40	5.47 dBm 215000,⊊Hz -53.67 # Bm
Spectrum Ref Level Att SGL Coun Plk Max 10 dBm	m 1 20.00 dBm 25 dB t 1200/1200 01 -13,614	Offset 10 SWT 23	0.62 dB 27.5 μs	RBW 100 kHz	Mode Au M1[110 FFT		2.403 2.400	5.47 dBm 215000,GHz -53.67 #Bm 006000,HHz
Spectrum Ref Level Att SGL Coun PIPk Max 10 dBm	m 25 dB 1 20.00 dBm 25 dB 1 200/1200 01 -13,614	Offset 10 SWT 23	0.62 dB 27.5 μs	RBW 100 kHz	Mode Au M1[110 FFT		2.403 2.400	5.47 dBm 215000,GHz -53.67 #Bm 006000,HHz
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm	m 1 20.00 dBm 25 dB 1 200/1200 01 -13,614	Offset 10 SWT 23	0.62 dB 27.5 μs	RBW 100 kHz	Mode Au M1[110 FFT		2.40: 2.400	5.47 dBm 215000,GHz -53.67 #Bm 006000,HHz
Spectrum Ref Level Att SGL Coun IPk Max ID dBm 0 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm Start 2.30 Yarker Type	1 20.00 dBm 25 dB 1 200/1200 01 -13,614 01 -13,614 00 -13,614 00 -13,614 00 -13,614 00 -13,614 00 -13,614 00 -13,614	Offset 10 SWT 22	0.62 dB — 1 27.5 µs — 1 М4 """М."	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2]	Ito FFT		2.40: 2.400	5.47 dBm 215000,GHz -53.67 #Bm 000000 HWK
Spectrum Ref Level Att SGL Coun 10 dBm	m 1 20.00 dBm 25 dB 1 200/1200 01 -13,614 01 -13,614 04 01 -13,614 00 GHz	Offset 10 SWT 22	0.62 dB — 1 27.5 µs — 1 	RBW 100 kHz	Mode Au M1[M2] M2]	Ito FFT		2.40: 2.400	5.47 dBm 215000,GHz -53.67 #Bm 000000 HWK
Spectrum Ref Level Att SGL Coun PIPk Max 10 dBm	m I 20.00 dBm 25 dB 1200/1200 01 -13,614 04 04 04 04 05 GHz ef Trc 1 1	Offset 10 SWT 22	0.62 dB 27.5 μs 4 M4 M4 15 GHz	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2]	Ito FFT		2.40: 2.400	5.47 dBm 215000,GHz -53.67 #Bm 000000 HWK

8.9 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-50.05	-20	Pass
NVNT	1-DH5	2441	Ant1	-49.68	-20	Pass
NVNT	1-DH5	2480	Ant1	-50.5	-20	Pass
NVNT	2-DH5	2402	Ant1	-49.58	-20	Pass
NVNT	2-DH5	2441	Ant1	-47.93	-20	Pass
NVNT	2-DH5	2480	Ant1	-47.11	-20	Pass
NVNT	3-DH5	2402	Ant1	-49.43	-20	Pass
NVNT	3-DH5	2441	Ant1	-48.79	-20	Pass
NVNT	3-DH5	2480	Ant1	-49.4	-20	Pass



Spectrum	ſ		NVNT 1-D					
Ref Level 20. Att SGL Count 100/	30 dB SWT		RBW 100 kH		uto FFT			(*)
1Pk Max	1	1	1 1					
				MI[1		2.4021	7.52 dBm 485950 GHz
10 dBm		1.2.2						
0 dBm		1			1	-		
-10 dBm		T				~		
-10 08/1			-				1	
-20 dBm			-			-		
-38 dBm-		-	1			1	1	
				1			1	
-40 dBm		-				· · · · · · · · · · · · · · · · · · ·	· · · ·	
-50 dBm			_					
-60 dBm								
-00 0611								
-70 dBm			-				-	10
				the second se			1.1	1 1 1 m m m
Spectrum	Tx. Spurio			5 2402Mł	Hz Ant	1 Emiss		an 1.5 MHz
Spectrum Ref Level 20. Att	00 dBm Offset 30 dB SWT	10.62 dB		5 2402MH				10
Spectrum Ref Level 20. Att SGL Count 10/1	00 dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	5 2402MH Hz Hz Mode A	uto Sweep			
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max	00 dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion	₹ 7.52 dBm 402070 GHz
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max 10 dBm M1	00 dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	5 2402MH Hz Hz Mode A	uto Sweep 1]		iion 2.	₩ 7.52 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max 10 dBm- 0 dBm-	DD dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 • 1Pk Max	DD dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max 10 dBm -10 dBm -20 dBm	DD dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max 10 dBm -10 dBm -20 dBm	00 dBm Offset 30 dB SWT 00	10.62 dB 265 ms	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	DD dBm Offset 30 dB SWT	10.62 dB	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Ref Level 20. Att SGL Count 10/1 1Pk Max 10 dBm 0 dBm 01 - -20 dBm -01 - -30 dBm - 40 dBm	00 dBm Offset 30 dB SWT 00	10.62 dB = 265 ms =	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offset 30 dB SWT 00	10.62 dB = 265 ms =	NT 1-DH5 RBW 100 kF	2402MI Hz Hz Mode A	uto Sweep 1]		iion 2.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20, Att SGL Count 10/1 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm	00 dBm Offset 30 dB SWT 0	10.62 dB = 265 ms =	NT 1-DH5	5 2402Mł tz tz Mode A M1[uto Sweep 1]		2. 19.	7.52 dBm 402070 GHz -42.53 dBm 784561 GHz
Spectrum Ref Level 20, Att SGL Count 10/1 IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 MHz	00 dBm Offset 30 dB SWT .0 .12.481 dBm	10.62 dB 265 ms 	NT 1-DH5	5 2402Mł tz tz Mode A M1[uto Sweep 1]		2. 19.	7.52 dBm 402070 GHz -42.53 dBm
Spectrum Ref Level 20. Att SGL Count 10/1 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	00 dBm Offset 30 dB SWT 00 	10.62 dB 265 ms	NT 1-DH5	2402Mł 12 12 12 12 12 12 12 12 12 12	1] 1]	M2	2. 19.	7.52 dBm 402070 GHz -42.53 dBm 784561 GHz
Spectrum Ref Level 20, Att SGL Count 10/1 IPk Max 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 MHz Marker Type Ref T M1	00 dBm Offset 30 dB SWT .0 .12.481 dBm .12.481 dBm .12.481 dBm .12.491 .1 .12.492 .1 .1.2.492 .1 .1.2.492	10.62 dB 265 ms M5 M5 207 GHz 61 GHz	NT 1-DH5	5 2402Mł 12 Mode A M1[M2] 1 pts Function m	1] 1]	M2	ion 2. 19.	7.52 dBm 402070 GHz -42.53 dBm 784561 GHz
Spectrum Ref Level 20. Att SGL Count 10/1 IPk Max ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm Start 30.0 MHz Marker Type Ref Tr	00 dBm Offset 30 dB SWT 00 12.481 dBm 144 M3 144 M3	10.62 dB 265 ms M5 M5 207 GHz	NT 1-DH5	2402Mł 12 12 12 12 12 12 12 12 12 12	1] 1]	M2	ion 2. 19.	7.52 dBm 402070 GHz -42.53 dBm 784561 GHz

