Report No. : SA150901C09 Applicant : Quanta Computer Inc. Address : No. 188, Wen Hwa 2nd Rd., Guishan Dist., Tao Yuan City 33377, Taiwan Product : Tablet FCC ID : HFS-FT7 Brand : C-Spire Model No. : FT7 Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE Std 1528:2013 KDB 865664 D01 v01r04 / KDB 865664 D02 v01r01 KDB 248227 D01 v02r01 / KDB 447498 D01 v05r02 / KDB 616217 D04 v01r01 KDB 941225 D05 v02r03 Sample Received Date : Sep. 01, 2015 Date of Testing : Sep. 15, 2015 ~ Oct. 02, 2015 **CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch – Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. Prepared By: Vera Huang / Specialist Approved By: Gordon Lin / Assistant Manager This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report Format Version 5.0.0 Page No. : 1 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 Page No. : 2 of 39 Issued Date : Sep. 22, 2015 # **Table of Contents** | ке | iease C | Control Record | | | |---------------------------------|---------|---|----|--| | 1. Summary of Maximum SAR Value | | | | | | 2. | | ription of Equipment Under Test | | | | 3. | | Measurement System | | | | ٠. | 3.1 | Definition of Specific Absorption Rate (SAR) | | | | | 3.2 | SPEAG DASY System | 6 | | | | 0.2 | 3.2.1 Robot | 7 | | | | | 3.2.2 Probes | | | | | | 3.2.3 Data Acquisition Electronics (DAE) | 8 | | | | | 3.2.4 Phantoms | | | | | | 3.2.5 Device Holder | | | | | | 3.2.6 System Validation Dipoles | | | | | | 3.2.7 Tissue Simulating Liquids | | | | | 3.3 | SAR System Verification | | | | | 3.4 | SAR Measurement Procedure | 15 | | | | - | 3.4.1 Area & Zoom Scan Procedure | 15 | | | | | 3.4.2 Volume Scan Procedure | 15 | | | | | 3.4.3 Power Drift Monitoring | | | | | | 3.4.4 Spatial Peak SAR Evaluation | | | | | | 3.4.5 SAR Averaged Methods | 16 | | | 4. | SAR | Measurement Evaluation | 17 | | | | 4.1 | EUT Configuration and Setting | 17 | | | | 4.2 | EUT Testing Position | | | | | | 4.2.1 SAR Test Exclusion Evaluations | | | | | | 4.2.2 Simultaneous Transmission Possibilities | 23 | | | | 4.3 | Tissue Verification | | | | | 4.4 | System Validation | | | | | 4.5 | System Verification | | | | | 4.6 | Maximum Output Power | 25 | | | | | 4.6.1 Maximum Conducted Power | | | | | | 4.6.2 Measured Conducted Power Result | | | | | 4.7 | SAR Testing Results | | | | | | 4.7.1 SAR Test Reduction Considerations | | | | | | 4.7.2 SAR Results for Body Exposure Condition | | | | | | 4.7.3 SAR Measurement Variability | | | | _ | | 4.7.4 Simultaneous Multi-band Transmission Evaluation | 34 | | | | | ration of Test Equipment | | | | 6. | | urement Uncertainty | | | | 7 | Inforr | nation on the Testing Laboratories | 30 | | Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup # **Release Control Record** | Report No. | Reason for Change | Date Issued | |-------------|-------------------|---------------| | SA150901C09 | Initial release | Sep. 22, 2015 | Report Format Version 5.0.0 Page No. : 3 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 # 1. Summary of Maximum SAR Value | Equipment
Class | Mode | Highest Reported
Body SAR _{1α}
(W/kg) | | |---------------------------------------|-----------|--|--| | PCB LTE 12
LTE 25 | | 1.02 | | | | | 0.96 | | | DTS 2.4G WLAN | | 0.61 | | | DSS Bluetooth | | 0.16 | | | Highest Simultaneous Transmission SAR | | Body
(W/kg) | | | | PCB + DTS | 1.63
(SPLSR=0.011) | | | PCB + DSS | | + DSS 1.36 | | ## Note: 1. The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg, Extremity: SAR_{10g} 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992. Report Format Version 5.0.0 Page No. : 4 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 2. <u>Description of Equipment Under Test</u> | EUT Type | Tablet | |---------------------------------|---| | FCC ID | HFS-FT7 | | Brand Name | C-Spire | | Model Name | FT7 | | | LTE Band 12 : 699.7 ~ 715.3 (1.4M), 700.5 ~ 714.5 (3M), 701.5 ~ 713.5 (5M), 704 ~ 711 (10M) | | | LTE Band 25 : 1850.7 ~ 1914.3 (1.4M), 1851.5 ~ 1913.5 (3M), 1852.5 ~ 1912.5 (5M), | | (Unit: MHz) | 1855 ~ 1910 (10M), 1857.5 ~ 1907.5 (15M), 1860 ~ 1905 (20M) | | | WLAN : 2412 ~ 2472
Bluetooth : 2402 ~ 2480 | | | | | | LTE: QPSK, 16QAM | | Il Inlink Modulations | 802.11b : DSSS | | • | 802.11g/n : OFDM | | | Bluetooth : GFSK, π/4-DQPSK, 8-DPSK | | | LTE Band 12 : 24.0 | | Maximum Tune-up Conducted Power | LTE Band 25 : 24.0 | | (Unit: dBm) | WLAN 2.4G : 14.0 | | , | Bluetooth: 10.0 | | Antenna Type | Fixed Internal Antenna | | EUT Stage | Identical Prototype | #### Note: 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. #### **List of Accessory:** | Battery Model Name 141016 Power Rating 3.8Vdc, 3780mAh | | Brand Name | Veken | |--|----------|--------------|-----------------| | Power Rating 3.8Vdc, 3780mAh | Pottory. | Model Name | 141016 | | | Dallery | Power Rating | 3.8Vdc, 3780mAh | | Type Li-ion | | Туре | Li-ion Li-ion | Report Format Version 5.0.0 Page No. : 5 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 3. SAR Measurement System ## 3.1 <u>Definition of Specific Absorption Rate (SAR)</u> SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ## 3.2 SPEAG DASY System DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4/5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Report Format Version 5.0.0 Page No. : 6 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 Fig-3.1 DASY System Setup #### 3.2.1 Robot The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - High reliability (industrial design) - · Jerk-free straight movements - · Low ELF
interference (the closed metallic construction shields against motor control fields) Report Format Version 5.0.0 Page No. : 7 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 #### 3.2.2 Probes The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. | Model | EX3DV4 | | |---------------|--|--| | Construction | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | Model | ES3DV3 | | |---------------|---|--| | Construction | Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 4 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis)
± 0.3 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g to 100 mW/g
Linearity: ± 0.2 dB | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm | | ## 3.2.3 Data Acquisition Electronics (DAE) | = | | | |-------------------------|---|-------| | Model | DAE3, DAE4 | | | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | Measurement
Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) | D 110 | | Input Offset
Voltage | < 5µV (with auto zero) | | | Input Bias Current | < 50 fA | | | Dimensions | 60 x 60 x 68 mm | | Report Format Version 5.0.0 Page No. : 8 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 3.2.4 Phantoms | Model | Twin SAM | | |-----------------|---|--| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point) | | | Dimensions | Length: 1000 mm
Width: 500 mm
Height: adjustable feet | | | Filling Volume | approx. 25 liters | | | Model | ELI | |-----------------|---| | Construction | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | Material | Vinylester, glass fiber reinforced (VE-GF) | | Shell Thickness | 2.0 ± 0.2 mm (bottom plate) | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | | Filling Volume | approx. 30 liters | Report Format Version 5.0.0 Page No. : 9 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 3.2.5 Device Holder | Model | Mounting Device | | |--------------|---|--| | Construction | In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). | | | Material | POM | | | Model | Laptop Extensions Kit | | |--------------|---|--| | Construction | Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. | | | Material | POM, Acrylic glass, Foam | | ## 3.2.6 System Validation Dipoles | Model | D-Serial | | |------------------|--|--| | Construction | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. | | | Frequency | 750 MHz to 5800 MHz | | | Return Loss | > 20 dB | | | Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz) | | Report Format Version 5.0.0 Page No. : 10 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 #### 3.2.7 Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1. The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer. Report Format Version 5.0.0 Page No. : 11 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 **Table-3.1 Targets of Tissue Simulating Liquid** | Erogueney. | | Range of | Target | Range of | |--------------------|------------------------|-------------|--------------|-------------| | Frequency
(MHz) | Target
Permittivity | ±5% | Conductivity | ±5% | | | | For Head | | | | 750 | 41.9 | 39.8 ~ 44.0 | 0.89 | 0.85 ~ 0.93 | | 835 | 41.5 | 39.4 ~ 43.6 | 0.90 | 0.86 ~ 0.95 | | 900 | 41.5 | 39.4 ~ 43.6 | 0.97 | 0.92 ~ 1.02 | | 1450 | 40.5 | 38.5 ~ 42.5 | 1.20 | 1.14 ~ 1.26 | | 1640 | 40.3 | 38.3 ~ 42.3 | 1.29 | 1.23 ~ 1.35 | | 1750 | 40.1 | 38.1 ~ 42.1 | 1.37 | 1.30 ~ 1.44 | | 1800 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 1900 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2000 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2300 | 39.5 | 37.5 ~ 41.5 | 1.67 | 1.59 ~ 1.75 | | 2450 | 39.2 |
37.2 ~ 41.2 | 1.80 | 1.71 ~ 1.89 | | 2600 | 39.0 | 37.1 ~ 41.0 | 1.96 | 1.86 ~ 2.06 | | 3500 | 37.9 | 36.0 ~ 39.8 | 2.91 | 2.76 ~ 3.06 | | 5200 | 36.0 | 34.2 ~ 37.8 | 4.66 | 4.43 ~ 4.89 | | 5300 | 35.9 | 34.1 ~ 37.7 | 4.76 | 4.52 ~ 5.00 | | 5500 | 35.6 | 33.8 ~ 37.4 | 4.96 | 4.71 ~ 5.21 | | 5600 | 35.5 | 33.7 ~ 37.3 | 5.07 | 4.82 ~ 5.32 | | 5800 | 35.3 | 33.5 ~ 37.1 | 5.27 | 5.01 ~ 5.53 | | | | For Body | Ţ.—· | 0.01 | | 750 | 55.5 | 52.7 ~ 58.3 | 0.96 | 0.91 ~ 1.01 | | 835 | 55.2 | 52.4 ~ 58.0 | 0.97 | 0.92 ~ 1.02 | | 900 | 55.0 | 52.3 ~ 57.8 | 1.05 | 1.00 ~ 1.10 | | 1450 | 54.0 | 51.3 ~ 56.7 | 1.30 | 1.24 ~ 1.37 | | 1640 | 53.8 | 51.1 ~ 56.5 | 1.40 | 1.33 ~ 1.47 | | 1750 | 53.4 | 50.7 ~ 56.1 | 1.49 | 1.42 ~ 1.56 | | 1800 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 1900 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2000 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2300 | 52.9 | 50.3 ~ 55.5 | 1.81 | 1.72 ~ 1.90 | | 2450 | 52.7 | 50.1 ~ 55.3 | 1.95 | 1.85 ~ 2.05 | | 2600 | 52.5 | 49.9 ~ 55.1 | 2.16 | 2.05 ~ 2.27 | | 3500 | 51.3 | 48.7 ~ 53.9 | 3.31 | 3.14 ~ 3.48 | | 5200 | 49.0 | 46.6 ~ 51.5 | 5.30 | 5.04 ~ 5.57 | | 5300 | 48.9 | 46.5 ~ 51.3 | 5.42 | 5.15 ~ 5.69 | | 5500 | 48.6 | 46.2 ~ 51.0 | 5.65 | 5.37 ~ 5.93 | | 5600 | 48.5 | 46.1 ~ 50.9 | 5.77 | 5.48 ~ 6.06 | | 5800 | 48.2 | 45.8 ~ 50.6 | 6.00 | 5.70 ~ 6.30 | Report Format Version 5.0.0 Page No. : 12 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 The following table gives the recipes for tissue simulating liquids. **Table-3.2 Recipes of Tissue Simulating Liquid** | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-------------|------|-----|------|---------|-----------------|-------|---| | H750 | 0.2 | - | 0.2 | 1.5 | 56.0 | - | 42.1 | - | | H835 | 0.2 | - | 0.2 | 1.5 | 57.0 | - | 41.1 | - | | H900 | 0.2 | - | 0.2 | 1.4 | 58.0 | - | 40.2 | - | | H1450 | - | 43.3 | - | 0.6 | - | - | 56.1 | - | | H1640 | - | 45.8 | - | 0.5 | - | - | 53.7 | - | | H1750 | - | 47.0 | - | 0.4 | - | - | 52.6 | - | | H1800 | - | 44.5 | - | 0.3 | - | - | 55.2 | - | | H1900 | - | 44.5 | - | 0.2 | - | - | 55.3 | - | | H2000 | - | 44.5 | - | 0.1 | - | - | 55.4 | - | | H2300 | - | 44.9 | - | 0.1 | - | - | 55.0 | - | | H2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | | H2600 | - | 45.1 | - | 0.1 | - | - | 54.8 | - | | H3500 | - | 8.0 | - | 0.2 | - | 20.0 | 71.8 | - | | H5G | - | - | - | • | - | 17.2 | 65.5 | 17.3 | | B750 | 0.2 | - | 0.2 | 0.8 | 48.8 | - | 50.0 | - | | B835 | 0.2 | - | 0.2 | 0.9 | 48.5 | - | 50.2 | - | | B900 | 0.2 | - | 0.2 | 0.9 | 48.2 | - | 50.5 | - | | B1450 | - | 34.0 | - | 0.3 | - | - | 65.7 | - | | B1640 | - | 32.5 | - | 0.3 | - | - | 67.2 | - | | B1750 | - | 31.0 | - | 0.2 | - | - | 68.8 | - | | B1800 | - | 29.5 | - | 0.4 | - | - | 70.1 | - | | B1900 | - | 29.5 | - | 0.3 | - | - | 70.2 | - | | B2000 | - | 30.0 | - | 0.2 | - | - | 69.8 | - | | B2300 | - | 31.0 | - | 0.1 | - | | 68.9 | - | | B2450 | - | 31.4 | - | 0.1 | - | 1 | 68.5 | - | | B2600 | - | 31.8 | - | 0.1 | - | - | 68.1 | - | | B3500 | - | 28.8 | - | 0.1 | - | - | 71.1 | - | | B5G | - | - | - | - | - | 10.7 | 78.6 | 10.7 | Report Format Version 5.0.0 Page No. : 13 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 3.3 SAR System Verification The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter. After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. Report Format Version 5.0.0 Page No. : 14 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 ### 3.4 SAR Measurement Procedure According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Perform SAR testing steps on the DASY system - (e) Record the SAR value #### 3.4.1 Area & Zoom Scan Procedure First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below. | Items | <= 2 GHz | 2-3 GHz | 3-4 GHz | 4-5 GHz | 5-6 GHz | |-----------------------|----------|----------|----------|----------|----------| | Area Scan
(Δx, Δy) | <= 15 mm | <= 12 mm | <= 12 mm | <= 10 mm | <= 10 mm | | Zoom Scan
(Δx, Δy) | <= 8 mm | <= 5 mm | <= 5 mm | <= 4 mm | <= 4 mm | | Zoom Scan
(Δz) | <= 5 mm | <= 5 mm | <= 4 mm | <= 3 mm | <= 2 mm | | Zoom Scan
Volume | >= 30 mm | >= 30 mm | >= 28 mm | >= 25 mm | >= 22 mm | #### Note: When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied. #### 3.4.2 Volume Scan Procedure The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report Format Version 5.0.0 Page No. : 15 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 #### 3.4.3 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. #### 3.4.4 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g #### 3.4.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the
extrapolation distance should not be larger than 5 mm. Report Format Version 5.0.0 Page No. : 16 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 4. SAR Measurement Evaluation ## 4.1 EUT Configuration and Setting ### <Considerations Related to Proximity Sensor> The device supports WWAN, WLAN, and Bluetooth capabilities. It is designed with a proximity sensor which can trigger/not trigger power reduction for LTE on Rear Face and Bottom Side of EUT for SAR compliance. Others RF capability (WLAN and Bluetooth) have no power reduction. The power levels for all wireless technologies and the power reduction please refer to section 4.6 of this report. #### Proximity Sensor Triggering Distances (KDB 616217 D04 §6.2) The proximity sensor triggering distance was determined per KDB 616217 for rear face and applicable edge. Summary for power verification per distance was tabulated in the below table. | Output Power Verification in dBm for EUT Rear Face | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Distance (mm) | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | LTE 12 | 20.0 | 20.0 | 20.4 | 20.5 | 20.4 | 20.5 | 22.6 | 23.0 | 22.9 | 22.5 | 22.7 | | LTE 25 | 15.3 | 15.2 | 15.2 | 15.3 | 15.3 | 15.5 | 23.0 | 23.0 | 22.7 | 22.6 | 22.6 | | Output Power Verification in dBm for EUT Bottom Edge | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------| | Distance (mm) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | LTE 12 | 20.1 | 20.1 | 20.1 | 20.1 | 20.3 | 20.2 | 22.5 | 23.0 | 23.0 | 23.0 | 22.7 | | LTE 25 | 15.1 | 15.5 | 15.4 | 15.0 | 15.4 | 15.5 | 22.6 | 23.0 | 22.5 | 23.0 | 23.0 | #### Proximity Sensor Coverage (KDB 616217 D04 §6.3) The proximity sensor coverage was determined per KDB 616217 for rear face and applicable edge. Summary for proximity sensor active region is illustrated in below. Report Format Version 5.0.0 Page No. : 17 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 ## Proximity Sensor Tilt Angle Influences (KDB 616217 D04 §6.4) The proximity sensor tilt angle influence was determined per KDB 616217 for applicable edge. Summary for proximity sensor tilt angle influence is shown in below. | Orientation | Separation Tilt Angle | | | | | | | | | | | | |-------------|-----------------------|------|------|------|------|------|----|-----|-----|-----|-----|-----| | | Distance
(cm) | -45° | -40° | -30° | -20° | -10° | 0° | 10° | 20° | 30° | 40° | 45° | | Bottom Edge | 0.4 | On #### **Summary for Proximity Sensor Triggering Test** According to the procedures noticed in KDB 616217 D04, the proximity sensor triggering distance is 1.3 cm for EUT Rear Face, and 0.6 cm for Bottom Side. The separation distance of 0.6 cm determined by the smallest triggering distance on Bottom Side is used to access the tilt angle influence and the sensor does not release during ± 45 degree. Therefore, the smallest separation distance for tilt angle influence is 0.5 mm for the Bottom Side. The conservation triggering distances based on the separation distance for the sensor trigger / not triggered as EUT with power reduction at 0 cm, and EUT without power reduction at 1.2 cm for EUT Rear Face, and 0.4 cm for Bottom Side were used to test SAR. The power reduction is depends on the proximity sensor input. For a steady SAR test, the power reduction was enabled or disabled manually by engineering software during SAR testing. Report Format Version 5.0.0 Page No. : 18 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## <Connections between EUT and System Simulator> For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C is used for GSM/WCDMA/CDMA, and Anritsu MT8820C is used for LTE). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing. #### <Considerations Related to LTE for Setup and Testing> This device contains LTE transmitter which follows 3GPP standards, is category 3, supports both QPSK and 16QAM modulations, and supported LTE band and channel bandwidth is listed in below. The output power was tested per 3GPP TS 36.521-1 maximum transmit procedures for both QPSK and 16QAM modulation. The results please refer to section 4.6 of this report. | | EUT Supported LTE Band and Channel Bandwidth | | | | | | | | | | |---|--|---|---|---|---|---|--|--|--|--| | LTE Band BW 1.4 MHz BW 3 MHz BW 5 MHz BW 10 MHz BW 15 MHz BW 20 MHz | | | | | | | | | | | | 12 | V | V | V | V | | | | | | | | 25 | V | V | V | V | V | V | | | | | The LTE maximum power reduction (MPR) in accordance with 3GPP TS 36.101 is active all times during LTE operation. The allowed MPR for the maximum output power is specified in below. | | Channel Bandwidth / RB Configurations | | | | | | | | | | | | |------------|---------------------------------------|----------|----------|-----------|-----------|---------------------|---|--|--|--|--|--| | Modulation | BW 1.4 MHz | BW 3 MHz | BW 5 MHz | BW 10 MHz | BW 15 MHz | BW 15 MHz BW 20 MHz | | | | | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 1 | | | | | | | 16QAM | <= 5 | <= 4 | <= 8 | <= 12 | <= 16 | <= 18 | 1 | | | | | | | 16QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 2 | | | | | | **Note:** MPR is according to the standard and implemented in the circuit (mandatory). In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing. During LTE SAR testing, the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB was set in base station simulator. When the EUT has registered and communicated to base station simulator, the simulator set to make EUT transmitting the maximum radiated power. Report Format Version 5.0.0 Page No. : 19 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 #### <Considerations Related to WLAN for Setup and Testing> In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power. #### **Initial Test Configuration** An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. #### **Subsequent Test Configuration** SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. Report Format Version 5.0.0 Page No. : 20 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 #### **SAR Test Configuration and Channel Selection** When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest
data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. - 1) The channel closest to mid-band frequency is selected for SAR measurement. - 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. #### <Considerations Related to Bluetooth for Setup and Testing> This device has installed Bluetooth engineering testing software which can provide continuous transmitting RF signal. During Bluetooth SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power. Report Format Version 5.0.0 Page No. : 21 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 ## 4.2 EUT Testing Position For full-size tablet, according to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required. Fig-4.1 Illustration for Tablet Setup Report Format Version 5.0.0 Page No. : 22 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 #### 4.2.1 SAR Test Exclusion Evaluations According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula. 1. For the test separation distance <= 50 mm $$\frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \sqrt{f_{(GHz)}} \leq 3.0 \text{ for SAR-1g,} \leq 7.5 \text{ for SAR-10g}$$ When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. 2. For the test separation distance > 50 mm, and the frequency at 100 MHz to 1500 MHz $$\left[\text{(Threshold at 50 mm in Step 1)} + \text{(Test Separation Distance} - 50 \text{ mm)} \times \left(\frac{f_{\text{(MHz)}}}{150} \right) \right]_{\text{(mW)}}$$ 3. For the test separation distance > 50 mm, and the frequency at > 1500 MHz to 6 GHz $[(Threshold at 50 mm in Step 1) + (Test Separation Distance - 50 mm) \times 10]_{(mW)}$ | | Max. | Max. | | Rear Face | | | Top Side | | | Bottom Side | | | Left Side | | | Right Side | | |--------------|---------------------------|--------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------| | Mode | Tune-up
Power
(dBm) | Tune-up
Power
(mW) | Ant. to
Surface
(mm) | Calculated
Result | Require
SAR
Testing? | | LTE
12 | 24 | 251.19 | 5 | 33.7 | YES | 145.8 | 634
mW | No | 2.5 | 33.7 | YES | 2.5 | 33.7 | YES | 2.5 | 33.7 | YES | | LTE
25 | 24 | 251.19 | 5 | 55.2 | YES | 145.8 | 1066
mW | No | 2.5 | 55.2 | YES | 2.5 | 55.2 | YES | 2.5 | 55.2 | YES | | WLAN
2.4G | 13 | 19.95 | 5 | 6.3 | YES | 3 | 6.3 | YES | 180 | 1396
mW | No | 42.4 | 0.7 | No | 43.4 | 0.7 | No | | ВТ | 10 | 10 | 5 | 3.1 | YES | 3 | 3.1 | YES | 180 | 1395
mW | No | 42.4 | 0.4 | No | 43.4 | 0.4 | No | #### Note: - 1. When separation distance <= 50 mm and the calculated result shown in above table is <= 3.0 for SAR-1g exposure condition, or <= 7.5 for SAR-10g exposure condition, the SAR testing exclusion is applied. - 2. When separation distance > 50 mm and the device output power is less than the calculated result (power threshold, mW) shown in above table, the SAR testing exclusion is applied. ### 4.2.2 Simultaneous Transmission Possibilities The simultaneous transmission possibilities for this device are listed as below. | Simultaneous TX Combination | Capable Transmit Configurations | Body Exposure Condition | |-----------------------------|---------------------------------|-------------------------| | 1 | LTE 12 (Data) + WLAN (Data) | Yes | | 2 | LTE 25 (Data) + WLAN (Data) | Yes | | 3 | LTE 12 (Data) + BT (Data) | Yes | | 4 | LTE 25 (Data) + BT (Data) | Yes | #### Note: 1. The WLAN and Bluetooth cannot transmit simultaneously, so there is no co-location test requirement for WLAN and Bluetooth. Report Format Version 5.0.0 Page No. : 23 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 4.3 Tissue Verification The measuring results for tissue simulating liquid are shown as below. | Test
Date | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target
Permittivity
(ε _r) | Conductivity Deviation (%) | Permittivity Deviation (%) | |---------------|----------------|--------------------|------------------------|---------------------------------|---|-------------------------------|---|----------------------------|----------------------------| | Sep. 15, 2015 | Body | 750 | 23.2 | 0.960 | 54.460 | 0.96 | 55.5 | 0.10 | -2.20 | | Oct. 02, 2015 | Body | 750 | 23.3 | 0.996 | 55.259 | 0.96 | 55.5 | 3.75 | -0.43 | | Sep. 15, 2015 | Body | 1900 | 23.3 | 1.563 | 52.973 | 1.52 | 53.3 | 2.83 | -0.61 | | Oct. 02, 2015 | Body | 1900 | 23.2 | 1.570 | 50.890 | 1.52 | 53.3 | 3.29 | -4.52 | | Sep. 15, 2015 | Body | 2450 | 23.2 | 1.990 | 51.270 | 1.95 | 52.7 | 2.05 | -2.71 | | Sep. 16, 2015 | Body | 2450 | 23.2 | 1.990 | 51.268 | 1.95 | 52.7 | 2.05 | -2.72 | #### Note: The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2\%$. ## 4.4 System Validation The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below. | Test | Probe | | | Measured | Measured | Va | lidation for C | w | Validation for Modulation | | | | |---------------|-------|-----------|----------|------------------|-----------------------------|----------------------|--------------------|-------------------|---------------------------|-------------|------|--| | Date | S/N | Calibrati | on Point | Conductivity (σ) | Permittivity (ϵ_r) | Sensitivity
Range | Probe
Linearity | Probe
Isotropy | Modulation
Type | Duty Factor | PAR | | | Sep. 15, 2015 | 3650 | Body | 750 | 0.960 | 54.460 | Pass | Pass | Pass | N/A | N/A | N/A | | | Oct. 02, 2015 | 3650 | Body | 750 | 0.996 | 55.259 | Pass | Pass | Pass | N/A | N/A | N/A | | | Sep. 15, 2015 | 3650 | Body | 1900 | 1.563 | 52.973 | Pass | Pass | Pass | N/A | N/A | N/A | | | Oct. 02, 2015 | 3650 | Body | 1900 | 1.570 | 50.890 | Pass | Pass | Pass | N/A | N/A | N/A | | | Sep. 15, 2015 | 3650 | Body | 2450 | 1.990 | 51.270 | Pass | Pass | Pass | OFDM | N/A | Pass | | | Sep. 16, 2015 | 3650 | Body | 2450 | 1.990 | 51.268 | Pass | Pass | Pass | N/A | N/A | N/A | | ## 4.5 System Verification The measuring result for system verification is tabulated as below. | Test
Date | Mode | Frequency
(MHz) | 1W Target
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | Normalized
to 1W
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | DAE
S/N | |---------------|------|--------------------|-------------------------------|------------------------------|---|------------------|---------------|--------------|------------| | Sep. 15, 2015 | Body | 750 | 8.46 | 2.07 | 8.28 | -2.13 | 1132 | 3650 | 1277 | | Oct. 02, 2015 | Body | 750 | 8.44 | 2.27 | 9.08 | 7.58 | 1013 | 3650 | 1277 | | Sep. 15, 2015 | Body | 1900 | 40.50 | 9.74 | 38.96 | -3.80 | 5d036 | 3650 | 1277 | | Oct. 02, 2015 | Body | 1900 | 40.50 | 10.05 | 40.20 | -0.74 | 5d036 | 3650 | 1277 | | Sep. 15, 2015 | Body | 2450 | 50.30 | 13.00 | 52.00 | 3.38 | 835 | 3650 | 1277 | | Sep. 16, 2015 | Body | 2450 | 50.30 | 12.00 | 48.00 | -4.57 | 835 | 3650 | 1277 | #### Note: Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report. Report Format Version 5.0.0 Page No. : 24 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 4.6 Maximum Output Power ## 4.6.1 Maximum Conducted Power The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below. | Mode | LTE 12 (without Power Reduction) | LTE 12 (with Power Reduction) | Power Reduction
(dB) | |--------------|----------------------------------|-------------------------------|-------------------------| | QPSK / 16QAM | 24.0 | 20.5 | 3.5 | | Mode | LTE 25 (without Power Reduction) | LTE 25 (with Power Reduction) | Power
Reduction
(dB) | |--------------|----------------------------------|-------------------------------|-------------------------| | QPSK / 16QAM | 24.0 | 15.5 | 8.5 | | Mode | 2.4G WLAN | |--------------|-----------| | 802.11b | 14.0 | | 802.11g | 13.0 | | 802.11n HT20 | 12.0 | | Mode | 2.4G Bluetooth | |--------------|----------------| | Bluetooth DH | 10.0 | ## 4.6.2 Measured Conducted Power Result The measuring conducted average power (Unit: dBm) is shown as below. | | · | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|-----------------|-----------------|---------------|-------------|-----------------|-----------------|---------------|-------------| | Band /
BW | RB
Size | RB
Offset | Low CH
23017 | Mid CH
23095 | High CH 23173 | 3GPP
MPR | Low CH
23017 | Mid CH
23095 | High CH 23173 | 3GPP
MPR | | BW | Size | Oliset | 699.7
MHz | 707.5
MHz | 715.3
MHz | (dB) | 699.7
MHz | 707.5
MHz | 715.3
MHz | (dB) | | | | | | | | Songar NO | T Triggered | | IVITIZ | | | | | 1 | | | | | | | 04.40 | 4 | | | 1 | 0 | 22.18 | 22.12 | 22.15 | 0 | 21.16 | 21.10 | 21.13 | 1 | | | 1 | 2 | 22.21 | 22.27 | 22.30 | 0 | 21.19 | 21.25 | 21.28 | 1 | | 40.7 | 1 | 5 | 22.14 | 22.20 | 22.23 | 0 | 21.12 | 21.18 | 21.21 | 1 | | 12 /
1.4M | 3 | 0 | 22.08 | 22.14 | 22.17 | 0 | 21.06 | 21.12 | 21.15 | 1 | | 1.4101 | 3 | 1 | 22.19 | 22.25 | 22.28 | 0 | 21.17 | 21.23 | 21.26 | 1 | | | 3 | 3 | 22.12 | 22.18 | 22.21 | 0 | 21.10 | 21.16 | 21.19 | 1 | | | 6 | 0 | 21.24 | 21.30 | 21.33 | 1 | 20.22 | 20.28 | 20.31 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 19.42 | 19.55 | 19.73 | 0 | 18.46 | 18.63 | 18.77 | 1 | | | 1 | 2 | 19.51 | 19.70 | 19.79 | 0 | 18.50 | 18.68 | 18.81 | 1 | | 40 / | 1 | 5 | 19.18 | 19.34 | 19.49 | 0 | 18.20 | 18.29 | 18.41 | 1 | | 12 /
1.4M | 3 | 0 | 19.06 | 19.22 | 19.34 | 0 | 17.40 | 17.47 | 17.60 | 1 | | 1.4101 | 3 | 1 | 19.17 | 19.39 | 19.54 | 0 | 17.51 | 17.68 | 17.80 | 1 | | | 3 | 3 | 19.12 | 19.34 | 19.46 | 0 | 17.49 | 17.63 | 17.74 | 1 | | | 6 | 0 | 18.42 | 18.55 | 18.67 | 1 | 17.34 | 17.53 | 17.62 | 2 | Report Format Version 5.0.0 Page No. : 25 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|---------------------------------|---------------------------------|----------------------------------|---------------------|---------------------------------|---------------------------------|----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
23025
700.5
MHz | Mid CH
23095
707.5
MHz | High CH
23165
714.5
MHz | 3GPP
MPR
(dB) | Low CH
23025
700.5
MHz | Mid CH
23095
707.5
MHz | High CH
23165
714.5
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | i) | | | | | 1 | 0 | 22.30 | 22.24 | 22.27 | 0 | 21.27 | 21.21 | 21.24 | 1 | | | 1 | 7 | 22.33 | 22.39 | 22.42 | 0 | 21.30 | 21.36 | 21.39 | 1 | | | 1 | 14 | 22.26 | 22.32 | 22.35 | 0 | 21.23 | 21.29 | 21.32 | 1 | | 12 / 3M | 8 | 0 | 21.30 | 21.36 | 21.39 | 1 | 20.27 | 20.33 | 20.36 | 2 | | | 8 | 3 | 21.41 | 21.47 | 21.50 | 1 | 20.38 | 20.44 | 20.47 | 2 | | | 8 | 7 | 21.34 | 21.40 | 21.43 | 1 | 20.31 | 20.37 | 20.40 | 2 | | | 15 | 0 | 21.36 | 21.42 | 21.45 | 1 | 20.33 | 20.39 | 20.42 | 2 | | | | | EUT wit | h Power Re | duction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 19.60 | 19.74 | 19.84 | 0 | 18.53 | 18.70 | 18.80 | 1 | | | 1 | 7 | 19.63 | 19.79 | 19.89 | 0 | 18.56 | 18.75 | 18.92 | 1 | | | 1 | 14 | 19.35 | 19.49 | 19.61 | 0 | 18.30 | 18.48 | 18.58 | 1 | | 12 / 3M | 8 | 0 | 18.51 | 18.67 | 18.79 | 1 | 17.46 | 17.63 | 17.77 | 2 | | | 8 | 3 | 18.63 | 18.81 | 18.89 | 1 | 17.66 | 17.81 | 17.93 | 2 | | | 8 | 7 | 18.61 | 18.75 | 18.87 | 1 | 17.58 | 17.77 | 17.83 | 2 | | | 15 | 0 | 18.56 | 18.72 | 18.76 | 1 | 17.55 | 17.62 | 17.79 | 2 | | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|--------------------------|--------------------------|---------------------------|---------------------|--------------------------|--------------------------|---------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
23035
701.5 | Mid CH
23095
707.5 | High CH
23155
713.5 | 3GPP
MPR
(dB) | Low CH
23035
701.5 | Mid CH
23095
707.5 | High CH
23155
713.5 | 3GPP
MPR
(dB) | | | | | MHz | MHz | MHz | (42) | MHz | MHz | MHz | (42) | | | | E | UT withou | Power Re | duction (P- | Sensor NO | T Triggered |) | | | | | 1 | 0 | 22.43 | 22.37 | 22.40 | 0 | 21.41 | 21.35 | 21.38 | 1 | | | 1 | 12 | 22.46 | 22.52 | 22.55 | 0 | 21.44 | 21.50 | 21.53 | 1 | | | 1 | 24 | 22.39 | 22.45 | 22.48 | 0 | 21.37 | 21.43 | 21.46 | 1 | | 12 / 5M | 12 | 0 | 21.43 | 21.49 | 21.52 | 1 | 20.41 | 20.47 | 20.50 | 2 | | | 12 | 6 | 21.54 | 21.60 | 21.63 | 1 | 20.52 | 20.58 | 20.61 | 2 | | | 12 | 13 | 21.47 | 21.53 | 21.56 | 1 | 20.45 | 20.51 | 20.54 | 2 | | | 25 | 0 | 21.49 | 21.55 | 21.58 | 1 | 20.47 | 20.53 | 20.56 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | ggered) | | | | | | 1 | 0 | 19.73 | 19.86 | 19.98 | 0 | 18.66 | 18.83 | 18.96 | 1 | | | 1 | 12 | 19.76 | 19.90 | 20.01 | 0 | 18.75 | 18.87 | 19.02 | 1 | | | 1 | 24 | 19.52 | 19.64 | 19.76 | 0 | 18.43 | 18.60 | 18.72 | 1 | | 12 / 5M | 12 | 0 | 18.67 | 18.82 | 18.95 | 1 | 17.63 | 17.77 | 17.89 | 2 | | | 12 | 6 | 18.78 | 18.94 | 19.05 | 1 | 17.74 | 17.90 | 18.02 | 2 | | | 12 | 13 | 18.75 | 18.90 | 19.02 | 1 | 17.71 | 17.86 | 17.98 | 2 | | | 25 | 0 | 18.66 | 18.79 | 18.94 | 1 | 17.62 | 17.78 | 17.87 | 2 | Report Format Version 5.0.0 Page No. : 26 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|---------------------------------|---------------------------------|----------------------------------|---------------------|---------------------------------|---------------------------------|----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
23060
704.0
MHz | Mid CH
23095
707.5
MHz | High CH
23130
711.0
MHz | 3GPP
MPR
(dB) | Low CH
23060
704.0
MHz | Mid CH
23095
707.5
MHz | High CH
23130
711.0
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | i) | | | | | 1 | 0 | 22.57 | 22.51 | 22.54 | 0 | 21.54 | 21.48 | 21.51 | 1 | | | 1 | 24 | 22.60 | 22.66 | 22.69 | 0 | 21.57 | 21.63 | 21.66 | 1 | | | 1 | 49 | 22.53 | 22.59 | 22.62 | 0 | 21.50 | 21.56 | 21.59 | 1 | | 12 / 10M | 25 | 0 | 21.57 | 21.63 | 21.66 | 1 | 20.54 | 20.60 | 20.63 | 2 | | | 25 | 12 | 21.68 | 21.74 | 21.77 | 1 | 20.65 | 20.71 | 20.74 | 2 | | | 25 | 25 | 21.61 | 21.67 | 21.70 | 1 | 20.58 | 20.64 | 20.67 | 2 | | | 50 | 0 | 21.63 | 21.69 | 21.72 | 1 | 20.60 | 20.66 | 20.69 | 2 | | | | | EUT wit | h Power Re | duction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 19.84 | 20.00 | 20.12 | 0 | 18.81 | 18.95 | 19.08 | 1 | | | 1 | 24 | 19.87 | 20.03 | 20.15 | 0 | 18.84 | 19.02 | 19.13 | 1 | | | 1 | 49 | 19.63 | 19.79 | 19.91 | 0 | 18.58 | 18.74 | 18.86 | 1 | | 12 / 10M | 25 | 0 | 18.81 | 18.97 | 19.07 | 1 | 17.77 | 17.93 | 18.06 | 2 | | | 25 | 12 | 18.89 | 19.05 | 19.09 | 1 | 17.88 | 18.04 | 18.16 | 2 | | | 25 | 25 | 18.87 | 19.03 | 19.04 | 1 | 17.83 | 17.99 | 18.12 | 2 | | | 50 | 0 | 18.78 | 18.94 | 19.06 | 1 | 17.77 | 17.89 | 18.01 | 2 | | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
26047
1850.7
MHz | Mid CH
26365
1882.5
MHz | High CH
26683
1914.3
MHz | 3GPP
MPR
(dB) | Low CH
26047
1850.7
MHz | Mid CH
26365
1882.5
MHz | High CH
26683
1914.3
MHz | 3GPP
MPR
(dB) | | | _ | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | i) | | | | | 1 | 0 | 22.04 | 22.14 | 22.18 | 0 | 21.05 | 21.12 | 21.16 | 1 | | | 1 | 2 | 22.01 | 22.11 | 22.15 | 0 | 21.02 | 21.09 | 21.13 | 1 | | | 1 | 5 | 22.07 | 22.17 | 22.21 | 0 | 21.08 | 21.15 | 21.19 | 1 | | 25 /
1.4M | 3 | 0 | 22.02 | 22.07 | 22.11 | 0 | 21.02 | 20.06 | 21.09 | 1 | | 1.4101 | 3 | 1 | 22.05 | 22.10 | 22.14 | 0 | 21.05 | 21.07 | 21.12 | 1 | | | 3 | 3 | 22.06 | 22.11 | 22.15 | 0 | 21.06 | 21.09 | 21.13 | 1 | | | 6 | 0 | 21.02 | 21.08 | 21.12 | 1 | 20.01 | 20.07 | 20.11 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | ggered) | | | | | | 1 | 0 | 14.40 | 14.52 | 14.59 | 0 | 13.37 | 13.49 | 13.56 | 1 | | | 1 | 2 | 14.50 | 14.56 | 14.63 | 0 | 13.47 | 13.53 | 13.60 | 1 | | 25 / | 1 | 5 | 14.55 | 14.61 | 14.68 | 0 | 13.52 | 13.58 | 13.65 | 1 | | 1.4M | 3 | 0 | 14.03 | 14.09 | 14.22 | 0 | 13.00 | 13.06 | 13.19 | 1 | | 1101 | 3 | 1 | 14.07 | 14.13 | 14.32 | 0 | 13.04 | 13.10 | 13.29 | 1 | | | 3 | 3 | 14.18 | 14.21 | 14.37 | 0 | 13.15 | 13.18 | 13.34 | 1 | | | 6 | 0 | 13.41 | 13.59 | 13.63 | 1 | 12.38 | 12.56 | 12.60 | 2 | Report Format Version 5.0.0 Page No. : 27 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
26055
1851.5
MHz | Mid CH
26365
1882.5
MHz | High CH
26675
1913.5
MHz |
3GPP
MPR
(dB) | Low CH
26055
1851.5
MHz | Mid CH
26365
1882.5
MHz | High CH
26675
1913.5
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 22.12 | 22.28 | 22.32 | 0 | 21.09 | 21.25 | 21.29 | 1 | | | 1 | 7 | 22.09 | 22.25 | 22.29 | 0 | 21.06 | 21.22 | 21.26 | 1 | | | 1 | 14 | 22.15 | 22.31 | 22.35 | 0 | 21.12 | 21.28 | 21.32 | 1 | | 25 / 3M | 8 | 0 | 20.02 | 21.14 | 21.18 | 1 | 20.06 | 20.11 | 20.15 | 2 | | | 8 | 3 | 21.05 | 21.17 | 21.21 | 1 | 20.09 | 20.14 | 20.18 | 2 | | | 8 | 7 | 21.06 | 21.18 | 21.22 | 1 | 20.10 | 20.15 | 20.19 | 2 | | | 15 | 0 | 20.01 | 21.04 | 21.08 | 1 | 20.03 | 20.05 | 20.09 | 2 | | | | | EUT wit | h Power Re | duction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 14.52 | 14.64 | 14.71 | 0 | 13.51 | 13.63 | 13.70 | 1 | | | 1 | 7 | 14.62 | 14.68 | 14.75 | 0 | 13.61 | 13.67 | 13.74 | 1 | | | 1 | 14 | 14.67 | 14.73 | 14.80 | 0 | 13.66 | 13.72 | 13.79 | 1 | | 25 / 3M | 8 | 0 | 13.55 | 13.61 | 13.74 | 1 | 12.54 | 12.60 | 12.73 | 2 | | | 8 | 3 | 13.59 | 13.65 | 13.84 | 1 | 12.58 | 12.64 | 12.83 | 2 | | | 8 | 7 | 13.70 | 13.73 | 13.89 | 1 | 12.69 | 12.72 | 12.88 | 2 | | | 15 | 0 | 13.53 | 13.71 | 13.75 | 1 | 12.52 | 12.70 | 12.74 | 2 | | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
26065
1852.5
MHz | Mid CH
26365
1882.5
MHz | High CH
26665
1912.5
MHz | 3GPP
MPR
(dB) | Low CH
26065
1852.5
MHz | Mid CH
26365
1882.5
MHz | High CH
26665
1912.5
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 22.27 | 22.43 | 22.47 | 0 | 21.24 | 21.40 | 21.44 | 1 | | | 1 | 12 | 22.24 | 22.40 | 22.44 | 0 | 21.21 | 21.37 | 21.41 | 1 | | | 1 | 24 | 22.30 | 22.46 | 22.50 | 0 | 21.27 | 21.43 | 21.47 | 1 | | 25 / 5M | 12 | 0 | 21.13 | 21.29 | 21.33 | 1 | 20.10 | 20.26 | 20.30 | 2 | | | 12 | 6 | 21.16 | 21.32 | 21.36 | 1 | 20.13 | 20.29 | 20.33 | 2 | | | 12 | 13 | 21.17 | 21.33 | 21.37 | 1 | 20.14 | 20.30 | 20.34 | 2 | | | 25 | 0 | 21.03 | 21.19 | 21.23 | 1 | 20.00 | 20.16 | 20.20 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | ggered) | | | | | | 1 | 0 | 14.63 | 14.75 | 14.82 | 0 | 13.58 | 13.68 | 13.78 | 1 | | | 1 | 12 | 14.73 | 14.79 | 14.86 | 0 | 13.65 | 13.71 | 13.87 | 1 | | | 1 | 24 | 14.78 | 14.84 | 14.91 | 0 | 13.72 | 13.80 | 13.96 | 1 | | 25 / 5M | 12 | 0 | 13.66 | 13.72 | 13.85 | 1 | 12.61 | 12.73 | 12.80 | 2 | | | 12 | 6 | 13.70 | 13.76 | 13.95 | 1 | 12.70 | 12.81 | 12.81 | 2 | | | 12 | 13 | 13.81 | 13.84 | 14.00 | 1 | 12.76 | 12.89 | 13.01 | 2 | | | 25 | 0 | 13.64 | 13.82 | 13.86 | 1 | 12.66 | 12.69 | 12.93 | 2 | Report Format Version 5.0.0 Page No. : 28 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
26090
1855.0
MHz | Mid CH
26365
1882.5
MHz | High CH
26640
1910.0
MHz | 3GPP
MPR
(dB) | Low CH
26090
1855.0
MHz | Mid CH
26365
1882.5
MHz | High CH
26640
1910.0
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 22.40 | 22.56 | 22.60 | 0 | 21.38 | 21.54 | 21.58 | 1 | | | 1 | 24 | 22.37 | 22.53 | 22.57 | 0 | 21.35 | 21.51 | 21.55 | 1 | | | 1 | 49 | 22.43 | 22.59 | 22.63 | 0 | 21.41 | 21.57 | 21.61 | 1 | | 25 / 10M | 25 | 0 | 21.26 | 21.42 | 21.46 | 1 | 20.24 | 20.40 | 20.44 | 2 | | | 25 | 12 | 21.29 | 21.45 | 21.49 | 1 | 20.27 | 20.43 | 20.47 | 2 | | | 25 | 25 | 21.30 | 21.46 | 21.50 | 1 | 20.28 | 20.44 | 20.48 | 2 | | | 50 | 0 | 21.16 | 21.32 | 21.36 | 1 | 20.14 | 20.30 | 20.34 | 2 | | | | | EUT wit | h Power Re | duction (P | -Sensor Tri | ggered) | | | | | | 1 | 0 | 14.78 | 14.86 | 14.97 | 0 | 13.79 | 13.84 | 13.92 | 1 | | | 1 | 24 | 14.81 | 14.89 | 15.02 | 0 | 13.82 | 13.88 | 13.97 | 1 | | | 1 | 49 | 14.85 | 14.91 | 15.08 | 0 | 13.87 | 13.94 | 14.06 | 1 | | 25 / 10M | 25 | 0 | 13.83 | 13.89 | 14.00 | 1 | 12.81 | 12.84 | 12.99 | 2 | | | 25 | 12 | 13.84 | 13.92 | 14.01 | 1 | 12.82 | 12.88 | 13.03 | 2 | | | 25 | 25 | 13.95 | 13.97 | 14.12 | 1 | 12.93 | 12.95 | 13.11 | 2 | | | 50 | 0 | 13.85 | 13.91 | 14.06 | 1 | 12.76 | 12.87 | 12.99 | 2 | | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
26115
1857.5
MHz | Mid CH
26365
1882.5
MHz | High CH
26615
1907.5
MHz | 3GPP
MPR
(dB) | Low CH
26115
1857.5
MHz | Mid CH
26365
1882.5
MHz | High CH
26615
1907.5
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | i) | | | | | 1 | 0 | 22.56 | 22.72 | 22.76 | 0 | 21.52 | 21.68 | 21.72 | 1 | | | 1 | 37 | 22.53 | 22.69 | 22.73 | 0 | 21.49 | 21.65 | 21.69 | 1 | | | 1 | 74 | 22.59 | 22.75 | 22.79 | 0 | 21.55 | 21.71 | 21.75 | 1 | | 25 / 15M | 36 | 0 | 21.42 | 21.58 | 21.62 | 1 | 20.38 | 20.54 | 20.58 | 2 | | | 36 | 19 | 21.45 | 21.61 | 21.65 | 1 | 20.41 | 20.57 | 20.61 | 2 | | | 36 | 39 | 21.46 | 21.62 | 21.66 | 1 | 20.42 | 20.58 | 20.62 | 2 | | | 75 | 0 | 21.32 | 21.48 | 21.52 | 1 | 20.28 | 20.44 | 20.48 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | ggered) | | | | | | 1 | 0 | 14.95 | 15.00 | 15.12 | 0 | 13.91 | 13.96 | 14.07 | 1 | | | 1 | 37 | 14.98 | 15.01 | 15.13 | 0 | 13.93 | 13.99 | 14.10 | 1 | | | 1 | 74 | 15.00 | 15.04 | 15.17 | 0 | 13.97 | 14.03 | 14.14 | 1 | | 25 / 15M | 36 | 0 | 13.97 | 14.03 | 14.17 | 1 | 12.94 | 12.99 | 13.11 | 2 | | | 36 | 19 | 13.98 | 14.05 | 14.19 | 1 | 12.98 | 13.04 | 13.14 | 2 | | | 36 | 39 | 14.06 | 14.12 | 14.24 | 1 | 13.04 | 13.11 | 13.20 | 2 | | | 75 | 0 | 13.97 | 14.01 | 14.14 | 1 | 12.93 | 13.01 | 13.08 | 2 | Report Format Version 5.0.0 Page No. : 29 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
26140
1860.0
MHz | Mid CH
26365
1882.5
MHz | High CH
26590
1905.0
MHz | 3GPP
MPR
(dB) | Low CH
26140
1860.0
MHz | Mid CH
26365
1882.5
MHz | High CH
26590
1905.0
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 22.71 | 22.87 | 22.91 | 0 | 21.68 | 21.84 | 21.88 | 1 | | | 1 | 50 | 22.68 | 22.84 | 22.88 | 0 | 21.65 | 21.81 | 21.85 | 1 | | | 1 | 99 | 22.74 | 22.90 | 22.94 | 0 | 21.71 | 21.87 | 21.91 | 1 | | 25 / 20M | 50 | 0 | 21.57 | 21.73 | 21.77 | 1 | 20.54 | 20.70 | 20.74 | 2 | | | 50 | 25 | 21.60 | 21.76 | 21.80 | 1 | 20.57 | 20.73 | 20.77 | 2 | | | 50 | 50 | 21.61 | 21.77 | 21.81 | 1 | 20.58 | 20.74 | 20.78 | 2 | | | 100 | 0 | 21.47 | 21.63 | 21.67 | 1 | 20.44 | 20.60 | 20.64 | 2 | | | | | EUT wit | h Power Re | duction (P | -Sensor Tri | ggered) | | | | | | 1 | 0 | 15.08 | 15.14 | 15.27 | 0 | 14.04 | 14.09 | 14.23 | 1 | | | 1 | 50 | 15.06 | 15.15 | 15.28 | 0 | 14.07 | 14.10 | 14.25 | 1 | | | 1 | 99 | 15.05 | 15.17 | 15.30 | 0 | 14.10 | 14.14 | 14.29 | 1 | | 25 / 20M | 50 | 0 | 14.08 | 14.17 | 14.22 | 1 | 13.07 | 13.12 | 13.25 | 2 | | | 50 | 25 | 14.09 | 14.18 | 14.23 | 1 | 13.09 | 13.14 | 13.29 | 2 | | | 50 | 50 | 14.14 | 14.23 | 14.28 | 1 | 13.16 | 13.22 | 13.35 | 2 | | | 100 | 0 | 14.06 | 14.15 | 14.20 | 1 | 13.05 | 13.12 | 13.23 | 2 | #### <WLAN 2.4G> | 1112/111 21-10/ | | | | | | | | | |---------------------------|----------------|----------|-----------|-----------|-----------|--|--|--| | Mode | | | 802.11b | | | | | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | 12 (2467) | 13 (2472) | | | | | Average Power | 12.65 | 12.58 | 12.61 | 12.55 | 12.51 | | | | | Mode | | | 802.11g | | | | | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | 12 (2467) | 13 (2472) | | | | | Average Power | 12.10 | 11.87 | 12.02 | 11.85 | 11.66 | | | | | Mode | 802.11n (HT20) | | | | | | | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | 12 (2467) | 13 (2472) | | | | | Average Power | 11.32 | 10.97 | 11.17 | 11.12 | 11.16 | | | | ## <Bluetooth> | Mode | | | | |---------------------------|----------|-----------|------| | Channel / Frequency (MHz) | 0 (2402) | 78 (2480) | | | Average Power | 8.31 | 9.93 | 9.14 | Report Format Version 5.0.0 Page No. : 30 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ## 4.7 SAR Testing Results #### 4.7.1 SAR Test Reduction Considerations #### <KDB 447498 D01, General RF Exposure Guidance> Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is: - (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission
band is ≤ 100 MHz - (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz #### <KDB 941225 D05, SAR Evaluation Considerations for LTE Devices> #### (1) QPSK with 1 RB and 50% RB allocation Start with the largest channel bandwidth and measure SAR, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel. #### (2) QPSK with 100% RB allocation SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. #### (3) Higher order modulations SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg. #### (4) Other channel bandwidth SAR is required when the highest maximum output power of the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. Report Format Version 5.0.0 Page No. : 31 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 #### <KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters> - (1) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg. - (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg. ### 4.7.2 SAR Results for Body Exposure Condition | Plot
No. | Band | Mode | Test
Position | Separation Distance (cm) | Ch. | Power
Reduction | RB# | RB
Offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaled
SAR-1g
(W/kg) | |-------------|--------|---------|------------------|--------------------------|-------|--------------------|-----|--------------|-----------------------------------|---|-------------------|------------------------|------------------------------|----------------------------| | 01 | LTE 12 | QPSK10M | Rear Face | 0 | 23130 | w/ | 1 | 24 | 20.5 | 20.15 | 1.08 | 0.07 | 0.937 | 1.02 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23130 | w/ | 1 | 24 | 20.5 | 20.15 | 1.08 | 0.06 | 0.931 | 1.01 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23060 | w/ | 1 | 24 | 20.5 | 19.87 | 1.16 | 0.06 | 0.879 | 1.02 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23095 | w/ | 1 | 24 | 20.5 | 20.03 | 1.11 | 0.01 | 0.899 | 1.00 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23130 | w/ | 25 | 12 | 19.5 | 19.09 | 1.10 | -0.02 | 0.892 | 0.98 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23060 | w/ | 25 | 12 | 19.5 | 18.89 | 1.15 | 0.11 | 0.830 | 0.96 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23095 | w/ | 25 | 12 | 19.5 | 19.05 | 1.11 | 0.08 | 0.785 | 0.87 | | | LTE 12 | QPSK10M | Rear Face | 0 | 23130 | w/ | 50 | 0 | 19.5 | 19.06 | 1.11 | 0.12 | 0.902 | 1.00 | | | LTE 12 | QPSK10M | Rear Face | 1.2 | 23130 | w/o | 1 | 24 | 24.0 | 22.69 | 1.35 | 0.05 | 0.385 | 0.52 | | | LTE 12 | QPSK10M | Rear Face | 1.2 | 23130 | w/o | 25 | 12 | 23.0 | 21.77 | 1.33 | 0.03 | 0.313 | 0.42 | | | LTE 12 | QPSK10M | Left Side | 0 | 23130 | w/o | 1 | 24 | 24.0 | 22.69 | 1.35 | 0.01 | 0.187 | 0.25 | | | LTE 12 | QPSK10M | Left Side | 0 | 23130 | w/o | 25 | 12 | 23.0 | 21.77 | 1.33 | -0.03 | 0.155 | 0.21 | | | LTE 12 | QPSK10M | Right Side | 0 | 23130 | w/o | 1 | 24 | 24.0 | 22.69 | 1.35 | -0.07 | 0.247 | 0.33 | | | LTE 12 | QPSK10M | Right Side | 0 | 23130 | w/o | 25 | 12 | 23.0 | 21.77 | 1.33 | -0.16 | 0.202 | 0.27 | | | LTE 12 | QPSK10M | Bottom Side | 0 | 23130 | w/o | 1 | 24 | 24.0 | 22.69 | 1.35 | 0.07 | 0.589 | 0.80 | | | LTE 12 | QPSK10M | Bottom Side | 0 | 23060 | w/o | 1 | 24 | 24.0 | 22.60 | 1.38 | 0.11 | 0.597 | 0.82 | | | LTE 12 | QPSK10M | Bottom Side | 0 | 23095 | w/o | 1 | 24 | 24.0 | 22.66 | 1.36 | 0.15 | 0.594 | 0.81 | | | LTE 12 | QPSK10M | Bottom Side | 0 | 23130 | w/o | 25 | 12 | 23.0 | 21.77 | 1.33 | -0.10 | 0.534 | 0.71 | | | LTE 12 | QPSK10M | Bottom Side | 0 | 23130 | w/o | 50 | 0 | 23.0 | 21.72 | 1.34 | 0.19 | 0.476 | 0.64 | | | LTE 25 | QPSK20M | Rear Face | 0 | 26590 | w/ | 1 | 99 | 15.5 | 15.30 | 1.05 | 0.12 | 0.657 | 0.69 | | | LTE 25 | QPSK20M | Rear Face | 0 | 26590 | w/ | 50 | 50 | 14.5 | 14.28 | 1.05 | -0.09 | 0.653 | 0.69 | | | LTE 25 | QPSK20M | Rear Face | 1.2 | 26590 | w/o | 1 | 99 | 24.0 | 22.94 | 1.28 | 0.03 | 0.556 | 0.71 | | | LTE 25 | QPSK20M | Rear Face | 1.2 | 26590 | w/o | 50 | 50 | 23 | 21.81 | 1.32 | 0.02 | 0.474 | 0.62 | | | LTE 25 | QPSK20M | Left Side | 0 | 26590 | w/o | 1 | 99 | 24.0 | 22.94 | 1.28 | -0.11 | 0.563 | 0.72 | | | LTE 25 | QPSK20M | Left Side | 0 | 26590 | w/o | 50 | 50 | 23.0 | 21.81 | 1.32 | 0.13 | 0.490 | 0.64 | | | LTE 25 | QPSK20M | Right Side | 0 | 26590 | w/o | 1 | 99 | 24.0 | 22.94 | 1.28 | 0.06 | 0.114 | 0.15 | | | LTE 25 | QPSK20M | Right Side | 0 | 26590 | w/o | 50 | 50 | 23.0 | 21.81 | 1.32 | 0.01 | 0.090 | 0.12 | | | LTE 25 | QPSK20M | Bottom Side | 0 | 26590 | w/ | 1 | 99 | 15.5 | 15.30 | 1.05 | 0.01 | 0.352 | 0.37 | | | LTE 25 | QPSK20M | Bottom Side | 0 | 26590 | w/ | 50 | 50 | 14.5 | 14.28 | 1.05 | 0.06 | 0.334 | 0.35 | | 02 | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26590 | w/o | 1 | 99 | 24.0 | 22.94 | 1.28 | 0.1 | 0.752 | <mark>0.96</mark> | | | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26140 | w/o | 1 | 99 | 24.0 | 22.74 | 1.34 | 0.15 | 0.712 | 0.95 | | | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26365 | w/o | 1 | 99 | 24.0 | 22.90 | 1.29 | 0.12 | 0.741 | 0.95 | | | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26590 | w/o | 50 | 50 | 23.0 | 21.81 | 1.32 | 0.12 | 0.649 | 0.85 | | | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26140 | w/o | 50 | 50 | 23.0 | 21.61 | 1.38 | -0.04 | 0.594 | 0.82 | | | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26365 | w/o | 50 | 50 | 23.0 | 21.77 | 1.33 | 0.07 | 0.609 | 0.81 | | | LTE 25 | QPSK20M | Bottom Side | 0.4 | 26590 | w/o | 100 | 0 | 23.0 | 21.67 | 1.36 | 0.13 | 0.590 | 0.80 | Report Format Version 5.0.0 Page No. : 32 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 | Plot
No. | Band | Mode | Test
Position | Separation Distance (cm) | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-10g
(W/kg) | Scaled
SAR-10g
(W/kg) | |-------------|-----------|---------|------------------|--------------------------|-----|-----------------------------------|---|-------------------|------------------------|-------------------------------|-----------------------------| | 03 | 2.4G WLAN | 802.11b | Rear Face | 0 | 6 | 14.0 | 12.58 | 1.39 | 0 | 0.439 | <mark>0.61</mark> | | | 2.4G WLAN | 802.11b | Top Side | 0 | 6 | 14.0 | 12.58 | 1.39 | 0.13 | 0.090 | 0.12 | | 04 | Bluetooth | - | Rear Face | 0 | 39 | 10.0 | 9.93 | 1.02 | 0 | 0.154 | <mark>0.16</mark> | | | Bluetooth | - | Top Side | 0 | 39 | 10.0 | 9.93 | 1.02 | 0.12 | 0.037 | 0.04 | #### 4.7.3 SAR Measurement Variability According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the
battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. #### SAR repeated measurement procedure: - 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required. - 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. - 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. - 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement. | | Band | Mode | Test
Position | Ch. | Original
Measured
SAR-1g
(W/kg) | 1st
Repeated
SAR-1g
(W/kg) | L/S
Ratio | 2nd
Repeated
SAR-1g
(W/kg) | L/S
Ratio | 3rd
Repeated
SAR-1g
(W/kg) | L/S
Ratio | |---|--------|---------|------------------|-------|--|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|--------------| | Г | LTE 12 | QPSK10M | Rear Face | 23130 | 0.937 | 0.931 | 1.01 | N/A | N/A | N/A | N/A | Report Format Version 5.0.0 Page No. : 33 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 #### 4.7.4 Simultaneous Multi-band Transmission Evaluation #### <Estimated SAR Calculation> According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion. $$\text{Estimated SAR} = \frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$ If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g. | Mode / Band | Frequency
(GHz) | Max. Tune-up
Power
(dBm) | Test
Position | Separation
Distance
(mm) | Estimated
SAR
(W/kg) | |-------------|--------------------|--------------------------------|------------------|--------------------------------|----------------------------| | LTE 12 | 0.714 | 24.0 | Body | 5 | 0.40 | | LTE 25 | 1.913 | 24.0 | Body | 5 | 0.40 | | WLAN (DTS) | 2.462 | 13.0 | Body | 5 | 0.40 | | BT (DSS) | 2.48 | 10.0 | Body | 5 | 0.20 | #### Note: - 1. The separation distance is determined from the outer housing of the EUT to the user. - 2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion. Report Format Version 5.0.0 Page No. : 34 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 ## <SAR Summation Analysis> Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR. | No. | Conditions
(SAR1 + SAR2) | Exposure
Condition | Test
Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR
Analysis | | | | | | | | | | | | | | | | |-----|-----------------------------|-----------------------|------------------|--------------|--------------|------------------|------------------------------|------------------------------|------|------|------------------------------|--|--|--|--|---|--|--|---|--|--|--| | | | | Rear Face | 1.02 | 0.61 | 1.63 | Analyzed
as below | | | | | | | | | | | | | | | | | | LTE 12 | | Top Side | 0.40 | 0.12 | 0.52 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | 1 | + | Body | Bottom Side | 0.82 | 0.40 | 1.22 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | WLAN (DTS) | | Left Side | 0.25 | 0.40 | 0.65 | Σ SAR < 1.6,
Not required | Right Side | 0.33 | 0.40 | 0.73 | Σ SAR < 1.6,
Not required | Rear Face | 1.02 | 0.16 | 1.18 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | LTE 12 | | Top Side | 0.40 | 0.04 | 0.44 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | 2 | + | Body | Bottom Side | 0.82 | 0.40 | 1.22 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | BT (DSS) | | Left Side | 0.25 | 0.40 | 0.65 | Σ SAR < 1.6,
Not required | Right Side | 0.33 | 0.40 | 0.73 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | | Body | Rear Face | 0.71 | 0.61 | 1.32 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | LTE 25 | | Body | Top Side | 0.40 | 0.12 | 0.52 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | 3 | + | | | Body | Body | Body | Bottom Side | 0.96 | 0.40 | 1.36 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | WLAN (DTS) | | | | | | | | | | | | | | | _ | | | _ | | | | | | | | Right Side | 0.15 | 0.40 | 0.55 | Σ SAR < 1.6,
Not required | Rear Face | 0.71 | 0.16 | 0.87 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | LTE 25 | - | Top Side | 0.40 | 0.04 | 0.44 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | 4 | + | Body | Bottom Side | 0.96 | 0.40 | 1.36 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | | | BT (DSS) | | Left Side | 0.72 | 0.40 | 1.12 | Σ SAR < 1.6,
Not required | Right Side | 0.15 | 0.40 | 0.55 | Σ SAR < 1.6,
Not required | | | | | | | | | | | | | | | | Report Format Version 5.0.0 Page No. : 35 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 #### <SAR to Peak Location Separation Ratio Analysis> The simultaneous transmitting antennas in each operating mode and exposure condition combination are considered one pair at a time to determine the SPLSR. When SAR is measured for both antennas in the pair, the peak location separation distance is computed by the following formula. Peak Location Separation Distance = $$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$ Where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the area or zoom scans. When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna. Due to curvatures on the SAM phantom, when SAR is estimated for one of the antennas in an antenna pair, the measured peak SAR location will be translated onto the test device to determine the peak location separation for the antenna pair. The SPLSR is determined by the following formula. $$SPLSR = \frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$$ Where SAR₁ and SAR₂ are the highest reported or estimated SAR for each antenna in the pair, and R_i is the separation distance between the peak SAR locations for the antenna pair in mm. When the SPLSR is <= 0.04, the simultaneous transmission SAR is not required. Otherwise, the enlarged zoom scan and volume scan post-processing procedures will be performed. | | | | | | Coordinates | | Peak | | | |------------------|-----------------------|------------------|------------------------|-------|-------------|------|--|-------|--| | Conditions | Exposure
Condition | Test
Position | SAR
Value
(W/kg) | x | у | z | Location
Separatio
n Distance
(R _i , mm) | SPLSR | Simultaneous
Transmission
SAR Test | | LTE12
Ch23130 | Deale | D | 1.02 | -0.44 | -8.8 | 0.21 | 400.4 | 0.044 | SPLSR < 0.04, | | 802.11b
Ch6 | Body | Rear Face | 0.61 | -0.44 | 9.44 | 0.26 | 182.4 | 0.011 | Not required | | | | | LTE 12 | | 802.111 | | | | | Test Engineer: Eric Wu, and Mars Chang Report Format Version 5.0.0 Page No. : 36 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 # 5. Calibration of Test Equipment | Equipment | Manufacturer | Model | SN | Cal. Date | Cal. Interval | |------------------------------|--------------|---------|------------|---------------|---------------| | System Validation Dipole | SPEAG | D750V3 | 1132 | Jan. 06, 2015 | 1 Year | | System Validation Dipole | SPEAG | D750V3 | 1013 | Aug. 24, 2015 | 1 Year | | System Validation Dipole | SPEAG | D1900V2 | 5d036 | Jan. 26, 2015 | 1 Year | | System Validation Dipole | SPEAG | D2450V2 | 835 | Mar. 30, 2015 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3650 | Jul. 23, 2015 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1277 | Jul. 22, 2015 | 1 Year | | Radio Communication Analyzer | Anritsu | MT8820C | 6201010285 | Aug. 23, 2015 | 1 Year | | ENA Series Network Analyzer | Agilent | E5071C | MY46214281 | Jun. 23, 2015 | 1 Year | | EXA Spectrum Analyzer | Agilent | N9010A | MY53470455 | Feb. 26, 2015 | 1 Year | | MXG Analong Signal Generator | Agilent | N5181A | MY50143868 | Jul. 06, 2015 | 1 Year | | Power Meter | Anritsu | ML2495A | 1218009 | Jul. 06, 2015 | 1 Year | | Power Sensor | Anritsu | MA2411B | 1207252 | Jul. 06, 2015 | 1 Year | | Thermometer | YFE | YF-160A | 110600361 | Feb. 26, 2015 | 1 Year | Report Format Version 5.0.0 Page No. : 37 of 39 Report No. : SA150901C09 Issued Date : Sep. 22, 2015 # 6. Measurement Uncertainty | Source of Uncertainty | Tolerance
(± %) |
Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(± %, 1g) | Standard
Uncertainty
(± %, 10g) | Vi | |--|--------------------|-----------------------------|---------|------------|-------------|--------------------------------------|---------------------------------------|----| | Measurement System | | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | 6.0 | 6.0 | 8 | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.707 | 0.707 | 1.9 | 1.9 | 8 | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.707 | 0.707 | 3.9 | 3.9 | 8 | | Boundary Effect | 1.0 | Rectangular | √3 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | 0.25 | Rectangular | √3 | 1 | 1 | 0.14 | 0.14 | 8 | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | 0.0 | Rectangular | √3 | 1 | 1 | 0.0 | 0.0 | 8 | | Integration Time | 1.7 | Rectangular | √3 | 1 | 1 | 1.0 | 1.0 | 8 | | RF Ambient Conditions - Noise | 3.0 | Rectangular | √3 | 1 | 1 | 1.7 | 1.7 | 8 | | RF Ambient Conditions - Reflections | 3.0 | Rectangular | √3 | 1 | 1 | 1.7 | 1.7 | 8 | | Probe Positioner Mechanical Tolerance | 0.4 | Rectangular | √3 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning with Respect to Phantom Shell | 2.9 | Rectangular | √3 | 1 | 1 | 1.7 | 1.7 | 8 | | Extrapolation, interpolation, and integration algorithms for max. SAR evaluation | 2.0 | Rectangular | √3 | 1 | 1 | 1.2 | 1.2 | 8 | | Test Sample Related | | | | _ | _ | _ | | | | Test Sample Positioning | 1.5 / 0.7 | Normal | 1 | 1 | 1 | 1.5 | 0.7 | 32 | | Device Holder Uncertainty | 4.2 / 1.8 | Normal | 1 | 1 | 1 | 4.2 | 1.8 | 32 | | Output Power Variation - SAR Drift Measurement | 5.0 | Rectangular | √3 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and Tissue Parameters | | | | - | - | _ | | | | Phantom Uncertainty (Shape and Thickness Tolerances) | 7.2 | Rectangular | √3 | 1 | 1 | 4.2 | 4.2 | 8 | | Liquid Conductivity - Deviation from Target Values | 5.0 | Rectangular | √3 | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | Liquid Conductivity - Measurement Uncertainty | 1.0 | Normal | 1 | 0.64 | 0.43 | 0.6 | 0.4 | 25 | | Liquid Permittivity - Deviation from Target Values | 5.0 | Rectangular | √3 | 0.60 | 0.49 | 1.7 | 1.4 | 8 | | Liquid Permittivity - Measurement Uncertainty | 0.5 | Normal | 1 | 0.60 | 0.49 | 0.3 | 0.2 | 25 | | Combined Standard Uncertainty | | | | | | ± 11.2 % | ± 10.4 % | | | Expanded Uncertainty (K=2) | | | | | | ± 22.4 % | ± 20.8 % | | Uncertainty budget for frequency range 300 MHz to 3 GHz Report Format Version 5.0.0 Page No. : 38 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 ### 7. Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: #### Taiwan HwaYa EMC/RF/Safety/Telecom Lab: Add: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-318-3232 Fax: 886-3-327-0892 #### Taiwan LinKo EMC/RF Lab: Add: No. 47-2, 14th Ling, Chia Pau Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C. Tel: 886-2-2605-2180 Fax: 886-2-2605-1924 #### Taiwan HsinChu EMC/RF Lab: Add: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Vil., Chiung Lin Township, Hsinchu County 307, Taiwan, R.O.C. Tel: 886-3-593-5343 Fax: 886-3-593-5342 Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 39 of 39 Report No.: SA150901C09 Issued Date : Sep. 22, 2015 # Appendix A. SAR Plots of System Verification The plots for system verification with largest deviation for each SAR system combination are shown as follows. Report Format Version 5.0.0 Issued Date : Sep. 22, 2015 Report No. : SA150901C09 #### System Check_B750_151002 ### **DUT: Dipole 750 MHz; Type: D750V3; SN: 1013** Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: B06T09N1_1002 Medium parameters used: f = 750 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 55.259$; $\rho = 1000$ Date: 2015/10/02 kg/m³ Ambient Temperature: 23.5 °C; Liquid Temperature: 23.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(9.44, 9.44, 9.44); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.84 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.05 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.52 W/kgMaximum value of SAR (measured) = 2.84 W/kg #### System Check_B1900_150915 ### DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: B16T20N1_0915 Medium parameters used: f = 1900 MHz; $\sigma = 1.563$ S/m; $\varepsilon_r = 52.973$; $\rho =$ Date: 2015/09/15 1000 kg/m^3 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.5 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 96.42 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.74 W/kg; SAR(10 g) = 5.06 W/kgMaximum value of SAR (measured) = 13.8 W/kg #### System Check_B2450_150916 ### **DUT: Dipole 2450 MHz; Type: D2450V2; SN: 835** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: B19T27N2_0916 Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 51.268$; $\rho =$ Date: 2015/09/16 1000 kg/m^3 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.03, 7.03, 7.03); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.6 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.13 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 25.1 W/kg **SAR(1 g) = 12 W/kg; SAR(10 g) = 5.56 W/kg** Maximum value of SAR (measured) = 18.4 W/kg ## Appendix B. SAR Plots of SAR Measurement The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows. Report Format Version 5.0.0 Issued Date : Sep. 22, 2015 Report No.: SA150901C09 ### P01 LTE 12_QPSK10M_Rear Face_0cm_Ch23130_P Sensor on_1RB_OS24 #### **DUT: 150901C09** Communication System: LTE; Frequency: 711 MHz; Duty Cycle: 1:1 Medium: B06T09N1_0915 Medium parameters used: f = 711 MHz; $\sigma = 0.925$ S/m; $\varepsilon_r = 54.871$; $\rho =$ Date: 2015/09/15 1000 kg/m^3 Ambient Temperature : 23.9 $^{\circ}$ C ; Liquid Temperature : 23.2 $^{\circ}$ C - Probe: EX3DV4 SN3650; ConvF(9.44, 9.44, 9.44); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (81x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.95 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.714 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 2.81 W/kg SAR(1 g) = 0.937 W/kg; SAR(10 g) = 0.416 W/kg Maximum value of SAR (measured) = 2.01 W/kg ### P02 LTE 25_QPSK20M_Bottom Side_0.4cm_Ch26590_P Sensor off_1RB_OS99 Date: 2015/09/15 #### **DUT: 150901C09** Communication System: LTE; Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: B16T20N1_0915 Medium parameters used: f = 1905 MHz; $\sigma = 1.567$ S/m; $\varepsilon_r = 52.947$; $\rho =$ 1000 kg/m^3 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.2 °C - Probe: EX3DV4 SN3650; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.17 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.69 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.752 W/kg; SAR(10 g) = 0.421 W/kg Maximum value of SAR (measured) = 1.04 W/kg #### P03 2.4G WLAN_802.11b_Rear Face_0cm_Ch6 #### **DUT: 150901C09** Communication System: WLAN 2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: B19T27N3_0915 Medium parameters used: f = 2437 MHz; $\sigma = 1.974$ S/m; $\epsilon_r = 51.301$; $\rho = 1.974$ S/m; $\epsilon_r = 51.301$ Date: 2015/09/15 $1000
\text{ kg/m}^3$ Ambient Temperature: 23.9°C; Liquid Temperature: 23.2°C - Probe: EX3DV4 SN3650; ConvF(7.03, 7.03, 7.03); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (101x191x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.261 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 0.439 W/kg; SAR(10 g) = 0.145 W/kg Maximum value of SAR (measured) = 1.07 W/kg ### P04 Bluetooth Rear Face 0cm Ch39 #### **DUT: 150901C09** Communication System: BT; Frequency: 2441 MHz; Duty Cycle: 1:1.56 Medium: B19T27N2 0916 Medium parameters used: f = 2441 MHz; $\sigma = 1.979$ S/m; $\varepsilon_r = 51.287$; $\rho =$ Date: 2015/09/16 1000 kg/m^3 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.2 °C - Probe: EX3DV4 SN3650; ConvF(7.03, 7.03, 7.03); Calibrated: 2015/07/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2015/07/22 - Phantom: ELI Phantom 1204; Type: QDOVA; - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (101x191x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.427 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.569 W/kg SAR(1 g) = 0.154 W/kg; SAR(10 g) = 0.050 W/kg Maximum value of SAR (measured) = 0.374 W/kg # Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : Sep. 22, 2015 Report No.: SA150901C09 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: D750V3-1132 Jan15 ## **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1132 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 06, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | Approved by: Katja Pokovic Technical Manager Issued: January 6, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1132_Jan15 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.4 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1242 | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.94 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.23 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|---------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | [= 1 5 | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.46 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.63 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.3 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.0 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.1 Ω - 3.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.5 dB | | ### General Antenna Parameters and Design |
Electrical Delay (one direction) | 1.035 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 20, 2014 | ### **DASY5 Validation Report for Head TSL** Date: 06.01.2015 Test Laboratory: The name of your organization ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1132 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 41.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.69 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 2.95 W/kg SAR(1 g) = 1.99 W/kg; SAR(10 g) = 1.31 W/kg Maximum value of SAR (measured) = 2.33 W/kg 0 dB = 2.33 W/kg = 3.67 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 06.01.2015 Test Laboratory: The name of your organization DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1132 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ S/m}$; $\varepsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.31 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.12 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 2.48 W/kg 0 dB = 2.48 W/kg = 3.94 dBW/kg # Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V. ADT (Auden) Certificate No: D750V3-1013_Aug15 # **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1013 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 24, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Michael Weber Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: August 24, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1013_Aug15 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (mean) | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.07 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.29 W/kg ± 16.5 % (k=2) | ### **Body TSL
parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.3 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | SERRE: | ### **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.17 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.44 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.59 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1013_Aug15 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.2 Ω - 1.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.3 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.6 Ω - 2.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.6 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.035 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 22, 2010 | Certificate No: D750V3-1013_Aug15 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 21.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1013 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.87 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.34 W/kg Maximum value of SAR (measured) = 2.40 W/kg 0 dB = 2.40 W/kg = 3.80 dBW/kg Certificate No: D750V3-1013_Aug15 # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 24.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1013 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 1 \text{ S/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 17.08.2015 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.05 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.54 W/kg 0 dB = 2.54 W/kg = 4.05 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: D1900V2-5d036_Jan15 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d036 Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 26, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | | Oignature | | Calibrated by. | Leii Kiyəriei | Laboratory Technician | Let ply | | | | | 12.00 | | Approved by: | Katja Pokovic | Technical Manager | 60111 | Issued: January 27, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d036_Jan15 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** Certificate No: D1900V2-5d036_Jan15 d) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal
distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | # 555 0 | ### **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.3 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.0 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | - 11 | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.34 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.4 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d036_Jan15 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.5 Ω + 5.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $47.0 \Omega + 6.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.0 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.196 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 08, 2003 | #### **DASY5 Validation Report for Head TSL** Date: 26.01.2015 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d036 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.14 dBW/kg Certificate No: D1900V2-5d036_Jan15 ## **Impedance Measurement Plot for Head TSL** ### **DASY5 Validation Report for Body TSL** Date: 26.01.2015 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d036 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.91 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg Certificate No: D1900V2-5d036_Jan15 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client AUDEN Certificate No: Z15-97055 #### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 835 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: March 30, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Reference Probe EX3DV4 | SN 3846 | 24-Sep-14(SPEAG, No.EX3-3846_Sep14) | Sep-15 | | DAE4 | SN 1331 | 20-Jan-15(CTTL-SPEAG, No. Z15-97011) | Jan-16 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729) | Feb-16 | | Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728) | Feb-16 | | | | | | | 12 T 2 A 3 V A | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 会 多意意 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 3200 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | hart | Issued: March 31, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97055 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms
oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z15-97055 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Measurement Conditions SASY overteen configuration, as far as not given on page 1. | ASY System Comiguration, as iai as | not given on page | | |------------------------------------|--------------------------|-------------| | DASY Version | DASY52 | 52.8.8.1222 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm - | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | | | | | Head TSL parameters | ne following parameters and calculations were | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6% | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | - | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.3 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 53.4 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.27 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 mW /g ± 20.4 % (k=2) | Body TSL parameters | ne following parameters and calculations were | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.0 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | (| | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.6 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.3 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.91 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 mW /g ± 20.4 % (k=2) | Certificate No: Z15-97055 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6Ω+ 4.97jΩ | |--------------------------------------|---------------| | Return Loss | - 24.5dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.9Ω+ 5.90jΩ | |--------------------------------------|---------------| | Return Loss | - 24.6dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.039 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.811$ S/m; $\epsilon r = 40.22$; $\rho = 1000$ kg/m3 Phantom section: Left Section Measurement Standard: DAS Y5 (IEEE/IEC/ANSI C63.19-2007) DAS Y5 Configuration: • Probe: EX3DV4 - SN3846; ConvF(6.56, 6.56, 6.56); Calibrated: 9/24/2014; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1331; Calibrated: 2015-01-20 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DAS Y52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Date: 03.30.2015 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.2 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.27 W/kg Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.959 S/m; ϵ_r = 52.95; ρ = 1000 kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(6.9, 6.9, 6.9); Calibrated: 9/24/2014; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2015-01-20 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Date: 03.30.2015 **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.92 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.91 W/kgMaximum value of SAR (measured) = 19.2 W/kg 0 dB = 19.2 W/kg = 12.83 dB W/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### Impedance Measurement Plot for Body TSL #### Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-CTTL Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by CTTL (China Telecommunication Technology Labs), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and CTTL, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. The conditions in this KDB are valid until December 31, 2015. - The agreement established between SPEAG and CTTL is only applicable to calibration services performed by CTTL where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. CTTL shall inform the FCC of any changes or early termination to the agreement. - 2) Only a subset of the calibration services specified in the SPEAG-CTTL agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following. - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by CTTL, are excluded and cannot be used for measurements to support FCC equipment certification. - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or probe sensor model based linearization methods that are not fully described in SAR standards are excluded and cannot be used for measurements to support FCC equipment certification. - b) Calibration of SAR system validation dipoles, excluding HAC dipoles. - c) Calibration of data
acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the CTTL QA protocol (a separate attachment to this document). - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by CTTL. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC. - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB. - The SPEAG-CTTL agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by CTTL under this SPEAG- CTTL Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. CTTL shall apply the required protocols without modification and, upon request, provide copies of documentation to the FCC to substantiate program implementation. a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the CTTL QA protocol shall be performed between SPEAG and CTTL at least once every 12 months. The ILCE acceptance criteria defined in the CTTL QA protocol shall be satisfied for the CTTL, SPEAG and FCC agreements to remain valid. b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by CTTL. Written confirmation from SPEAG is required for CTTL to issue calibration certificates under the SPEAG-CTTL Dual-Logo calibration program. Quarterly reports for all calibrations performed by CTTL under the program are also issued by SPEAG. c) The calibration equipment and measurement system used by CTTL shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the CTTL QA protocol before each actual calibration can commence. CTTL shall maintain records of the measurement and calibration system verification results for all calibrations. d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit CTTL facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates. 4) A copy of this document shall be provided to CTTL clients that accept calibration services according to the SPEAG-CTTL Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval. CTTL shall address any questions raised by its clients or TCBs relating to the SPEAG-CTTL Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BV ADT (Auden)** Certificate No: EX3-3650_Jul15 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3650 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Claudio Leubler Claudio Leubler Katja Pokovic Technical Manager Issued: July 24, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,v,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle Certificate No: EX3-3650_Jul15 information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). July 23, 2015 EX3DV4 - SN:3650 # Probe EX3DV4 SN:3650 Manufactured: March 18, 2008 Calibrated: July 23, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) July 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--------------------------|----------|----------|----------|-----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 0.41 | 0.42 | 0.41 | ± 10.1 % | | | DCP
(mV) ^B | 100.2 | 100.2 | 102.5 | | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 144.7 | ±3.5 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 132.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 141.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. July 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 9.97 | 9.97 | 9.97 | 0.41 | 0.91 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.45 | 9.45 | 9.45 | 0.19 | 1.73 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.29 | 9.29 | 9.29 | 0.18 | 1.84 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.52 | 8.52 | 8.52 | 0.21 | 1.22 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.30 | 8.30 | 8.30 | 0.40 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.21 | 8.21 | 8.21 | 0.36 | 0.85 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.93 | 7.93 | 7.93 | 0.37 | 0.85 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.40 | 0.85 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.58 | 7.58 | 7.58 | 0.39 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.13 | 7.13 | 7.13 | 0.38 | 0.80 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.99 | 6.99 | 6.99 | 0.42 | 0.81 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.16 | 7.16 | 7.16 | 0.32 | 1.28 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.42 | 5.42 | 5.42 | 0.35 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.30 | 5.30 | 5.30 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.18 | 5.18 | 5.18 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.74 | 4.74 | 4.74 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.87 | 4.87 | 4.87 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3650 July 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.44 | 9.44 | 9.44 | 0.18 | 1.67 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.47 | 9.47 | 9.47 | 0.22 | 1.36 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.27 | 9.27 | 9.27 | 0.24 | 1.27 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.10 | 8.10 | 8.10 | 0.24 | 1.18 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.20 | 8.20 | 8.20 | 0.38 | 0.85 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.80 | 7.80 | 7.80 | 0.39 | 0.87 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.59 | 7.59 | 7.59 | 0.43 | 0.80 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.77 | 7.77 | 7.77 | 0.46 | 0.80 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.50 | 7.50 | 7.50 | 0.43 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.03 | 7.03 | 7.03 | 0.36 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.90 | 6.90 | 6.90 | 0.25 | 0.95 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.77 | 6.77 | 6.77 | 0.32 | 1.38 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.81 | 4.81 | 4.81 | 0.45 | 1.90 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.75 | 4.75 | 4.75 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.64 | 4.64 | 4.64 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.05 | 4.05 | 4.05 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.45 | 4.45 | 4.45 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) July 23, 2015 EX3DV4-SN:3650 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4- SN:3650 July 23, 2015 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3650 July 23, 2015 # **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz July 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 #### **Other Probe Parameters** Certificate No: EX3-3650_Jul15 | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -20.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm |