

TEST REPORT

Applicant: LAVA International Limited

A-56, Sector-64, Gautam Buddha Nagar, Noida, Uttar Pradesh, India

Product Name: Tablet

FCC ID: 2ARTX-S81

47 CFR Part 15, Subpart E(15.407)

Standard(s): FCC KDB 905462 D02 UNII DFS Compliance Procedures New

Rules v02

Report Number: 2402U40702E-RF-00F

Report Date: 2024/8/3

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Gun Xn

Reviewed By: Gavin Xu Approved By: Ivan Cao

> Title: RF Engineer Title: EMC Manager

hon Cas

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \star . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

CONTENTS

DOCUMENT REVISION HISTORY	3
1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 ACCESSORY INFORMATION:	4
1.3 ANTENNA INFORMATION DETAIL▲:	5
1.4 EQUIPMENT MODIFICATIONS	5
2. DESCRIPTION OF TEST CONFIGURATION	6
2.1 EUT OPERATION CONDITION	
2.2 SUPPORT EQUIPMENT LIST AND DETAILS	6
2.3 SUPPORT CABLE LIST AND DETAILS	6
2.4 BLOCK DIAGRAM OF TEST SETUP	6
2.5 TEST FACILITY	7
3. SUMMARY OF TEST RESULTS	8
4. REQUIREMENTS AND TEST PROCEDURES	9
4.1 DFS REQUIREMENT	9
4.2 TEST PROCEDURE	13
5. Test DATA AND RESULTS	14
5.1 RADAR WAVEFORM CALIBRATION	15
5.2 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	16
5.2.1 Test Procedure	
5.2.2 Test Results	
5.3.1 Test Procedure	
APPENDIX A - EUT PHOTOGRAPHS	
APPENDIX R. TEST SETUP PHOTOGRAPHS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402U40702E-RF-00F	Original Report	2024/8/3

Report No.: 2402U40702E-RF-00F

Report Template Version: DFS-V1.0 Page 3 of 19

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

i Froduct Description for Equipi	nent unuer Test (EUT)
Manufacturer:	LAVA International Limited (A-154 D, Sector-63, Noida, Gautam Buddha Nagar, Uttar
	Pradesh,201301,India)
EUT Name:	Tablet
EUT Model:	S81
Multiple Model:	S81A, S81Q, S81X , S81P, S81Z
	5250-5350MHz:
	5260-5320 MHz (802.11a/n ht20/ac vht20)
	5270-5310 MHz(802.11n ht40/ac vht40)
Operation Frequency:	5290 MHz(802.11ac vht80)
Operation Frequency.	5470-5725MHz:
	5500-5720 MHz (802.11a/n ht20/ac vht20)
	5510-5710 MHz(802.11n ht40/vht40)
	5530-5690MHz(802.11ac vht80)
Maximum Average Conducted	7.72 dBm in 5250-5350 MHz Band
Output Power:	7.41 dBm in 5470-5725 MHz Band
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM
Rated Input Voltage:	DC 3.8V from battery or DC 5V from USB port
Serial Number:	2MPD-1
EUT Received Date:	2024/6/12
EUT Received Status:	Good

Note: The multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

1.2 Accessory Information:

Accessory Description	Manufacturer	Model	Parameters	
/	/	/	/	

1.3 Antenna Information Detail ▲:

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
Shenzhen Yusheng			5.25~5.35 GHz	0.37dBi
Communication Equipment Co., LTD	FPC	50	5.47~5.725 GHz	2.37dBi

The design of compliance with §15.203:

\bowtie	Unit uses a permanently attached antenna.
	Unit uses a unique coupling to the intentional radiator.

Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

Report Template Version: DFS-V1.0

Page 5 of 19

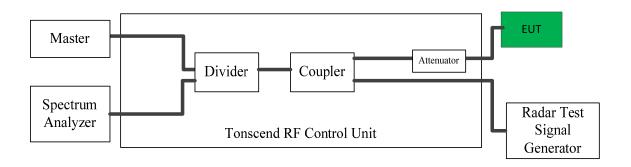
2. DESCRIPTION OF TEST CONFIGURATION

2.1 EUT Operation Condition

EUT Operation Mode:	The system was configured for testing in Engineering Mode, which was provided by the manufacturer.	
Equipment Modifications:	No	
EUT Exercise Software:	Tfgen	
WLAN traffic is generated by software "Tfgen", software is used by IP and Frame based systems for		

WLAN traffic is generated by software "Ifgen", software is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Data pakes streamed from the Access Point to the Client using the software "Tfgen".

2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	T430	AA887-03
Tenda	Router	RX12Pro	ED331010215000033

Note: The mater Wireless Router FCC ID: V7TRX12P2.

2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

2.4 Block Diagram of Test Setup

2.5 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

Report No.: 2402U40702E-RF-00F

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 829273, the FCC Designation No.: CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

Report Template Version: DFS-V1.0 Page 7 of 19

3. SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the KDB: $905462\ D02\ UNII\ DFS\ Compliance\ Procedures\ New\ Rules\ v02$

Items	Description of Test	Result
Detection Bandwidth	UNII Detection Bandwidth	Not applicable
D. C	Initial Channel Availability Check Time (CAC)	Not applicable
Performance Requirements Check	Radar Burst at the Beginning of the CAC	Not applicable
Check	Radar Burst at the End of the CAC	Not applicable
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	Not applicable

Note:

Not applicable: The EUT is a client unit without radar detection.

Report Template Version: DFS-V1.0

Page 8 of 19

4. REQUIREMENTS AND TEST PROCEDURES

4.1 DFS Requirement

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operatio	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	
Channel Move Time and Channel	Test using widest BW mode	Test using the widest
Closing Transmission Time	available	BW mode available
		for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar
Detection

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
1 1	Width		runibel of Fulses		Number
Type		(µsec)		Percentage of	
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique	((1))	60%	30
		PRI values	$\left(\frac{360}{360}\right)$.		
		randomly selected	Roundup		
		from the list of 23	19·10 ⁶		
		PRI values in	$\left(\left \overline{\text{PRI}_{\mu \text{sec}}} \right \right)$		
		Table 5a	(\frac{frac}{μsec})]		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range			
		of 518-3066 µsec,			
		with a minimum			
		increment of 1			
		µsec, excluding			
		PRI values			
		selected in Test A	22.22	400/	
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types	1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses would be Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$

Table 5a - Pulse Repetition Intervals Values for Test A

Report No.: 2402U40702E-RF-00F

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection		
1	35	29	82.9%		
2	30	18	60%		
3	30	27	90%		
4	50	44	88%		
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%					

Table 6 - Long Pulse Radar Test Waveform

Report No.: 2402U40702E-RF-00F

		Those of Doing I more I main I too Will retoring								
	Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum		
١	Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of		
١		(µsec)	(MHz)		per Burst		Successful	Trials		
l							Detection			
	5	50-100	5-20	1000-	1-3	8-20	80%	30		
١				2000						

Table 7 - Frequency Hopping Radar Test Waveform

	Table / Trequency fropping faddar fest waveform							
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum	
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of	
	(µsec)		Hop	(kHz)	Length	Successful	Trials	
					(msec)	Detection		
6	1	333	9	0.333	300	70%	30	

4.2 Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move.

Report Template Version: DFS-V1.0

Page 13 of 19

5. Test DATA AND RESULTS

Serial Number:	2MPD-1	Test Date:	2024/8/1
Test Site:	RF	Test Mode:	Traffic
Tester:	Harper Shen	Test Result:	Pass

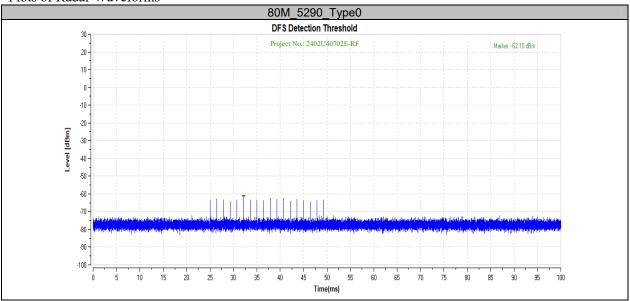
Report No.: 2402U40702E-RF-00F

Environmental Conditions:					
Temperature: (°C)	25.8	Relative Humidity: (%)	62	ATM Pressure: (kPa	100.2

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXG Vector Signal Generator	N5182A	MY49060274	2023/10/18	2024/10/17
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17
Tonscend	RF Control Unit	JS0806-2	19G8060171	2023/10/18	2024/10/17
HUBER+SUHNER	Coaxial Attenuator	6610_SMA-50-1	0064	2024/6/13	2025/6/12
HUBER+SUHNER	Coaxial Attenuator	6610_SMA-50-1	0069	2024/6/13	2025/6/12
Eastsheep	Coaxial Attenuator	2W-SMA-JK-6G- 10dB	F-08-EM509	2024/6/7	2025/6/6

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Report Template Version: DFS-V1.0

Page 14 of 19

5.1 Radar Waveform Calibration

Test Mode	Freq(MHz)	Radar Type	Result	Limit[dBm]	Verdict
80M	5290	Type0	-62.10	-62	PASS

Plots of Radar Waveforms

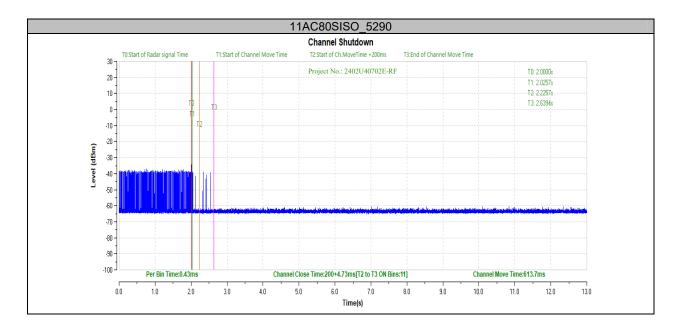
5.2 Channel Move Time And Channel Closing Transmission Time

5.2.1 Test Procedure

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The aggregate channel closing transmission time is calculated as follows:


Aggregate Transmission Time = N*Dwell Time

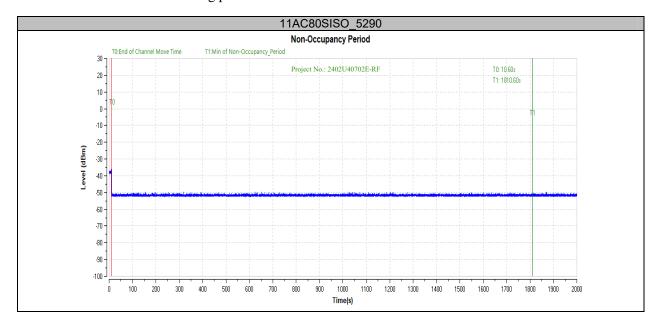
N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

5.2.2 Test Results

Test Mode	Freq(MHz)	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11AC80SISO	5290	200+4.73	200+60	613.7	10000	PASS

Please refer to the following tables and plots.

5.3 Non-occupancy Period


5.3.1 Test Procedure

Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

5.3.2 Test Result

Test Mode	Freq(MHz)	Result	Limit[s]	Verdict
11AC80SISO	5290	see test graph	≥1800	PASS

Please refer to the following plots.

Report Template Version: DFS-V1.0 Page 18 of 19

APPENDIX B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402U40702E-RF-00F-TSP TEST SETUP PHOTOGRAPHS.

***** END OF REPORT *****

Report No.: 2402U40702E-RF-00F

Report Template Version: DFS-V1.0 Page 19 of 19