

Date: 1 December 2024

I.T.L. Product Testing Ltd. FCC/ISED Radio Test Report

for

Itamar Medical Ltd.

Equipment under test:

Sleep Related Breathing Disorders Device WatchPAT 400

FCC ID: 2APUBWP400 IC: 27705WP400

Tested by:

L. Tenenbaum

Approved by:

M. Zohar

This report must not be reproduced, except in full, without the written permission of I.T.L. Product Testing Ltd. This report relates only to items tested.

This report concerns: Original Grant

Equipment type: FCC: Digital Transmission System (DTS)

IC: Spread Spectrum Digital Device (2400-2483.5)

Limits used: 47CFR15 Section 15.247

RSS-247, Issue 3, August 2023, Section 5 RSS-Gen, Issue 5, April 2018, Amendment 2

(February 2021)

Measurement procedure used: KDB 558074 D01 v03r05, ANSI C63.10:2013 and

RSS-Gen, Issue 5, April 2018

Prepared by: Applicant:

Email: rame@itlglobal.org

R. Ezrah Itay Gur-Arie

I.T.L. Product Testing Ltd. Itamar Medical Ltd.

3 Ha'oreg Street, Modi'in 7177909, Israel 9 Halamish St., P.O.Box 3579, Caesarea 3088900

Israel

Email: itay.gur-arie@zoll.com

Table of Contents

1.	General Information	
1.1	Administrative Information	
1.2	Test Lab Description	
1.3	Product Description	
1.4	Test Methodology	
1.5 1.6	Test FacilityMeasurement Uncertainty	
	•	
2.	System Test Configuration	
2.1	Justification EUT Exercise Software	
2.2 2.3	Special Accessories	
2.3 2.4	Equipment Modifications	
2.5	Configuration of Tested System	
3.	6 dB Minimum Bandwidth	
3. 3.1	Test Specification	
3.2	Test Procedure	
3.3	Test Limit	
3.4	Test Results	9
3.5	Test Equipment Used; 6dB Bandwidth	11
4.	Maximum Conducted Output Power	12
4.1	Test Specification	12
4.2	Test Procedure	
4.3	Test Limit	
4.4	Test Results	
4.5	Test Equipment Used; Maximum Conducted Output Power	
5.	Band Edge Spectrum	
5.1	Test Specification	
5.2	Test Procedure	
5.3	Test Limit	
5.4	Test Results Test Equipment Used; Band Edge	
5.5	• • •	
6.	Transmitted Power Density	
6.1	Test Specification	
6.2 6.3	Test Procedure	
6.4	Test Limit Test Results	
6.5	Test Equipment Used; Transmitted Power Density	
7. 7.1	Occupied Bandwidth	
7.1 7.2	Test Specification Test Procedure	
7.2 7.3	Test Limit	
7.4	Test Results	
7.5	Test Equipment Used; Occupied Bandwidth	
8.	Emissions in non-Restricted Frequency Bands	
8.1	Test Specification	27
8.2	Test Procedure	27
8.3	Test Limit	
8.4	Test Results	
8.5	Test Instrumentation Used, Emission in non-Restricted Frequency Bands	
8.6	Field Strength Calculation	28

9.	Emissions in Restricted Frequency Bands	29
9.1	Test Specification	29
9.2	Test Procedure	
9.3	Test Limit	29
9.4	Test Results	
9.5	Test Instrumentation Used; Emissions in Restricted Frequency Bands	31
10.	Test Photos	32
11.	RF Exposure	32
12.	Appendix A - Correction Factors	33

1. General Information

1.1 Administrative Information

Manufacturer: Itamar Medical Ltd.

Manufacturer's Address: 9 Halamish St., P.O.Box 3579, Caesarea 3088900

Israel

Tel: +972.4.617.7000

Equipment Under Test (E.U.T): Sleep Related Breathing Disorders Device

Equipment Model/PMN: WatchPAT 400

Equipment Serial No.: 000010001

Equipment HVIN: WatchPAT 400

Date of Receipt of E.U.T: 1 Jul. 2024
Start of Test: 1 Jul. 2024
End of Test: 21 Jul. 2024

Test Laboratory Location: I.T.L Product Testing Ltd.

3 HaOreg Street, Modi'in 7177909, Israel

Test Specifications: FCC Part 15, Subpart C

RSS-247, Issue 3, August 2023, Section 5 RSS-Gen, Issue 5, April 2018, Amendment 2

(February 2021)

1.2 Test Lab Description

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
- 3. Department of Innovation, Science and Economic Development (ISED) Canada, CAB identifier: IL1002

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

EUT	A non-invasive home care device for use with patients suspected to have sleep related breathing disorders ¹			
Brand	Itamar Medical			
Test Model	WatchPAT400/WP400			
Equipment Type				
	☐ Combined/integrated			

¹ The information above was provided by the customer.

_

				Plug-in	lug-in			
Intended	Use			Fixed (min. distance of	200 cm from hu	man body)	
				Mobile (minimum distance of 200 cm from human				
				body)				
			\boxtimes	Portabl	e (max. distance	of 20 cm from l	numan	
				body)				
Assigned frequency			-					
band/s								
Operation	al frequenci	es	-					
Maximum	rated outpu	ıt	At t	ransmitt	er's 50 Ω RF ou	tput connector	4dBm	
power			(dB	(dBm)				
			Effective radiated power (for equipment					
			with no RF connector)					
Antenna	☐ Unique C	Couplin	ng Standard Connection					
	☐ Tempora	ry RF	connector Gain (peak): +3.71 dBi					
Operating	channel	2402	2MHz -2480MHz					
bandwidtl	1							
Modulatio	on type	GFS]	K					
Bit rate		1 Mb	ps					
Transmitt	er	Max.	duty	cycle	10%			
Powe			er sou	ırce	\square AC	NT 1		
					□ DC	Nominal rated voltage		
					⊠ Battery	Taicu voitage	1.5V	
Receiver (Class				2			
Extreme t	emperature	condi	tions		0-40 deg C			

1.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in KDB 558074 D01 v03r05, ANSI C63.10: 2013 and RSS-Gen, Issue 5, April 2018. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Modi'in, Israel.

1.6 Measurement Uncertainty

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 - 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.44 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site:

30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2): $\pm 4.96 \text{ dB}$

1 GHz to 6 GHz Expanded Uncertainty (95% Confidence, K=2): ±5.19 dB

>6 GHz Expanded Uncertainty (95% Confidence, K=2): ±5.51 dB

2. System Test Configuration

2.1 Justification

- 1. The E.U.T. was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz).
- 2. Final radiated emission tests were performed after exploratory emission testing that was performed in three orthogonal polarities to determine the "worst case" radiation.
- 6. The "worst case" for the low, high, and mid channels was the X-axis.

Orientation	Frequency	Field Strength	2 rd Harmonic
Orientation	(MHz)	(dBuV/m)	(dBuV/m)
X-axis	2440.0	99.9	54.8

Figure 1. Screening Results

2.2 EUT Exercise Software

No special exercise software was used.

2.3 Special Accessories

No special accessory was used.

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 Configuration of Tested System

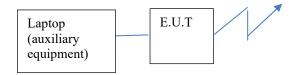


Figure 2. Configuration of Tested System

3. 6 dB Minimum Bandwidth

3.1 Test Specification

FCC Part 15, Subpart C, Section 247(a)(2) RSS-247, Section 5.2(a)

3.2 Test Procedure

(Temperature (22°C)/ Humidity (61%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The emissions were measured at a distance of 3 meters.

The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded. The RBW was set to 100 kHz.

3.3 Test Limit

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3.4 Test Results

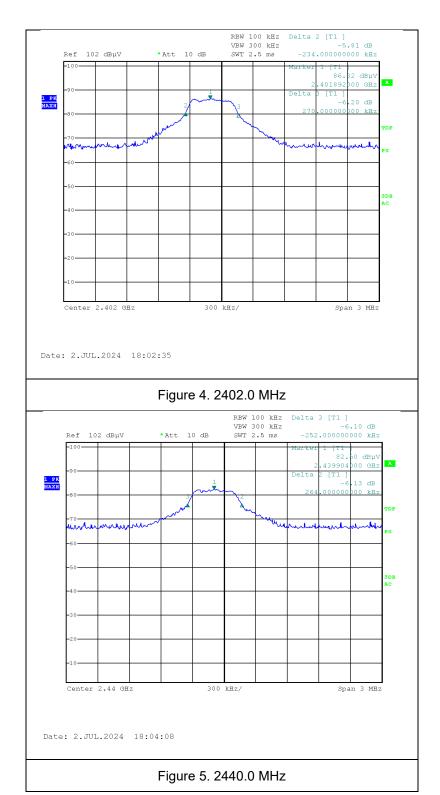
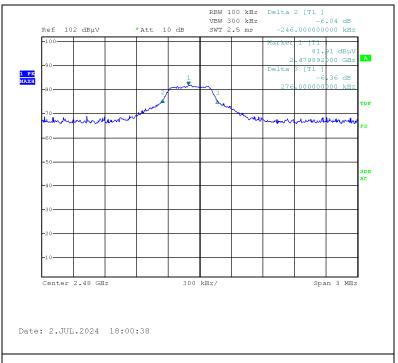

Operation Frequency	Reading	Specification
(MHz)	(kHz)	(kHz)
2402.0	504	≥500.0
2440.0	514	≥500.0
2480.0	522	≥500.0

Figure 3 6 dB Minimum Bandwidth

JUDGEMENT: Passed



3.5 Test Equipment Used; 6dB Bandwidth

Figure 6. 2480.0 MHz

ITL #	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
1507	EMI Receiver	Rohde & Schwarz	ESCI7	100794	7 Feb 2024	7 Feb 2025
1778	Antenna Cable for KA Band	OSR Electronics	37297C KPS	1503-590 (05032006)	9 Aug 2023	9 Aug 2024
2199	Trilog Broadband Antenna 30 MHz- 7 GHz	Schwarzbeck	VULB 9162	585	16 Oct 2023	16 Oct 2025

Figure 7 Test Equipment Used

4. Maximum Conducted Output Power

4.1 Test Specification

FCC, Part 15, Subpart C, Section 247(b)(3) RSS-247, Section 5.4(d)

4.2 Test Procedure

(Temperature (22°C)/ Humidity (70%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)}$$
 [W]

E - Field Strength (V/m)

d – Distance from the transmitter (m)

G – Antenna gain

P – Peak power (W)

4.3 Test Limit

The maximum peak Radiated output power of the intentional radiator for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

4.4 Test Results

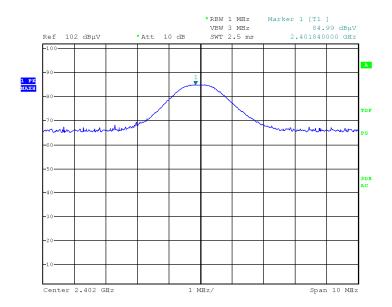
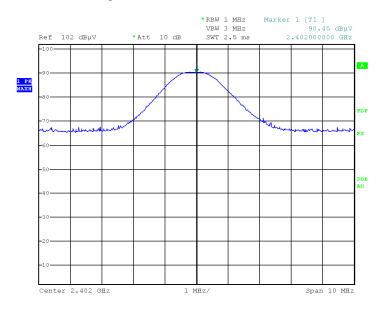

Operation	Polarization	Field	Power	Power	Specification	Margin
Frequency		Strength				
(MHz)	(V/H)	(dBuV/m)	(dBm)	(mW)	(mW)	(mW)
2402.0	V	84.99	-10.21	0.09	1000.00	-999.91
2402.0	Н	90.45	-4.75	0.33	1000.00	-999.67
2440.0	V	85.33	-9.87	0.10	1000.00	-999.90
2440.0	Н	91.86	-3.34	0.46	1000.00	-999.54
2480.0	V	84.62	-10.58	0.08	1000.00	-999.92
2400.0	Н	90.64	-4.56	0.34	1000.00	-999.66

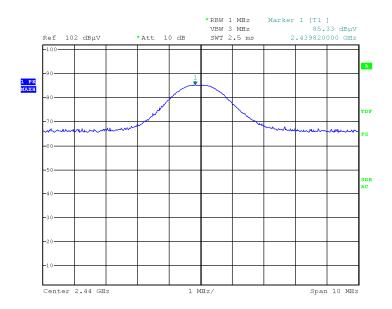
Figure 8 Maximum Peak Power Output

JUDGEMENT: Passed



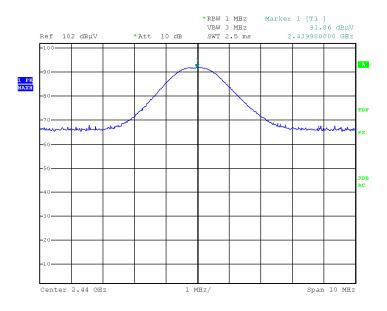
Date: 2.JUL.2024 18:42:51

Figure 9 2402.0 MHz - Vertical



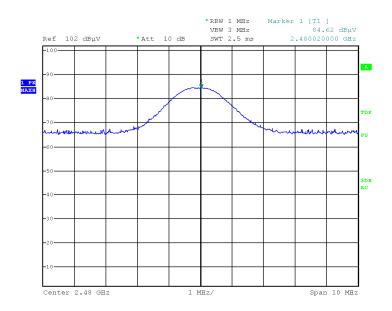
Date: 2.JUL.2024 18:40:38

Figure 10 2402.0 MHz - Horizontal



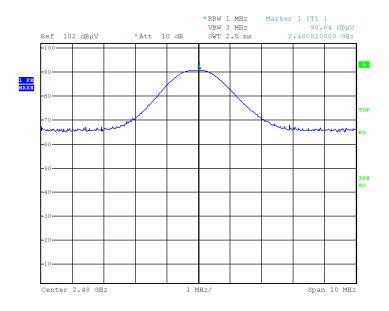
Date: 2.JUL.2024 18:30:18

Figure 11 2440.0 MHz - Vertical



Date: 2.JUL.2024 18:25:29

Figure 12 2440.0 MHz - Horizontal



Date: 2.JUL.2024 18:33:11

Figure 13 2480.0 MHz - Vertical

Date: 2.JUL.2024 18:35:27

Figure 14 2480.0 MHz - Horizontal

4.5 Test Equipment Used; Maximum Conducted Output Power

ITL #	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
1507	EMI Receiver	Rohde & Schwarz	ESCI7	100794	7 Feb 2024	7 Feb 2025
1778	Antenna Cable for KA Band	OSR Electronics	37297C KPS	1503-590 (05032006)	9 Aug 2023	9 Aug 2024
2199	Trilog Broadband Antenna 30 MHz- 7 GHz	Schwarzbeck	VULB 9162	585	16 Oct 2023	16 Oct 2025

Figure 15 Test Equipment Used

5. Band Edge Spectrum

5.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d) RSS-247, Section 5.5

5.2 Test Procedure

(Temperature (20°C)/ Humidity (59%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

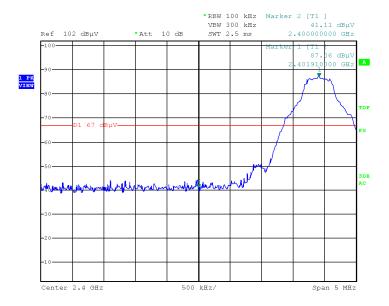
The RBW was set to 100 kHz.

5.3 Test Limit

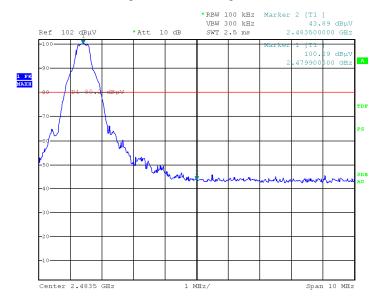
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

5.4 Test Results

Operation	Band Edge	Spectrum	Specification	Margin
Frequency	Frequency	Level		
(MHz)	(MHz)	(dBuV/m)	(dBuV/m)	(dB)
Low	2400.0	41.1	67.0	-25.9
High	2483.5	43.8	80.2	-36.4


Figure 16 Band Edge Spectrum

JUDGEMENT: Passed



Date: 3.JUL.2024 13:15:06

Figure 17 Band Edge Low

Date: 3.JUL.2024 13:20:30

Figure 18 Band Edge High

5.5 Test Equipment Used; Band Edge

ITL #	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
1507	EMI Receiver	Rohde & Schwarz	ESCI7	100794	7 Feb 2024	7 Feb 2025
1778	Antenna Cable for KA Band	OSR Electronics	37297C KPS	1503-590 (05032006)	9 Aug 2023	9 Aug 2024
2199	Trilog Broadband Antenna 30 MHz- 7 GHz	Schwarzbeck	VULB 9162	585	16 Oct 2023	16 Oct 2025

Figure 19 Test Equipment Used

6. Transmitted Power Density

6.1 Test Specification

FCC, Part 15, Subpart C, Section 247(e) RSS-247, Section 5.2(b)

6.2 Test Procedure

(Temperature (22°C)/ Humidity (70%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground.

The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of three meters.

The spectrum analyzer was set to 3 kHz RBW and VBW to 10 kHz.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)}$$
[W]

E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

P – Peak power (W)

6.3 Test Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.4 Test Results

JUDGEMENT: Passed

Operation	Reading	Reading	Specification	Margin
Frequency	Spectrum	Spectrum		
	Analyzer	Analyzer		
(MHz)	(dBµV/m)	(dBm)	(dBm)	(dB)
2402.0	88.4	-6.8	8.0	-14.8
2440.0	88.6	-6.6	8.0	-14.6
2480.0	86.7	-8.5	8.0	-16.5

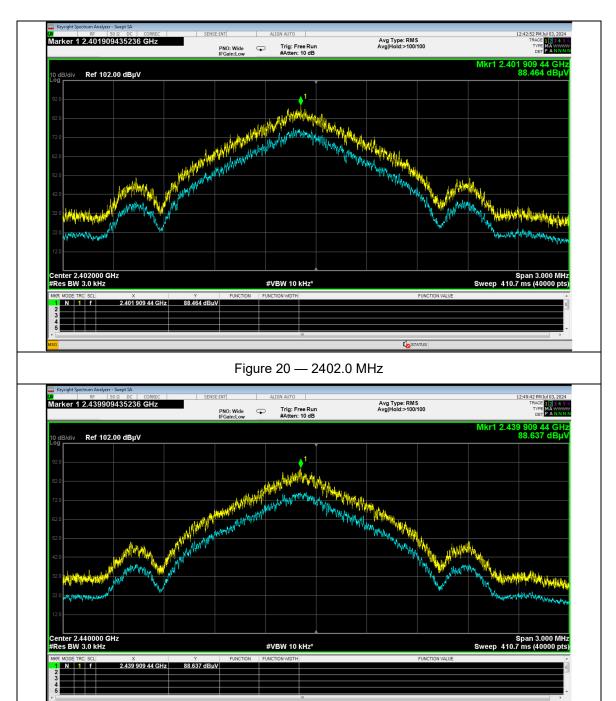
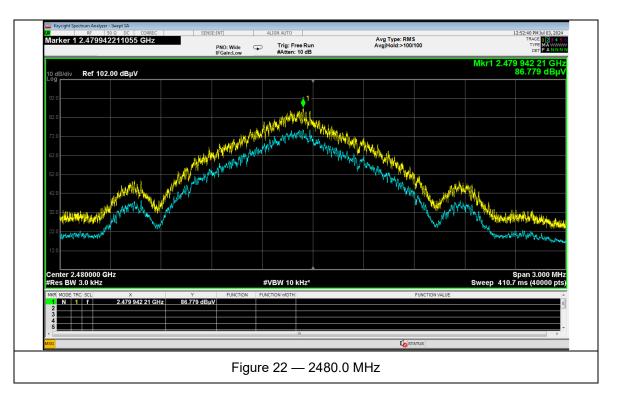



Figure 21 — 2440.0 MHz

6.5 Test Equipment Used; Transmitted Power Density

ITL #	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
1507	EMI Receiver	Rohde & Schwarz	ESCI7	100794	7 Feb 2024	7 Feb 2025
1778	Antenna Cable for KA Band	OSR Electronics	37297C KPS	1503-590 (05032006)	9 Aug 2023	9 Aug 2024
2199	Trilog Broadband Antenna 30 MHz- 7 GHz	Schwarzbeck	VULB 9162	585	16 Oct 2023	16 Oct 2025

Figure 23 Test Equipment Used

7. Occupied Bandwidth

7.1 Test Specification

FCC, Part 2, Sub part J, Section 2.1049 RSS-Gen, Issue 4: 2014, Section 6.6

7.2 Test Procedure

(Temperature (22°C)/ Humidity (56%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report. The E.U.T. was placed in the chamber on a non-conductive table, 0.8 meters above the ground.

The distance between the E.U.T. and test antenna was 3 meters.

The transmitter unit was operated with normal modulation. The RBW set to the range of 1% to 5% of the OBW.

The span was set between 1.5 to 5 times of the OBW.

99% occupied bandwidth function was set on.

7.3 Test Limit

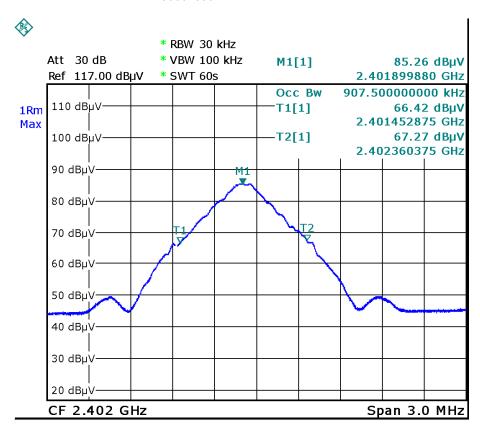
N/A

7.4 Test Results

Protocol Type	Operation Frequency	Reading
1 ype	(MHz)	(kHz)
	2402.0	907.5
BLE	2440.0	924.0
	2480.0	921.0

Figure 24. Bandwidth Test Results

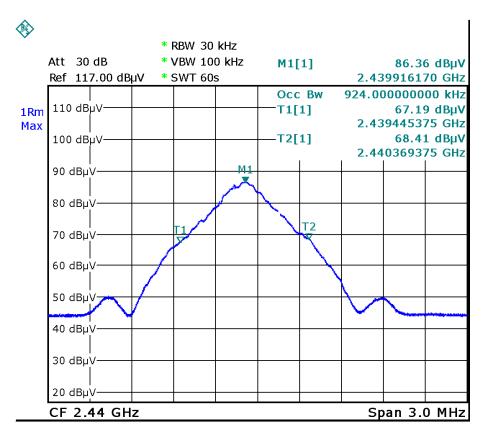
JUDGEMENT: N/A



Occupied Bandwidth

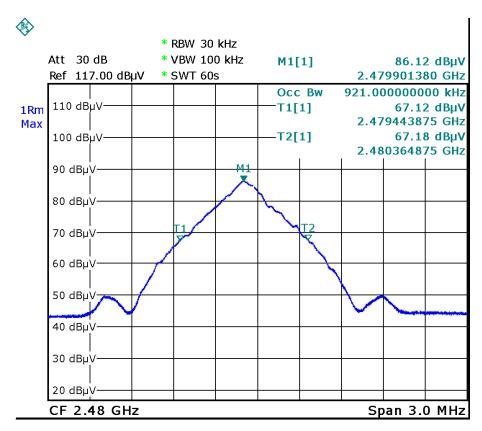
E.U.T Description Sleep Related Breathing Disorders Device

Model Number WatchPAT 400
Part Number: 000010001



Date: 18.AUG.2024 14:24:10

Figure 25. 2402.0 MHz, BLE



Date: 18.AUG.2024 14:19:39

Figure 26. 2440.0 MHz, BLE

Date: 18.AUG.2024 14:21:25

Figure 27. 2480.0 MHz, BLE

7.5 Test Equipment Used; Occupied Bandwidth

ITL	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
#						
1507	EMI Receiver	Rohde &	ESCI7	100794	7 Feb	7 Feb
		Schwarz			2024	2025
1778	Antenna Cable for	OSR	37297C	1503-590	9 Aug	9 Aug
	KA Band	Electronics	KPS	(05032006)	2023	2024
2199	Trilog Broadband	Schwarzbeck	VULB	585	16 Oct	16 Oct
	Antenna 30 MHz-		9162		2023	2025
	7 GHz					

Figure 28 Test Equipment Used

8. Emissions in non-Restricted Frequency Bands

8.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d) RSS-247, Section 5.5

8.2 Test Procedure

(Temperature (°C)/ Humidity (%RH))

The E.U.T. operation mode and test setup are described in Section 2 of this report.

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 0.8/1.5 meters above the ground. The emissions were measured at a distance of three meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 0.009MHz -25.0GHz was scanned.

RBW was set to 100 kHz, the detector set to max peak and the trace to "max hold".

8.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

8.4 Test Results

JUDGEMENT: Passed

No emissions were detected within 20 dB of the limit.

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 247(d) specification.

8.5 Test Instrumentation Used, Emission in non-Restricted Frequency Bands

ITL	Instrument	Manufacturer	Model	Serial No.	Cal.	Cal. Due
#					Date	
1507	EMI Receiver	Rohde & Schwarz	ESCI7	100794	7 Feb 2024	7 Feb 2025
1075	Active Loop Antenna	EMCO	6502	2950	23 May 2024	23 May 2025
1366	Horn Antenna	EMCO	3115	9702-511	18 Oct 2023	18 Oct 2025
1777	LNA Horn Antenna Amplifier Ka band	OSR Electronics	PE9850R-20	J202021732	22 Sep 2022	22 Sep 2025
1778	Antenna Cable for KA Band	OSR Electronics	37297C KPS	1503-590 (05032006)	9 Aug 2023	9 Aug 2024
2163	Signal Analyzer	Keysight	WO-004002 56-23	MY54430182	25 Feb 2023	25 Feb 2025

ITL #	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
2199	Trilog Broadband Antenna 30 MHz- 7 GHz	Schwarzbeck	VULB 9162	585	16 Oct 2023	16 Oct 2025
2215	Horn Antenna - 3Ghz-40GHz	Schwarzbeck	BBHA 9120 L	12	11 Oct 2023	11 Oct 2024
2227	Broadband LNA 10MHz-50GHz 44Db	Aeroflex	35822-000- 30001-08	014	1 Oct 2023	1 Oct 2024
2228	RF Cable up to 40Ghz 6M	Huber Suhner	-	-	1 Oct 2023	1 Oct 2024
2229	Low Loss 2.92mm Cable up to 40GHz	Micro-Coax	UFX40-Z- 0362 0- 210200	322365-001	1 Oct 2023	1 Oct 2024

Figure 29 Test Equipment Used

8.6 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors", using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dB\u00e4v/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

No external pre-amplifiers were used.

9. Emissions in Restricted Frequency Bands

9.1 Test Specification

FCC Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d) RSS-247, Section 3.3 RSS-Gen, Section 8.10

9.2 Test Procedure

(Temperature (23°C)/ Humidity (65%RH))

The E.U.T. operation mode and test setup are described in Section 2 of this report.

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 0.8/1.5 meters above the ground. The emissions were measured at a distance of three meters. The readings were maximized by the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.

The frequency range 0.009MHz -25.0GHz was scanned.

RBW was set to 100 kHz, the detector set to max peak and the trace to "max hold".

The tests were done for all "worst cases" for each protocol type. The highest radiations are described in the tables below.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

9.3 Test Limit

FCC:

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	Field strength* (dBμV/m)	Field strength* (dBµV/m)@3m
0.009-0.490	2400/F(kHz)	300	48.5-13.8	128.5-73.8
0.490-1.705	24000/F(kHz)	30	33.8-23.0	73.8-63.0
1.705-30.0	30	30	29.5	69.5
30-88	100	3	40.0	40.0
88-216	150	3	43.5	43.5
216-960	200	3	46.0	46.0
Above 960	500	3	54.0	54.0

^{*}The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

ISED:

Table 5 – General field strength limits at frequencies above 30 MHz						
Field strength (μV/m at 3 m)						
100						
150						
200						
500						

Table 6 – General field strength limits at frequencies below 30 MHz								
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)						
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300						
490 - 1705 kHz	63.7/F (F in kHz)	30						
1.705 - 30 MHz	0.08	30						

9.4 Test Results

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C Sections 15.209, 15.205, 15.247(d), and RSS-Gen, Section 8.10 specifications.

E.U.T Description Sleep Related Breathing Disorders Device

Type WatchPAT 400 Serial Number: 000010001

Specifications: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d) RSS-247, Section 3.3; RSS-Gen, Issue 5, Section 8.10

Antenna Polarization: Horizontal/Vertical Frequency Range: 9kHz to 25.0 GHz

Protocol Type: BLE Detector: Peak, Average

Operation Frequency	Freq.	Pol	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	2390.0	V	59.9	74.0	-14.1	49.4	54.0	-4.6
2402.0	2390.0	Н	60.8	74.0	-13.2	49.3	54.0	-4.7
2402.0	4804.0	V	51.6	74.0	-22.4	-	54.0	-
	4804.0	Н	50.7	74.0	-23.3	-	54.0	-
	4880.0	V	47.6	74.0	-26.4	-	54.0	-
2440.0	4880.0	Н	48.1	74.0	-25.9	-	54.0	-
	7320.0	V	43.3	74.0	-30.7	-	54.0	-

	7320.0	Н	36.6	74.0	-37.4	-	54.0	-
2480.0	4960.0	V	47.7	74.0	-26.3	-	54.0	-
	4960.0	Н	49.3	74.0	-24.7	-	54.0	-
	2483.5	V	58.2	74.0	-15.8	49.5	54.0	-4.5
	2483.5	Н	58.3	74.0	-15.7	49.5	54.0	-4.5

Figure 30. Radiated Emission Results

9.5 Test Instrumentation Used; Emissions in Restricted Frequency Bands

ITL #	Instrument	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
1507	EMI Receiver	Rohde & Schwarz	ESCI7	100794	7 Feb 2024	7 Feb 2025
1075	Active Loop Antenna	EMCO	6502	2950	23 May 2024	23 May 2025
1366	Horn Antenna	EMCO	3115	9702-511	18 Oct 2023	18 Oct 2025
1777	LNA Horn Antenna Amplifier Ka band	OSR Electronics	PE9850R-20	J202021732	22 Sep 2022	22 Sep 2025
1778	Antenna Cable for KA Band	OSR Electronics	37297C KPS	1503-590 (05032006)	9 Aug 2023	9 Aug 2024
2163	Signal Analyzer	Keysight	WO-004002 56-23	MY54430182	25 Feb 2023	25 Feb 2025
2199	Trilog Broadband Antenna 30 MHz- 7 GHz	Schwarzbeck	VULB 9162	585	16 Oct 2023	16 Oct 2025
2215	Horn Antenna - 3Ghz-40GHz	Schwarzbeck	BBHA 9120 L	12	11 Oct 2023	11 Oct 2024
2227	Broadband LNA 10MHz-50GHz 44Db	Aeroflex	35822-000- 30001-08	014	1 Oct 2023	1 Oct 2024
2228	RF Cable up to 40Ghz 6M	Huber Suhner	-	-	1 Oct 2023	1 Oct 2024
2229	Low Loss 2.92mm Cable up to 40GHz	Micro-Coax	UFX40-Z- 0362 0- 210200	322365-001	1 Oct 2023	1 Oct 2024

Figure 31 Test Equipment Used

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

10. Test Photos

See a separate document.

11. RF Exposure

See a separate document.

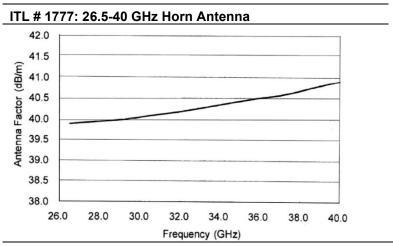
12. Appendix A - Correction Factors

ITL # 1075: A	ITL # 1075: Active Loop Antenna										
Frequency (MHz)	MAF (dBs/m)	AF (dB/m)		Frequency (MHz)	MAF (dBs/m)	AF (dB/m)					
0.01	-33.1	18.4		2.0	-40.0	11.5					
0.02	-37.2	14.3		3.0	-40.0	11.5					
0.03	-38.2	13.3		4.0	-40.1	11.4					
0.05	-39.8	11.7		5.0	-40.2	11.3					
0.1	-40.1	11.4		6.0	-40.4	11.1					
0.2	-40.3	11.2		7.0	-40.4	11.1					
0.3	-40.3	11.2		8.0	-40.4	11.1					
0.5	-40.3	11.2		9.0	-40.5	11.0					
0.7	-40.3	11.2		10.0	-40.5	11.0					
1.0	-40.1	11.4		20.0	-41.5	10.0					

ITL # 1352: Horn Antenna				
Frequency (MHz)	AF (dB/m)		Frequency (MHz)	AF (dB/m)
0.75	25		9.5	38
1.0	23.5		10.0	38.5
1.5	26.0		10.5	38.5
2.0	29.0		11.0	38.5
2.5	27.5		11.5	38.5
3.0	30.0		12.0	38.0
3.5	31.5		12.5	38.5
4.0	32.5		13.0	40.0
4.5	32.5		13.5	41.0
5.0	33.0		14.0	40.0
5.5	35.0		14.5	39.0
6.0	36.5		15.0	38.0
6.5	36.5		15.5	37.5
7.0	37.5		16.0	37.5
7.5	37.5		16.5	39.0
8.0	37.5		17.0	40.0
8.5	38.0		17.5	42.0
9.0	37.5		18.0	42.5

ITL # 1353: Horn Antenna (@ 3m distance) ²					
Frequency (MHz)	Measured antenna factor (dB/m)		Frequency (MHz)	Measured antenna factor (dB/m)	
18000.0	32.4		22500.0	33.0	
18500.0	32.0		23000.0	33.1	
19000.0	32.3		23500.0	33.8	
19500.0	32.4		24000.0	33.5	
20000.0	32.3		24500.0	33.5	
20500.0	32.8		25000.0	33.8	
21000.0	32.8		25500.0	33.9	
21500.0	32.7		26000.0	34.2	
22000.0	33.1		26500.0	34.7	

ITI	#1840·	Anechoic	Chamber	RF Cable


TIL #1040. Allection Chamber RF Cable				
Frequency (MHz)	Cable Loss (dB)		Frequency (MHz)	Cable Loss (dB)
1000.0	-1.4		10000.0	-6.0
1500.0	-1.7		10500.0	-6.2
2000.0	-2.0		11000.0	-6.2
2500.0	-2.3		11500.0	-6.0
3000.0	-2.6		12000.0	-6.0
3500.0	-2.8		12500.0	-6.1
4000.0	-3.1		13000.0	-6.3
4500.0	-3.3		13500.0	-6.5
5000.0	-3.6		14000.0	-6.7
5500.0	-3.7		14500.0	-7.0
6000.0	-4.0		15000.0	-7.3
6500.0	-4.4		15500.0	-7.5
7000.0	-4.7		16000.0	-7.6
7500.0	-4.8		16500.0	-8.0
8000.0	-5.0		17000.0	-8.0
8500.0	-5.1		17500.0	-8.1
9000.0	-5.6		18000.0	-8.2
9500.0	-5.8			

-

 $^{^2}$ The antenna factor shall be added to the receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$

ITL # 2199 Trilog Broadband Antenna30 MHz - 1 GHz + RF cables

RF cables			
Frequency (MHz)	Measured antenna factor (dB/m)	Frequency (MHz)	Measured antenna factor (dB/m)
30.00	14.30	80.00	11.10
40.00	16.20	90.00	13.40
50.00	17.40	100.00	15.20
60.00	16.30	150.00	11.40
70.00	13.00	200.00	14.10
80.00	11.10	300.00	16.10
90.00	13.40	400.00	18.10
100.00	15.20	500.00	19.50
150.00	11.40	600.00	21.10
30.00	14.30	700.00	22.50
40.00	16.20	800.00	23.50
50.00	17.40	900.00	24.70
60.00	16.30	1000.00	25.50
70.00	13.00		

End of Report