TEST REPORT On behalf of

Savant Technologies LLC, dba GE Lighting, a Savant company

Product Name: Smart Plug

Model No.: CPLGSTDBLW1

FCC ID: PUU-CPLGSTDBLW1M

Prepared For: Savant Technologies LLC, dba GE Lighting, a Savant company 1975 Noble Road Cleveland Ohio United States 44112

Prepared By: Audix Technology (Shanghai) Co., Ltd. 3F and 4F, 34Bldg, 680 Guiping Rd., Caohejing Hi-Tech Park, Shanghai 200233, China

Tel: +86-21-64955500

File No.:C1D2211038Report No.:ACI-F23024Date of Test:2022.12.09-2023.02.17Date of Report:2023.02.23

The statement is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TABLE OF CONTENTS

Page

1	SUN	MMARY OF STANDARDS AND RESULTS	. 5
	1.1	Description of Standards and Results	. 5
2		NERAL INFORMATION	
		Description of Equipment Under Test	
	2.2	EUT Specifications Assessed in Current Report	
	2.3	Test Information	
	2.4	Sample Description	
	2.5	Supported equipment	
	2.6	Description of Test Facility	
3		NDUCTED EMISSION TEST	
	3.1	Test Equipment	
	3.2	Block Diagram of Test Setup	
	3.3	Conducted Emission Limits (§15.207)	10
	3.4	Test Configuration	
	3.5	Operating Condition of EUT	
	3.6	Test Procedures	
	3.7	Test Results	11
4	RA	DIATED EMISSION TEST	13
	4.1	Test Equipment	13
	4.2	Block Diagram of Test Setup	
	4.3	Radiated Emission Limit (§15.209)	14
	4.4	Test Configuration	
	4.5	Operating Condition of EUT	
	4.6	Test Procedures	15
	4.7	Test Results	16
5	6 D	B BANDWIDTH MEASUREMENT	22
	5.1	Test Equipment	22
	5.2	Block Diagram of Test Setup	
	5.3	Specification Limits (§15.247(a)(2))	
	5.4	Operating Condition of EUT	
	5.5	Test Procedure	22
	5.6	Test Results	23
6	MA	XIMUM PEAK OUTPUT POWER MEASUREMENT	26
	6.1	Test Equipment	26
	6.2	Block Diagram of Test Setup	
	6.3	Specification Limits ((§15.247(b)(3))	
	6.4	Operating Condition of EUT	
	6.5	Test Procedure	
	6.6	Test Results	27
7	EM	ISSION LIMITATIONS MEASUREMENT	30
	7.1	Test Equipment	30
	7.2	Block Diagram of Test Setup	
	7.3	Specification Limits (§15.247(d))	30

	7.4	Operating Condition of EUT	30		
	7.5	Operating Condition of EUT Test Procedure	30		
		Test Results			
8	PO	WER SPECTRAL DENSITY MEASUREMENT	39		
	8.1	Test Equipment	39		
		Block Diagram of Test Setup			
	8.3				
	8.4	Operating Condition of EUT			
	8.5		39		
	8.6	Test Results	40		
9	AN	TENNA REQUIREMENT	43		
	9.1	Specification Limits (§15.203)	43		
		Result			
1	0 DE	VIATION TO TEST SPECIFICATIONS	44		
	11 MEASUREMENT UNCERTAINTY LIST				
A	PPE	NDIX I PHOTOGRAPHS OF TEST			
A	PPE	NDIX II PHOTOGRAPHS OF EUT			

TEST REPORT

Applicant	:	Savant Technologies LLC, dba GE Lighting, a Savant company		
EUT Description	:	Smart Plug		
		(A) Model No.	:	Refer to Sec.2.1
		(B) Power Supply	:	120V AC 60Hz
		(C) Test Voltage	:	120V/60Hz

Test Procedure Used:

FCC RULES AND REGULATIONS PART 15 SUBPART C AND ANSI C63.10-2013

The device described above is tested by Audix Technology (Shanghai) Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits.

The test results are contained in this test report and Audix Technology (Shanghai) Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. This report also shows that the EUT (M/N: Refer to Sec2.1), which was tested is technically compliance with the FCC limits.

This report applies to above tested Sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shanghai) Co., Ltd.

The test results for EUT's WIFI function are contained in No.ACI-F23025 report.

Date of Test :	2022.12.09-2023.02.17	Date of Report :	2023.02.23			
Producer :	HUIMIN Yan					
	HUIMIN YAN / Assistant					
	Byron Vie					
Review :	1					
AUDIX BYRON WU/ Deputy Assistant Manager						
Audix Technology (Shar	nghai) Co., Ltd.					
	Cor N.					
Authorized Signature(s)						
KAMP CHEN / Manager						

1 SUMMARY OF STANDARDS AND RESULTS

1.1 Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Description / Test Item	Test Standard	Results	Meets Limit
	EMISSION		
	FCC RULES AND REGULATIONS PART 15		
Conducted Emission	SUBPART C	Pass	15.207
	AND ANSI C63.10:2013		
	FCC RULES AND REGULATIONS PART 15		15,200(a)
Radiated Emission	SUBPART C	Pass	15.209(a)
	AND ANSI C63.10:2013		15.205(a)(c)
6 dB Bandwidth	FCC RULES AND REGULATIONS PART 15		
Measurement	SUBPART C	Pass	15.247(a)(2)
Measurement	AND ANSI C63.10:2013		
Maximum Dools Output	FCC RULES AND REGULATIONS PART 15		
Maximum Peak Output Power Measurement	SUBPART C	Pass	15.247(b)(3)
Power Measurement	AND ANSI C63.10:2013		
Emission Limitations	FCC RULES AND REGULATIONS PART 15		
Measurement	SUBPART C	Pass	15.247(d)
Wieasurement	AND ANSI C63.10:2013		
Band Edge	FCC RULES AND REGULATIONS PART 15		
Measurement	SUBPART C	Pass	15.247(d)
Wiedsureinein	AND ANSI C63.10:2013		
Power Spectral Density	FCC RULES AND REGULATIONS PART 15		
Measurement	SUBPART C	Pass	15.247(e)
Wiedsureinein	AND ANSI C63.10:2013		
	FCC RULES AND REGULATIONS PART 15		
Antenna Requirement	SUBPART C	Pass	15.203
	AND ANSI C63.10:2013		
N/A is an abbreviation for Not Applicable.			

2 GENERAL INFORMATION

2.1 Description of Equipment Under Test

Description	:	Smart Plug		
Type of EUT	:	\square Production \square Pre-product \square Pro-type		
Model Number	:	CPLGSTDBLW1		
Radio Tech	:	BLE 5.0; IEEE 802.11 b/g/n.		
Note	:	LE2M not support.		
Channel Freq.	:	BLE: 2402MHz-2480MHz; 802.11b/g/n20: 2412MHz-2462MHz; 802.11n40: 2422MHz-2452MHz.		
Modulation	:	BLE: GFSK; 802.11b: DSSS (CCK, DQPSK, DBPSK); 802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK).		
Antenna Info.	:	Antenna Type: PCB Antenna Antenna Gain: 4.6 dBi		
Applicant	:	Savant Technologies LLC, dba GE Lighting, a Savant company 1975 Noble Road Cleveland Ohio United States 44112		
Manufacturer	:	same as Applicant		
Factory#1	:	Sichuan Hongrui Electric Co., ltd Buiding#201, Comprehensive Bonded Zone, Feiyun roda, East No.261,High-Tech Park, Mianyang, Sichuan, China		
Factory#2	:	VIETNAM CHANGHONG ELECTRIC COMPANY LIMITED Workshop W4 (leased by WWWHP),Land plot 4.2B, Dinh Vu Industrial Zone, Dong Hai 2 Ward, Hai An District,Haiphong City,VN.		

2.2 EUT Specifications Assessed in Current Report

Mode	Modulation	Data Rate(Mbps)
BLE	GFSK	1

Channel List				
Channel No. Frequency (MHz)		Channel No.	Frequency (MHz)	
00	2402	20	2442	
01	2404	21	2444	
02	2406	22	2446	
		•••		
		•••		
17	2436	37	2476	
18	2438	38	2478	
19	2440	39	2480	

2.3 Test Information

The test software "EspRFTestTool_v2.8_Manual.exe" was used to control EUT work in TX mode, Power Setting and select test channel.

Modulation	data rate (Mbps)	Level Setting	Test Channel		Frequency (MHz)
	1	10	Low:	00	2402
BLE		10	Middle:	19	2440
		10	High:	39	2480

2.4 Sample Description

Test Item	Model Number	Sample Number	Date of receipted
Conducted Emission	CPLGSTDBLW1	E2212972-01/02	2022.12.15
Radiated Emission	CPLGSTDBLW1	E2212972a-01/02	2022.12.15
Conducted RF Test	CPLGSTDBLW1	E2212972a-02/02	2022.12.15

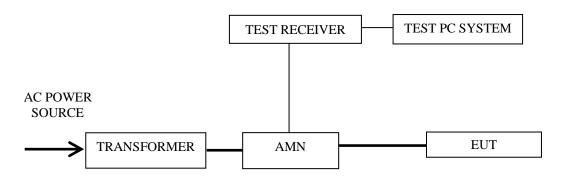
2.5 Supported equipment

Brand Product Name: Model Name Model Number	: : :	Acer Notebook PC TravelMate P238 series N15W8
Product Name Product Function	:	Test Fixture USB to TTL

2.6 Description of Test Facility

Name of Firm	: Audix Technology (Shanghai) Co., Ltd.
Site Location	: 3F and 4F, 34Bldg, 680 Guiping Rd., Caohejing Hi-Tech Park, Shanghai 200233, China.
Accredited by NVLAP, Lab Code	: 200371-0
FCC Designation Number	: CN5027
Test Firm Registration Number	: 954668

3 CONDUCTED EMISSION TEST


3.1 Test Equipment

The following test equipments are used during the conducted emission test in a shielded room:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Test Receiver	R&S	ESCI	101302	2022.06.07	1 Year
2.	Artificial Mains Network (AMN)	R&S	ENV4200	100125	2022.07.13	1 Year
3.	Software	Audix	e3	6.2009-1-15		

3.2 Block Diagram of Test Setup

3.2.1 Conducted Disturbance Test Setup

— : Signal Line— : Power Line

Frequency Range	Limits $dB(\mu V)$			
(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	66~56	56~46		
0.5 ~ 5	56	46		
5 ~ 30	60	50		
NOTE 2 – The limit d	limit shall apply at the transit lecreases linearly with the log).15 MHz~0.50 MHz	-		

3.3 Conducted Emission Limits (§15.207)

3.4 Test Configuration

The EUT (listed in Sec.2.1) was installed as shown on Sec.3.2 to meet FCC requirement and operating in a manner which tends to maximize its emission level in a normal application.

3.5 Operating Condition of EUT

3.5.1 Setup the EUT as shown in Sec. 3.2.

- 3.5.2 Turn on the power of all equipment.
- 3.5.3 Turn the EUT on the test mode, and then test.

3.6 Test Procedures

The EUT was placed upon a non-metallic table, which is 0.8 m above the horizontal conducting ground plane and 0.4 m from a vertical reference plane. The EUT was connected to the power mains through an Artificial Mains Network (AMN) to provide a 50 Ω coupling impedance for the measuring equipment. Both sides of AC line (Line & Neutral) were checked to find out the maximum conducted emission according to FCC Part 15 Subpart C and ANSI C63.10: 2013 requirements during conducted disturbance test.

The I.F. bandwidth of Test Receiver ESCI was set at 9 kHz.

The frequency range from 150 kHz to 30 MHz was checked.

Test with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. (According to KDB 174176 D01 Line Conducted FAQ)

The test modes were done on conducted disturbance test and all the test results are listed in Sec. 3.7

3.7 Test Results

< PASS >

The frequency and amplitude of the highest conducted emission relative the limit is reported. All the emissions not reported below are too low against the FCC limit.

Worst case emission:

No.	Operation	Modulation	Channel	Frequency (MHz)	Data Page
1.	Transmitting	BLE	00	2402	P12

NOTE 1 – Level = Read Level + AMN Factor + Cable Loss

NOTE 2 – "QP" means "Quasi-Peak" values

NOTE 3 – The emission levels which not reported are too low against the official limit.

Worst case emission

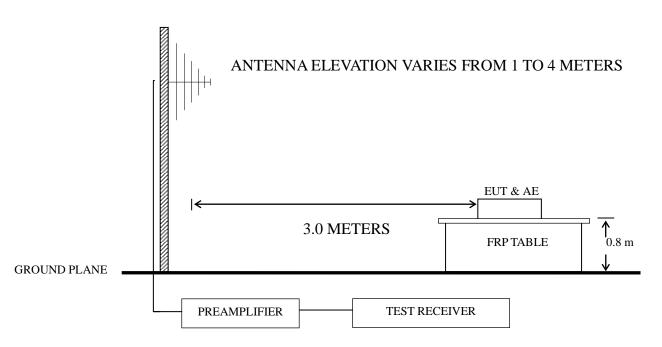
EUT	:	Smart Plug	Temperature :	22°C
Model No.	:	CPLGSTDBLW1	Humidity :	51%RH
Test Mode	:	Transmitting	Date of Test :	2022.12.17

Polarization	Frequency (MHz)	Meter Reading dB (µV)	AMN Factor (dB)	Cable Loss (dB)	Emission Level dB (µV)	Limits dB (µV)	Margin (dB)	Remark
	0.173	43.73	9.7	0.03	53.46	64.82	11.36	QP
	0.173	24.4	9.7	0.03	34.13	54.82	20.69	Average
	0.2065	41.52	9.7	0.03	51.25	63.34	12.09	QP
	0.2065	21.6	9.7	0.03	31.33	53.34	22.01	Average
	0.2746	39.6	9.7	0.03	49.33	60.98	11.65	QP
Line	0.2746	18.1	9.7	0.03	27.83	50.98	23.15	Average
Line	0.3184	38.15	9.74	0.03	47.92	59.75	11.83	QP
	0.3184	16.7	9.74	0.03	26.47	49.75	23.28	Average
	0.4307	35.89	9.7	0.04	45.63	57.24	11.61	QP
	0.4307	16.4	9.7	0.04	26.14	47.24	21.1	Average
	0.5612	32.32	9.76	0.05	42.13	56	13.87	QP
	0.5612	14.2	9.76	0.05	24.01	46	21.99	Average
	0.1707	44.58	9.7	0.03	54.31	64.93	10.62	QP
	0.1707	25.2	9.7	0.03	34.93	54.93	20	Average
	0.2124	42.77	9.7	0.03	52.5	63.11	10.61	QP
	0.2124	21.8	9.7	0.03	31.53	53.11	21.58	Average
	0.3377	38.24	9.78	0.03	48.05	59.26	11.21	QP
Neutral	0.3377	18	9.78	0.03	27.81	49.26	21.45	Average
Ineutiai	0.3917	36.79	9.72	0.04	46.55	58.03	11.48	QP
	0.3917	17.2	9.72	0.04	26.96	48.03	21.07	Average
	0.4957	35.22	9.7	0.04	44.96	56.07	11.11	QP
	0.4957	18.9	9.7	0.04	28.64	46.07	17.43	Average
	0.5321	34.87	9.7	0.04	44.61	56	11.39	QP
	0.5321	19.9	9.7	0.04	29.64	46	16.36	Average

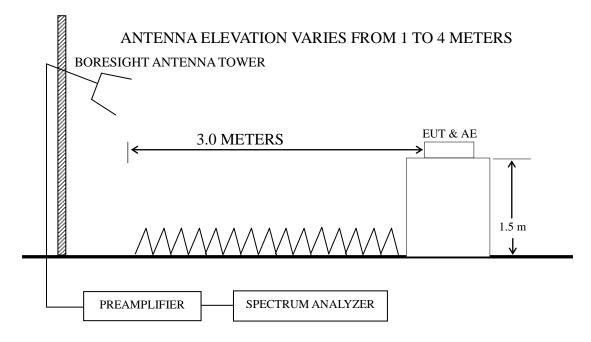
4 RADIATED EMISSION TEST

4.1 Test Equipment

The following test equipment are used during the radiated emission test in a semi-anechoic chamber:


Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Preamplifier	Agilent	8447D	2944A10548	2022.06.06	1 Year
2.	Preamplifier	HP	8449B	3008A00864	2022.06.06	1 Year
3.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
4.	Test Receiver	R&S	ESCI	101303	2022.06.07	1 Year
5.	Bilog Antenna+6dB Attenuator	na+6dB Schwarz beck 9168+EMCI- 707+AT-N063		707+AT-N0637	2022.07.25	1 Year
6.	Horn Antenna	EMCO	3115	9607-4878	2022.07.21	1 Year
7.	Horn Antenna	EMCO	3116	00062643	2022.12.12	1 Year
8.	Cavity Band Rejection Filter	Microwave	WT-A3882-R 10	WT200312-1-1	2022.06.06	1 Year
9.	Software	Audix	e3	6.111206		

4.2 Block Diagram of Test Setup


4.2.1 EUT & Peripherals

4.2.2 Below 1GHz

4.2.3 Above 1GHz

4.3 Radiated Emission Limit (§15.209)

Frequency	Distance	Field strength limits ($\mu V/m$)					
(MHz)	(m)	(µV/m)	dB(µV/m)				
30 ~ 88	3	100	40.0				
88 ~ 216	3	150	43.5				
216 ~ 960	3	200	46.0				
Above 960	3	500	54.0				
 NOTE 1 - Emission Level dB (μV/m) = 20 log Emission Level (μV/m) NOTE 2 - The tighter limit applies at the band edges. NOTE 3 - Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system. NOTE 4 - The limits shown are based on Quasi-peak value detector below or 							
NOTE 5 - Ab	 equal to 1GHz and Average value detector above 1GHz. NOTE 5 - Above 1 GHz, the limit on peak emission is 20 dB above the maximum permitted average emission limit applicable to the EUT 						

4.4 Test Configuration

The EUT (listed in Sec.2.1) and the simulators (listed in Sec.2.2) were installed as shown on Sec.4.2 to meet FCC requirements and operating in a manner that tends to maximize its emission level in a normal application.

4.5 Operating Condition of EUT

- 4.5.1 Setup the EUT as shown in Sec. 4.2.
- 4.5.2 Turn on the power of all equipment.
- 4.5.3 Turn the EUT on the test mode, and then test.
- 4.6 Test Procedures

Radiated emission test applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. A pre-amp is necessary for this measurement. For measurement above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation.

The EUT was placed on a turntable. Below 1 GHz, the table height is 80 cm above the reference ground plane. Above 1 GHz, the table height is 1.5 m. The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna, which was mounted on an antenna tower. The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (Calibrated Bilog Antenna) or Horn antenna was used as receiving antenna. Both horizontal and vertical polarizations of the antenna were set on measurement. In order to find the maximum emission, all of the interference cables were manipulated according to ANSI C63.10: 2013 requirements during radiated emission test.

The bandwidth of Test Receiver R&S ESCI was set at 120 kHz from 30MHz to 1000MHz.

The bandwidth of Agilent N9010A was set at 1MHz for above 1GHz.

The frequency range from 30 MHz to 25 GHz (Up to 10th harmonics from fundamental frequency) was checked.

All the test results are listed in Sec.4.7.

4.7 Test Results

<PASS>

The frequency and amplitude of the highest radiated emission relative the limit is reported. All the emissions not reported below are too low against the FCC limit.

Frequency range: below 1GHz (Worst case emission	n)
--	----

No.	Operation	Modulation	Channel	Frequency	Data Page
1.	Transmitting	BLE	39	2480 MHz	P17

Frequency range: above 1GHz

1	No.	Operation	Modulation	Channel	Frequency	Data Page
	1.			00	2402 MHz	P18
	2.	Transmitting	BLE	19	2440 MHz	P18
	3.			39	2480 MHz	P19

Band-Edge:

]	No.	Operation	Modulation	Channel	Frequency	Data Page
	1.	Transmitting	DLE	00	2402 MHz	P20
	2.		BLE	39	2480 MHz	P20

Restricted bands:

No.	Operation	Modulation	Channel	Frequency	Data Page
1.	1. Transmitting 2. Transmitting	DLE	00	2402 MHz	P21
2.		DLE	39	2480 MHz	P21

NOTE 1 – Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

NOTE 2 - "QP" means "Quasi-Peak" values

- NOTE $3 0^{\circ}$ was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.
- NOTE 4 The emission levels which not reported are too low against the official limit.
- NOTE 5 The emission levels recorded below is data of EUT configured in Lying direction, for this direction was the maximum emission direction during the test. The data of Side & Standing direction are too low against the official limit to be reported.
- NOTE 6 All reading are Quasi-Peak values below or equal to 1GHz, Peak and Average values above 1GHz.
 For above 1GHz test, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- NOTE 7 The frequency range 2310-2390MHz & 2483.5-2500MHz were tested for Restricted bands.

Worst case emission < 1GHz

EUT	:	Smart Plug	Temperature :	22°C		
Model No.	:	CPLGSTDBLW1	Humidity :	51%RH		
Test Mode	:	Transmitting	Date of Test :	2023.02.13		

BLE CH2480MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
	143.83	36.38	19.1	1.29	27.92	28.85	43.5	14.65	QP
	191.75	38.54	16.7	1.51	27.44	29.31	43.5	14.19	QP
Horizontal	216.02	42.8	15.78	1.58	27.4	32.76	46	13.24	QP
Horizontai	263.82	43.37	18.08	1.74	27.15	36.04	46	9.96	QP
	432.55	39.12	22.55	2.24	27.8	36.11	46	9.89	QP
	480.53	37.1	23.1	2.4	27.84	34.76	46	11.24	QP
	191.75	33.75	16.7	1.51	27.44	24.52	43.5	18.98	QP
	216.02	41.89	15.78	1.58	27.4	31.85	46	14.15	QP
Vartical	263.82	41.45	18.08	1.74	27.15	34.12	46	11.88	QP
Vertical	359.19	36.67	20.42	2.03	27.44	31.68	46	14.32	QP
	407.52	36.14	21.5	2.18	27.65	32.17	46	13.83	QP
	661.15	30.21	26.2	2.77	27.45	31.73	46	14.27	QP

Radiated Emission > 1GHz

EUT	:	Smart Plug	Temperature :	22°C
Model No.	:	CPLGSTDBLW1	Humidity :	51%RH
Test Mode	:	Transmitting	Date of Test :	2022.02.10

BLE CH2402MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
	3196	43.46	30.9	6.09	35.33	45.12	74	28.88	Peak
	4798	41.31	32.9	7.55	34.77	46.99	74	27.01	Peak
Horizontal	6256	36.84	34.6	8.6	34.77	45.27	74	28.73	Peak
Horizontai	7390	36.91	37	9.69	34.7	48.9	74	25.1	Peak
	8569	36.67	38.4	10.52	34.7	50.89	74	23.11	Peak
	9460	35.85	38.5	11.06	34.65	50.76	74	23.24	Peak
	3052	41.46	30.4	5.96	35.38	42.44	74	31.56	Peak
	4798	39.95	32.9	7.55	34.77	45.63	74	28.37	Peak
Vertical	6139	37.23	34.5	8.52	34.79	45.46	74	28.54	Peak
vertical	7426	36.26	37	9.69	34.7	48.25	74	25.75	Peak
	8425	35.59	38.3	10.46	34.7	49.65	74	24.35	Peak
	9388	36.86	38.3	10.97	34.66	51.47	74	22.53	Peak

BLE CH2440MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
	3250	42.21	31	6.14	35.31	44.04	74	29.96	Peak
	4816	39.31	32.93	7.55	34.76	45.03	74	28.97	Peak
Horizontal	6166	36.19	34.53	8.52	34.78	44.46	74	29.54	Peak
Horizontai	7300	36.61	36.7	9.58	34.7	48.19	74	25.81	Peak
	8308	35.71	38.15	10.4	34.7	49.56	74	24.44	Peak
	9217	35.41	38.2	10.88	34.68	49.81	74	24.19	Peak
	3034	41.01	30.3	5.92	35.39	41.84	74	32.16	Peak
	4537	37.94	32.6	7.3	34.88	42.96	74	31.04	Peak
Vertical	5509	37.52	34.3	8.04	34.75	45.11	74	28.89	Peak
vertical	7030	36.17	35.47	9.26	34.7	46.2	74	27.8	Peak
	8110	36	37.5	10.28	34.7	49.08	74	24.92	Peak
	9379	36.23	38.2	10.97	34.66	50.74	74	23.26	Peak

BLE CH2480MHz	2
---------------	---

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
	3304	42.2	31.2	6.18	35.3	44.28	74	29.72	Peak
	4546	37.87	32.6	7.3	34.87	42.9	74	31.1	Peak
Horizontal	5563	37.38	34.17	8.09	34.76	44.88	74	29.12	Peak
Horizontai	6814	35.68	35.53	9.09	34.72	45.58	74	28.42	Peak
	8110	35.74	37.5	10.28	34.7	48.82	74	25.18	Peak
	9424	34.73	38.4	10.97	34.65	49.45	74	24.55	Peak
	2638	41.02	29.07	5.61	35.69	40.01	74	33.99	Peak
	3871	37.87	32.6	6.66	35.13	42	74	32	Peak
Vertical	5482	37.64	34.23	8.04	34.75	45.16	74	28.84	Peak
vertical	6769	36.1	35.4	9.09	34.72	45.87	74	28.13	Peak
	8020	35.19	37.67	10.22	34.7	48.38	74	25.62	Peak
	9064	36.79	38.25	10.79	34.69	51.14	74	22.86	Peak

Band-Edge:

EUT	:	Smart Plug	Temperature :	22°C
Model No.	:	CPLGSTDBLW1	Humidity :	51%RH
Test Mode	:	Transmitting	Date of Test :	2023.02.10

BLE CH2402MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)		Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
Horizontal	2390	51.8	28.4	5.36	35.9	49.66	74	24.34	Peak
Horizontai	2390	41.48	28.4	5.36	35.9	39.34	54	14.66	Average
Vartical	2390	51.07	28.4	5.36	35.9	48.93	74	25.07	Peak
Vertical	2390	41.2	28.4	5.36	35.9	39.06	54	14.94	Average

BLE CH2480MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
Horizontal	2483.5	54.1	28.44	5.43	35.82	52.15	74	21.85	Peak
Horizontai	2483.5	43.42	28.44	5.43	35.82	41.47	54	12.53	Average
Vertical	2483.5	54.02	28.44	5.43	35.82	52.07	74	21.93	Peak
vertical	2483.5	43.21	28.44	5.43	35.82	41.26	54	12.74	Average

Emissions in restricted frequency bands:

EUT	:	Smart Plug	Temperature :	22°C
Model No.	:	CPLGSTDBLW1	Humidity :	51%RH
Test Mode	:	Transmitting	Date of Test :	2023.02.10

BLE CH2402MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
	2330.4	52.71	28.29	5.29	35.96	50.33	74	23.67	Peak
	2330.4	41.47	28.29	5.29	35.96	39.09	54	14.91	Average
Horizontal	2351.8	53.98	28.4	5.32	35.94	51.76	74	22.24	Peak
Horizoittai	2351.8	41.6	28.4	5.32	35.94	39.38	54	14.62	Average
	2378.4	53.11	28.4	5.36	35.92	50.95	74	23.05	Peak
	2378.4	41.21	28.4	5.36	35.92	39.05	54	14.95	Average
	2332	53.42	28.29	5.29	35.96	51.04	74	22.96	Peak
	2332	41.14	28.29	5.29	35.96	38.76	54	15.24	Average
Vertical	2362.1	53.67	28.4	5.32	35.93	51.46	74	22.54	Peak
vertical	2362.1	40.57	28.4	5.32	35.93	38.36	54	15.64	Average
	2386.7	52.96	28.4	5.36	35.91	50.81	74	23.19	Peak
	2386.7	41.49	28.4	5.36	35.91	39.34	54	14.66	Average

BLE CH2480MHz

Polarization	Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
	2484.9	54.58	28.44	5.47	35.82	52.67	74	21.33	Peak
Horizontal	2484.9	43.36	28.44	5.47	35.82	41.45	54	12.55	Average
	2490.9	54.14	28.47	5.47	35.82	52.26	74	21.74	Peak
Horizoiltai	2490.9	42.21	28.47	5.47	35.82	40.33	54	13.67	Average
	2496.1	53.92	28.47	5.47	35.81	52.05	74	21.95	Peak
	2496.1	41.69	28.47	5.47	35.81	39.82	54	14.18	Average
	2483.9	56.02	28.44	5.43	35.82	54.07	74	19.93	Peak
	2483.9	43.21	28.44	5.43	35.82	41.26	54	12.74	Average
Vertical	2490	54.27	28.47	5.47	35.82	52.39	74	21.61	Peak
vertical	2490	42.13	28.47	5.47	35.82	40.25	54	13.75	Average
	2494.9	54.07	28.47	5.47	35.81	52.2	74	21.8	Peak
	2494.9	41.3	28.47	5.47	35.81	39.43	54	14.57	Average

5

5.1 Test Equipment

The following test equipment was used during the Emission Bandwidth measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
2.	Coaxial Cable	WOKEN	SFL402-105F LEX	F02-150819- 045	2022.03.07	1 Year
3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.08.06	1 Year

5.2 Block Diagram of Test Setup

Spectrum Analyzer	Attenuator	EUT	Test Fixture	Notebook PC
-------------------	------------	-----	--------------	-------------

5.3 Specification Limits (§15.247(a)(2))

The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

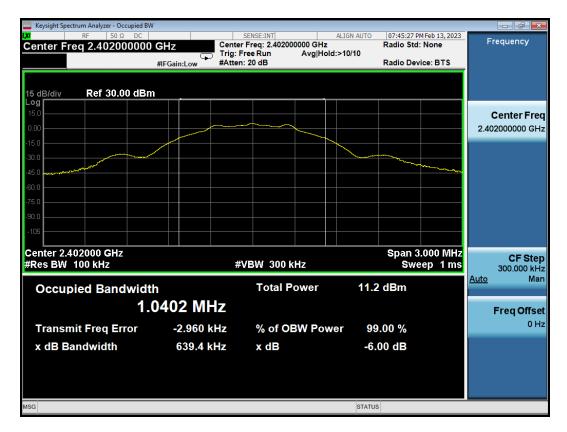
5.5 Test Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer with settings: RBW = 100kHz, $VBW \ge 3 \times RBW$.

The 6 dB bandwidth is defined as the total spectrum the power of which is lower than peak power minus 6 dB .

The test procedure is defined in ANSI C63.10-2013 (the 11.8.2 Measurement Procedure "Option 2" was used).

5.6 Test Results


PASSED.

All the test results are attached in next pages.

(Test Date: 2022.12.09-13 Temperature: 23°C Humidity: 51 %)

Modulation	Channel	Frequency (MHz)	6dB Bandwidth (kHz)	Limit
	00	2402	639.4	500 kHz
BLE	19	2440	643.7	500 kHz
	39	2480	637.8	500 kHz

BLE CH2402MHz

BLE CH2440MHz

Keysight Spectrum Analyzer - Occupied BW					
RF 50 Ω DC Center Freq 2.440000000 C		SENSE:INT Freq: 2.440000000 GHz		07:43:04 PM Feb 13, 2023 Radio Std: None	Frequency
		FreeRun Avg Ho u:20 dB	old:>10/10	Radio Device: BTS	
,	#IFGam.Low #/ tter			Rudio Berliet. B Fo	ī
15 dB/div Ref 30.00 dBm					
Log 15.0					
					Center Freq
-15.0					2.440000000 GHz
-15.0					
-45.0					
-60.0					
-75.0					
-90.0					
-105					
Center 2.440000 GHz #Res BW 100 kHz	#	VBW 300 kHz		Span 3.000 MHz Sweep 1 ms	or step
	<i>w</i>	VBW 500 KHZ		Gweep This	300.000 kHz Auto Man
Occupied Bandwidth		Total Power	11.0) dBm	
1.0	403 MHz				Freq Offset
Transmit Freq Error	-3.727 kHz	% of OBW Po	wor 00	9.00 %	0 Hz
x dB Bandwidth	643.7 kHz	x dB	-6.	00 dB	
MSG			STATU	e	
			STATU		

BLE CH2480MHz

Keysight Spectrum Analyzer - Occupied BW	1				
Center Freq 2.480000000	CH _z Center	SENSE:INT r Freg: 2.480000000 GH	ALIGN AUTO	07:42:18 PM Feb 13, 2023 Radio Std: None	Frequency
Center Freq 2.48000000		Free Run Avg H	old:>10/10		
	#IFGain:Low #Atter	n: 20 dB		Radio Device: BTS	
15 dB/div Ref 30.00 dBm	<u> </u>				
Log 15.0					0
					Center Fred
0.00					2.480000000 GHz
-15.0					
-30.0					
-45.0					
-60.0					
-75.0					
-90.0					
-105					
Center 2.480000 GHz				Span 3.000 MHz	CF Step
#Res BW 100 kHz	#	VBW 300 kHz		Sweep 1 ms	300.000 kHz
Occupied Bandwidt	h	Total Power	11.3	dBm	<u>Auto</u> Man
		rotarr offor	1110		
1.0	0400 MHz				Freq Offset
Transmit Freq Error	-3.634 kHz	% of OBW Po	wer 90	.00 %	0 Hz
x dB Bandwidth	637.8 kHz	x dB	-6.	00 dB	
MSG			STATUS	3	

6 MAXIMUM PEAK OUTPUT POWER MEASUREMENT

6.1 Test Equipment

The following test equipment was used during the maximum peak output power measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
2.	Coaxial Cable	WOKEN	SFL402-105F LEX	F02-150819- 045	2022.03.07	1 Year
3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.08.06	1 Year

6.2 Block Diagram of Test Setup

The Same as Section. 5.2.

6.3 Specification Limits ((§15.247(b)(3))

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5 MHz is: 1 Watt. (30 dBm)

6.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

6.5 Test Procedure

The transmitter output was connected to the spectrum analyzer.

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) RBW \geq DTS Bandwidth.
- b) VBW \geq [3 × RBW].
- c) Span \geq [3 × RBW].
- d) Sweep time = auto.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

The test procedure is defined in ANSI C63.10-2013 (11.9.1.1 Measurement Procedure " RBW \geq DTS bandwidth" was used).

6.6 Test Results

PASSED.

All the test results are listed below.

(Test Date: 2022.12.09-13 Temperature: 23°C Humidity: 51 %)

Modulation	Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit
	00	2402	5.114	30 dBm
BLE	19	2440	4.892	30 dBm
	39	2480	5.213	30 dBm

BLE CH2402MHz

								m Analyzer - Swe		- Key
6 PM Feb 13, 2023 RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	TYPE M WWW	ALIGN AUTO Type: Log-Pwr Hold:>100/100	A			−IZ NO:Fast ⊂ Gain:Low	0000 G	RF <u>50 Ω</u> 40194000		/ /lari
940 GHz Next Pea 114 dBm	2.401 940 GH 5.114 dBr	Mkr1				Jam.Low	dB	ef Offset 11 ef 20.00 d	R B/div R	
Next Pk Rig				1-	¢					- 0g 10.0
Next Pk Le										0.00 -10.0
Marker De										20.0 30.0
Mkr→C										40.0 50.0
Mkr→RefL										50.0
3.000 MHz (1001 pts)	Span 3.000 MH .000 ms (1001 pt	Sween 1		7	3.0 MHz	#VBM		000 GHz	ter 2.402 s BW 1.0	
		STATUS				<i>"</i> U 511				SG

BLE CH2440MHz

Keysight Spectrum Analyzer - Swept SA				
x/ RF 50Ω DC Marker 1 2.43991900000	0 GHz PNO: Fast Trig: Free Rui IFGain:Low Atten: 20 dB	Avg Type: Log-Pwr	07:43:56 PM Feb 13, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Peak Search
Ref Offset 11 dB 10 dB/div Ref 20.00 dBm	I GAINEOW	Mkr1	2.439 919 GHz 4.892 dBm	NextPeal
10.0	1			Next Pk Righ
0.00				Next Pk Lef
20.0				Marker Delt
-40.0				Mkr→C
60.0				Mkr→RefLv
70.0				Mor 1 of
Center 2.440000 GHz #Res BW 1.0 MHz sg	#VBW 3.0 MHz	Sweep 1	Span 3.000 MHz .000 ms (1001 pts)	

BLE CH2480MHz

Keysight Spectrum	ectrum Analyzer - Swept SA							- F <mark>×</mark>
Marker 1	RF 50 Ω DC 2.480009000000	GHz	SENSE:II	Avg Type	ALIGN AUTO	TRAC	I Feb 13, 2023	Peak Search
		PNO: Fast IFGain:Low	Trig: Free Ru Atten: 20 dB	n Avg Hold	:>100/100	TYP		
	Ref Offset 11 dB	II Guilleon			Mkr′	2.480 0	09 GHz	Next Peak
10 dB/div Log	Ref 20.00 dBm					5.2	13 dBm	
10.0			1-					Next Pk Right
			Y					
0.00								
								Next Pk Left
-10.0								
-20.0								
								Marker Delta
-30.0								
-40.0								Mkr→CF
-50.0								
-60.0								Mkr→RefLvl
-70.0								
								More
	480000 GHz				_	Span 3	.000 MHz	1 of 2
#Res BW	1.0 MHz	#VBW	3.0 MHz			1.000 ms (1001 pts)	
MSG					STATU	s		

7 EMISSION LIMITATIONS MEASUREMENT

7.1 Test Equipment

The following test equipment was used during the emission limitations test:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
2.	Coaxial Cable	WOKEN	SFL402-105F LEX	F02-150819- 045	2022.03.07	1 Year
3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.08.06	1 Year

7.2 Block Diagram of Test Setup

The Same as Section. 5.2.

7.3 Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)). (%This test result attaching to Section. 3.7)

7.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

7.5 Test Procedure

The transmitter output was connected to the spectrum analyzer.

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.
- Note that the channel found to contain the maximum PSD level can be used to

establish the reference level.

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

b) Set the RBW = 100 kHz.

c) Set the VBW \geq [3 × RBW].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

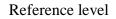
g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

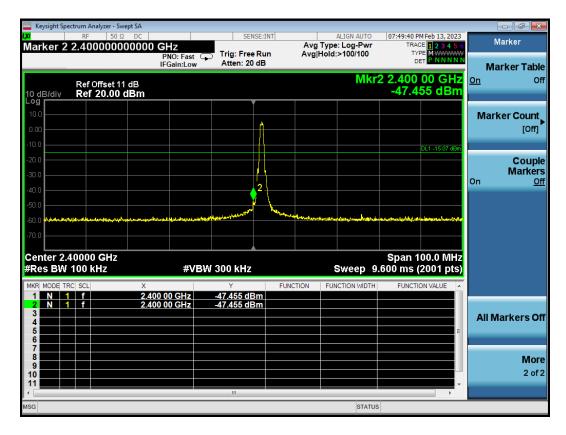
Scan up through 10th harmonic.

The test procedure is defined in ANSI C63.10-2013 (11.11.2 Reference level measurement and 11.11.3 Emission level measurement was used).


7.6 Test Results **PASSED**.

The test data was attached in the next pages.

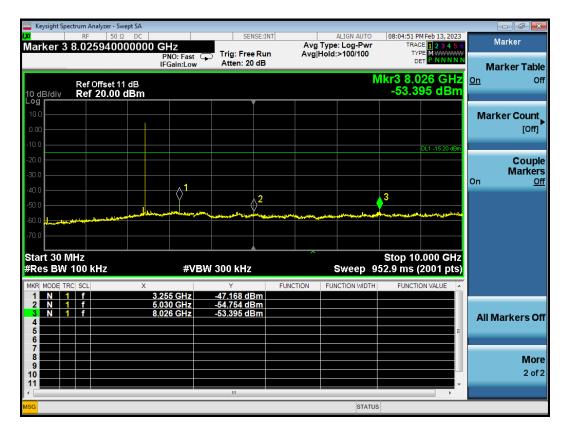
(Test Date: 2022.12.09-13 Temperature: 23°C Humidity: 51 %)


Modulation	Channel	Frequency (MHz)	Data Page
	00	2402	P33-34
BLE	19	2440	P35-36
	39	2480	P37-38

BLE CH2402MHz

Emission level

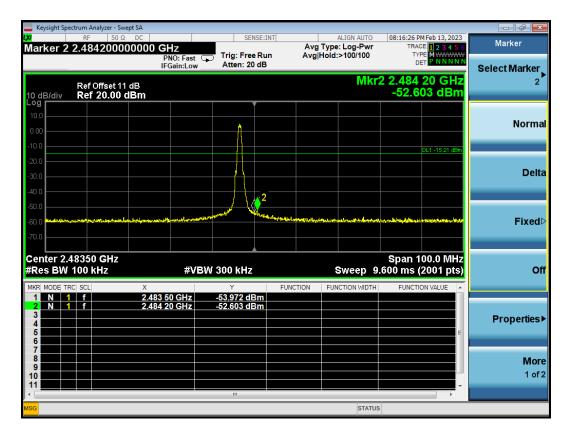
Keysight Spectrum Analyzer - Swept SA					
Marker 3 8.06582000000	0 GHz	Avg Type	:Log-Pwr TRA	CE 1 2 3 4 5 6	Marker
	PNO: Fast Trig: Free IFGain:Low Atten: 20		C		Select Marker
Ref Offset 11 dB 10 dB/div Ref 20.00 dBm			Mkr3 8.0 -55.2	066 GHz 24 dBm	3
10.0					Normal
-10.0				DL1 -15.07 dBm	
-20.0					Delta
-40.0	↓ 1	<mark>2</mark>	3		
-60.0	anter and an and a second s	- James	and the second state of th	A State and the second s	Fixed⊳
Start 30 MHz			Stop 10	0.000 GHz	
#Res BW 100 kHz	#VBW 300 kHz		Sweep 952.9 ms		Off
MKR MODE TRC SCL X 1 N 1 f f 2 N 1 f f 3 N 1 f f 4	3.203 GHz -47.270 dE 5.306 GHz -56.095 dE 8.066 GHz -55.224 dE	3m 3m	ICTION WIDTH FUNCT	ION VALUE	Properties►
5 6 7					
8 9 10 11					More 1 of 2
	m			•	
MSG			STATUS		


Keysight Spectrum A	· ·						
R⊧ larker 3 23.5	50 Ω DC 75000000000	GHz PNO: Fast	SENSE:I	Avg	ALIGN AUTO Type: Log-Pwr Hold:>100/100	07:58:41 PM Feb 13, 202 TRACE 12345 TYPE MWWWW DET P. N.N.N.	6 Peak Search
0 dB/div Ref	Offset 11 dB 20.00 dBm	IFGain:Low	Atten: 20 dB		Mkr	3 23.575 0 GH -50.303 dBn	NextPea
og 10.0 3.00							Next Pk Rig
10.0 20.0 30.0						DL1 -15.07 dB	Next Pk Le
10.0 50.0 50.0 70.0		l Marijagija je navoda se	2	^{ىر} ىمى سەرەللەرمانىيەللەرمانىيەرلىر	The second second second second second	3	Marker De
tart 10.000 G Res BW 100 I	(Hz	#VBV	V 300 kHz	FUNCTION		Stop 25.000 GH 1.434 s (2001 pts	z)) Mkr→C
IKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4	17.35	0 0 GHz 7 5 GHz 5 0 GHz	Y -54.344 dBm -55.078 dBm -50.303 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Â Mkr→Ref L
7 8 9 0							Mo 1 o
G			m		STATUS	•	

BLE CH2440MHz

Reference level

Emission level


Keysight Spec	trum Analyzer - Swept SA						- ¢ ×
Marker 3 2	RF 50 Ω DC 23.7550000000	00 GHz	SENS	Av	ALIGN AUTO	08:08:58 PM Feb 13, 2023 TRACE 1 2 3 4 5 6	Marker
		PNO: Fast IFGain:Low	Trig: Free F Atten: 20 c		Hold:>100/100	TYPE MWWWW DET PNNNN	Select Marker
10 dB/div	Ref Offset 11 dB Ref 20.00 dBm				Mkr	3 23.755 0 GHz -49.597 dBm	3
10.0							Normal
-10.0						DL1 -15.20 dBm	
-20.0							Delta
-40.0		1		^2		3	
-50.0		Alexandra and a state of the state	and the second	war and the second state of the second	مىرىمۇرىدۇدە <mark>ۋىر_{ىلى}رىدىر</mark> تىمىلا ^{رىر}	Land Same and Street and Same Street St	Fixed⊳
-70.0							
Start 10.00 #Res BW 1		#VB	W 300 kHz		Sweep	Stop 25.000 GHz 1.434 s (2001 pts)	Off
		.600 0 GHz	۲ -55.176 dBr	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 3 N 1 4 5	f 19	.112 5 GHz .755 0 GHz	-51.203 dBr -49.597 dBr	n			Properties►
6 7 8 9							More
10						-	1 of 2
MSG					STATU	3	

BLE CH2480MHz

Reference level

Emission level

Keysig	ght Spec		nalyzer - S															
Marke	er 3	RF 8.04	50 5880		00 GI	lz			SE:INT			Type	LIGN AUTO	08:1	TRACE	Feb 13, 2	56	Peak Search
10 dB/		Ref	Offset 1	11 dB	PI IF(NO: Fast Gain:Low	P	Trig: Free Atten: 20			Avg∣⊦	lold:	>100/100	Mkr3 -5	DET		N N	NextPeal
Log - 10.0 - -10.0 -																		Next Pk Righ
-20.0 - -30.0 -						1										DL1 -15.21 (:18m	Next Pk Lef
-50.0 - -60.0 1 -70.0 -	alle a state de la constant	8	مىرى قەتلەرلىرىنى <u>مە</u>				A.A.A.A.A.A.C.C.	A.F. Market Barket	ند _{کار} انه او	Ŷ	2		and a subbara	3	••••••	- کار ورو حال میں	/~ 	Marker Delt
Start #Res	BW	100	kHz		<	#VI	BW 3	300 kHz		FUNC	TION			952.9	ms (2	000 GI 2001 p		Mkr→Ci
1 N 2 N 3 N 4 5 6	N 1 N 1 N 1	f f f			5.92	5 GHz 7 GHz 6 GHz	_	48.623 dE 54.617 dE 54.534 dE	m									Mkr→RefLv
7 8 9 10 11																		Mor 1 of:
≺		_			_		_	m	_			_	STATU	IS		•		
	_	_	_	_	_	_	_		_	_	_	_	onare				_	

FCC ID: PUU-CPLGSTDBLW1M

Keysight Spectrum Analyzer - Swept SA				
₩ RF 50 Ω DC Marker 3 23.6575000000		Avg Type: Log-Pw	TRACE 1 2 3 4 5 6	Peak Search
Ref Offset 11 dB 10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free R IFGain:Low Atten: 20 d	в	kr3 23.657 5 GHz -50.134 dBm	Next Peak
10.0				Next Pk Righ
-10.0			DL1 -15.21 dBm	Next Pk Let
-40.0 -50.0 -60.0		2 	Water and the second	Marker Delt
Start 10.000 GHz #Res BW 100 kHz	#VBW 300 kHz		Stop 25.000 GHz p 1.434 s (2001 pts)	Mkr→C
2 N 1 f 18	3.735 0 GHz -54.352 dBn 8.887 5 GHz -51.688 dBn 3.657 5 GHz -50.134 dBn	1	TH FUNCTION VALUE	Mkr→RefLv
7 8 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10				Mor 1 of
< states and states an		STA	TUS	

8 POWER SPECTRAL DENSITY MEASUREMENT

8.1 Test Equipment

The following test equipment was used during the power spectral density measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
2.	Coaxial Cable	WOKEN	SFL402-105F LEX	F02-150819- 045	2022.03.07	1 Year
3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.08.06	1 Year

8.2 Block Diagram of Test Setup

The Same as section 5.2.

8.3 Specification Limits (§15.247(e))

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band.

8.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

8.5 Test Procedure

The transmitter output was connected to the spectrum analyzer.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

The test procedure is defined in ANSI C63.10-2013 (11.10.2 Measurement Procedure "Method PKPSD (peak PSD)" was used).

8.6 Test Results **PASSED**.

All the test results are attached in next pages.

(Test Date: 2022.12.09-13 Temperature: 23°C Humidity: 51 %)

Modulation	Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limit
	00	2402	-10.202	8 dBm
BLE	19	2440	-10.306	8 dBm
	39	2480	-10.208	8 dBm

BLE CH2402 MHz

	um Analyzer - Swept SA								
Marker 1 2.	RF 50 Ω DC .402014400000) GHz PNO: Wide -				ALIGN AUTO : Log-Pwr :>100/100	TRAC	4 Feb 13, 2023 E 1 2 3 4 5 6 PE MWWWW T P N N N N N	Peak Search
	Ref Offset 11 dB Ref 20.00 dBm	in Guineow				Mkr1 2	2.402 014 -10.2	4 4 GHz 02 dBm	NextPeak
10.0									Next Pk Righ
-10.0		at B - 6 . or		1 Amm_mal	-a. D.				Next Pk Lef
-20.0	www.www.www.	Mandalala			m Marilan Maril	ᡩᢆᡰ᠕ᡁᢆᡁᡁᢤ	ana thur and the second	hannon a	Marker Delt
40.0									Mkr→C
60.0									Mkr→RefLv
-70.0 Center 2.40							Span 1	.200 MHz	Mor 1 of 2
#Res BW 3.	0 KHZ	#VBW	10 kHz			Sweep ′	126.5 ms (1001 pts)	

BLE CH2440 MHz

BLE CH2480 MHz

Keysight Spectrum Analyzer - Swe						
arker 1 2.48001440	00000 GHz	Vide 🗔 Trig: Free	eRun A	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100		Peak Search
Ref Offset 11 0 dB/div Ref 20.00 d	dB			Mkr1 :	2.480 014 4 GHz -10.208 dBm	Next Peal
10.0						Next Pk Righ
0.00		NULAMMAN	1 mmmmmlan.	Inc		Next Pk Lei
20.0 20.0 30.0 more and Manager and Mana Manager and Manager and Mana	NAMANANA MALA				M M Monoral Channes	Marker Delt
10.0						Mkr→C
60.0						Mkr→RefLv
70.0					Span 1.200 MHz	Mor 1 of
Res BW 3.0 kHz		#VBW 10 kHz		Sweep	126.5 ms (1001 pts)	
SG				STATU	S	

9 ANTENNA REQUIREMENT

9.1 Specification Limits (§15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 Result

According to KDB 353028 D1, the following describes the three ways that can
be used to demonstrate compliance to Section 15.203:
a) Antenna permanently attached.
b) Unique (non-standard) antenna connector.
c) Professional installation.
For this product, the antenna is:
Antenna permanently attached
\Box Unique (non-standard) antenna connector
\Box Professional installation
\Box not meet any of ways list above
that
☑ compliant
\Box not compliant
with the requirement of Section 15.203.

10 DEVIATION TO TEST SPECIFICATIONS

None.

11 MEASUREMENT UNCERTAINTY LIST

The measurement uncertainty was estimated for test on the EUT according to CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage of K=2. The uncertainties value is not used in determining the PASS/FAIL results.

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
Conducted Emission	9kHz~150kHz	±3.1 dB
No.1 Shielded Room	150kHz~30MHz	±2.6 dB
Conducted Emission	9kHz~150kHz	±3.1 dB
No.3 Shielded Room	150kHz~30MHz	±2.6 dB
	30MHz~200MHz, Horizontal	±3.8 dB
	30MHz~200MHz, Vertical	±4.1 dB
	200MHz~1000MHz, Horizontal	±3.6 dB
Radiated Emission	200MHz~1000MHz, Vertical	±5.1 dB
	1GHz~6GHz	±5.3 dB
	6GHz~18GHz	±5.3 dB
	18GHz~40GHz	±3.5 dB
Output Power Test	50MHz~18GHz	0.77 dB
Power Density Test	9kHz~6GHz	1.08 dB
RF Frequency Test	9kHz~40GHz	6*10 ⁻⁴
Bandwidth Test	9kHz~6GHz	$1.5*10^{-3}$
RF Radiated Power Test	30MHz~1000MHz	3.06 dB
Conducted Output Power Test	50MHz~18GHz	0.83 dB
AC Voltage(<10kHz) Test	120V~230V	0.04 %
DC Power Test	0V~30V	0.4 %
Temperature	-40°C~+100°C	0.52 °C
Humidity	30%~95%	2.6 %