

TEST REPORT

Product : Smart Cat Litter Box

Trade mark : N/A

Model/Type reference : UCAT C30, UCAT C31,

UCAT C32

Serial Number : N/A

Report Number : EED32R80465901 FCC ID : 2AHJX-UCATC30

Date of Issue : May 09, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD

Room 2201, Building C1 Nanshan Smart Park No. 1001 Xueyuan Avenue Changyuan Community Taoyuan Street Nanshan District Shenzhen PRC

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

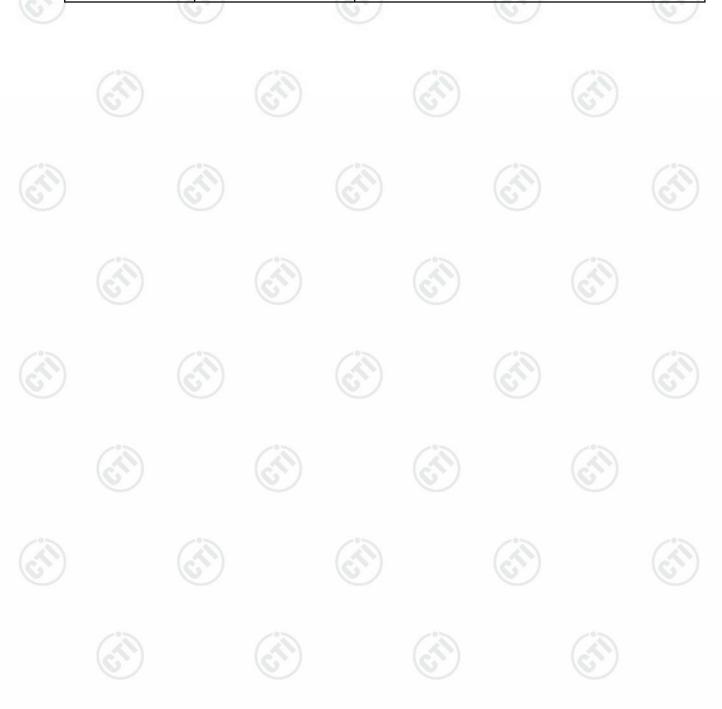
Compiled by:	keven Jan.	Reviewed by:	Firazer. Li	
FONATA	Keven Tan		Frazer Li	
Approved by:	Lavon Ma	Date:	May 09, 2025	
(CTI)	Aaron Ma			

Check No.:1700040325

Page 2 of 55 Report No.: EED32R80465901

Content

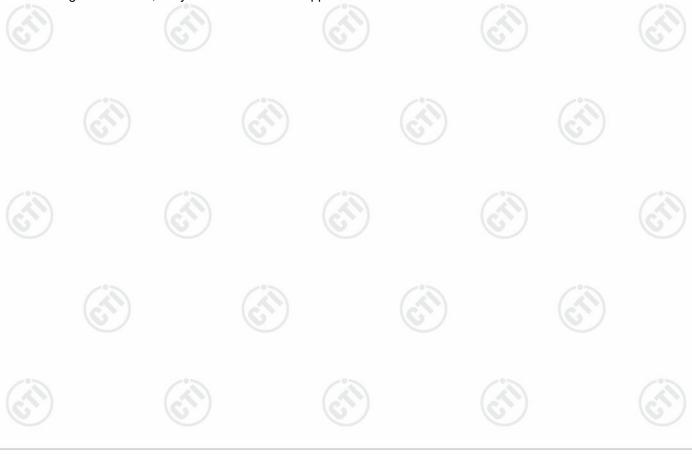
1 CONTENT	2
2 VERSION	3
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
5 EQUIPMENT LIST	9
6 TEST RESULTS AND MEASUREMENT DATA	12
6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER 6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DENSITY 6.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 6.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
7 APPENDIX A	35
8 PHOTOGRAPHS OF TEST SETUP	36
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	38



Report No.: EED32R80465901 Page 3 of 55

2 Version

Version No.	Date	Description
00	May 09, 2025	Original
(


Report No. : EED32R80465901 Page 4 of 55

3 Test Summary

o root oanning		
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Model No.: UCAT C30, UCAT C31, UCAT C32

Only the model UCAT C30 was tested, Their electrical circuit design, layout, components used and internal wiring are identical, Only the shell structure appearance is different.

4 General Information

4.1 Client Information

Applicant:	UBTECH ROBOTICS CORP LTD
Address of Applicant:	Room 2201, Building C1 Nanshan Smart Park No. 1001 Xueyuan Avenue
-05	Changyuan Community Taoyuan Street Nanshan District Shenzhen PRC
Manufacturer:	UBTECH ROBOTICS CORP LTD
Address of Manufacturer:	Room 2201, Building C1 Nanshan Smart Park No. 1001 Xueyuan Avenue Changyuan Community Taoyuan Street Nanshan District Shenzhen PRC
Factory:	UBTECH ROBOTICS CORP LTD BAOAN BRANCH
Address of Factory:	1-2Floor, Block B, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA

4.2 General Description of EUT

Product Name:	Smart Cat Li	itter Box			
Model No.(EUT):	UCAT C30, UCAT C31, UCAT C32				
Test Model:	UCAT C30	36/11 66 1, 66/11 662			
Trade mark:	N/A			(0,)	
Product Type:	☐ Mobile	☐ Portable ☐ Fixed Location			
Operation Frequency:	2402MHz~2	480MHz			
Modulation Type:	GFSK	CiO.	(3)		
Transfer Rate:	⊠ 1Mbps □	⊴ 2Mbps	(62)		
Number of Channel:	40				
Antenna Type:	PCB Antenn	a			
Antenna Gain:	3.96dBi	(1)		/°>	
Power Supply:	Adapter:	Model: A241-1202000P Input: 100-240V, 50/60Hz Output: 12V/2A			
Test Voltage:	DC 12V				
Sample Received Date:	Apr. 15, 202	5			
Sample tested Date:	Apr. 15, 202	5 to Apr. 20, 2025	(41)		

Report No. : EED32R80465901 Page 6 of 55

100		100					
Operation F	requency eac	h of channe	ı	,			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency(MHz)
The lowest channel (CH0)	2402
The middle channel (CH19)	2440
The highest channel (CH39)	2480

4.3 Test Configuration

EUT Test Softward	e Settings:						
Test Software: EspRFTes			tTool_v3.6_Manual				
EUT Power Grade:		Default (Po selected)	Default (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the I		est frequency	y, the middle freque	ncy and the highest fr	equency keep		
Test Mode	Modi	ulation	Rate	Channel	Frequency(MHz)		
Mode a	GF	SK	1Mbps	CH0	2402		
Mode b	GFSK		1Mbps	CH19	2440		
Mode c	GF	-SK	1Mbps	CH39	2480		
Mode d	GF	SK	2Mbps	CH0	2402		
Mode e	GF	SK	2Mbps	CH19	2440		
Mode f	GF	-SK	2Mbps	CH39	2480		

4.4 Test Environment

Operating Environn	nent:					
Radiated Spurious	Emissions:					
Temperature:	22~25.0 °C	(41)		(41)		(4)
Humidity:	50~55 % RH	6		(0)		(0)
Atmospheric Pressur	e: 1010mbar					
Conducted Emission	ns:					
Temperature:	22~25.0 °C		(3)		(20)	
Humidity:	50~55 % RH		(0,)		(0,)	
Atmospheric Pressur	e: 1010mbar					
RF Conducted:	·					
Temperature:	22~25.0 °C	/°		(3)		
Humidity:	50~55 % RH	(6,7)		(6,7)		(6,7)
Atmospheric Pressur	e: 1010mbar					

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Asus	FL8700JP1065-	FCC&CE	СТІ
		0D8GXYQ2X10		

4.6 Test Location

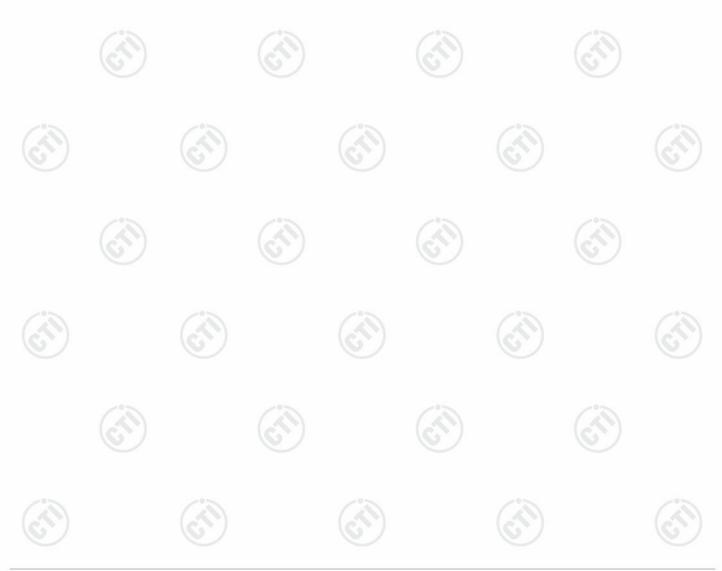
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE novem conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Couriers and also test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
·11)		3.4dB (18GHz-40GHz)
1	Oca duration analysis	3.5dB (9kHz-150kHz)
4	Conduction emission	3.1dB (150kHz-30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32R80465901 Page 9 of 55

5 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-05-2024	12-104-2025
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025
Communication test	R&S	CMW500	169004	03-03-2025	03-02-2026
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	- (6	<u></u>
Spectrum Analyzer	R&S	FSV3044	101509	02-14-2025	02-13-2026

7.5		70		7.	_0
Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-18-2024 04-08-2025	04-17-2025 04-07-2026
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025
Barometer	changchun	DYM3	1188		@

Page 10 of 55 Report No.: EED32R80465901

Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(65
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025

.	l Semi-anechoic				Cal Dua data
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024 04/07/2025	04/15/2025 04/06/2026
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/07/2025	04/06/2026
Preamplifier	Agilent	11909A	12-1	03/03/2025	03/02/2026
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025

Report No. : EED32R80465901 Page 11 of 55

		3M full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-04-2025	01-03-2026
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-14-2025	01-13-2026
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-14-2025	01-13-2026
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024 04-12-2025	04-15-2025 04-11-2026
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-03-2025	03-02-2026
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Communication test set	R&S	CMW500	102898	01-04-2025	01-03-2026
Temperature/	biaozhi	GM1360	EE1186631	03-31-2025	03-30-2026
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32R80465901 Page 12 of 55

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

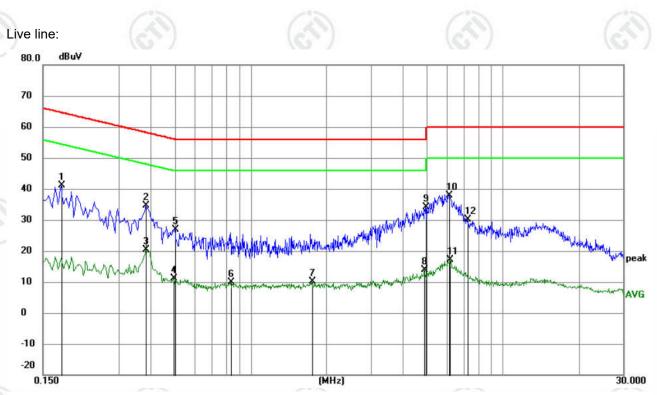
The antenna is PCB antenna. The best case gain of the antenna is 3.96dBi.

Test Mode:

Report No.: EED32R80465901 Page 13 of 55

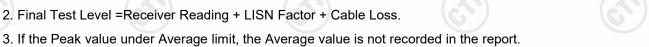
6.2 Conducted Emissions

6.2	Conducted Emis	ssions					
	Test Requirement:	47 CFR Part 15C Section 15	207	(0.)			
	Test Method:	ANSI C63.10: 2013					
	Test Frequency Range:	150kHz to 30MHz					
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Limit:	Francisco de la CMI In	Limit (d	BuV)	N)		
		Frequency range (MHz)	Quasi-peak	Average			
		0.15-0.5	66 to 56*	56 to 46*			
		0.5-5	56	46			
		5-30	60	50			
		* Decreases with the logarith	m of the frequency.				
	Test Setup:]		
		Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver	9		
	Test Procedure:	The mains terminal distur room.					
		2) The EUT was connected Impedance Stabilization Nimpedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the same tabletop EUT was placed on the horizontal g	Network) which provides cables of all other of SN 2, which was bonde as the LISN 1 for the was used to connect neating of the LISN was naced upon a non-metal and for floor-standing arround reference plane.	s a 50Ω/50µH + 5Ω li units of the EUT of d to the ground refer- unit being measure nultiple power cables not exceeded. Hic table 0.8m above trangement, the EUT	inear were ence ed. A s to a		
		4) The test was performed we the EUT shall be 0.4 me vertical ground reference reference plane. The LIS unit under test and bore mounted on top of the ground associated equipments of the and associated equipments. 5) In order to find the maximand all of the interface can all of the interface c	from the vertical group of plane was bonded to N 1 was placed 0.8 m anded to a ground refound reference plane. The LISN 1 and the EUT. At was at least 0.8 m from the must be changed as the plane of th	nd reference plane. to the horizontal groffrom the boundary of erence plane for Linis distance was between the LISN 2. We positions of equipals.	The ound of the ISNs ween EUT		

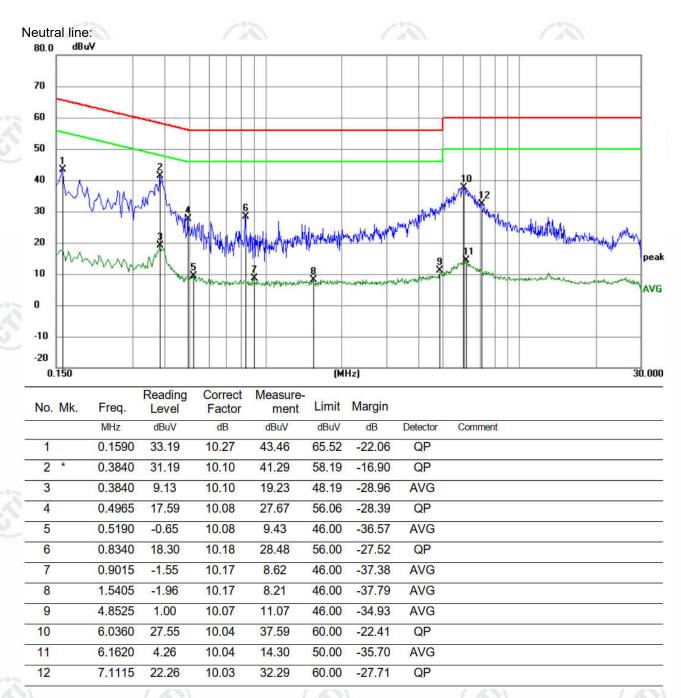

All modes were tested, only the worst case mode d

Page 14 of 55 Report No.: EED32R80465901

	was recorded in the report.	7°5
Test Results:	Pass	(6/42)


Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	30.80	10.24	41.04	64.63	-23.59	QP	
2	0.3840	24.50	10.10	34.60	58.19	-23.59	QP	
3	0.3840	10.32	10.10	20.42	48.19	-27.77	AVG	
4	0.4965	1.11	10.08	11.19	46.06	-34.87	AVG	
5	0.5010	16.92	10.08	27.00	56.00	-29.00	QP	
6	0.8340	-0.18	10.18	10.00	46.00	-36.00	AVG	
7	1.7520	-0.16	10.17	10.01	46.00	-35.99	AVG	
8	4.8885	3.74	10.06	13.80	46.00	-32.20	AVG	
9 *	4.9515	24.14	10.06	34.20	56.00	-21.80	QP	
10	6.1260	27.87	10.04	37.91	60.00	-22.09	QP	
11	6.1665	7.07	10.04	17.11	50.00	-32.89	AVG	
12	7.2420	20.03	10.02	30.05	60.00	-29.95	QP	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

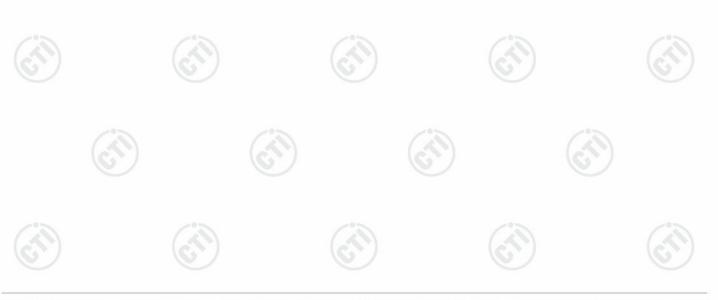
6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		(2)
	Control Computer Power Supply Power Poble Table EUT Control RF test System System Instrument Table	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/°>
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix A	

Report No.: EED32R80465901 Page 17 of 55

6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Control Control Power Supply Power Foot Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

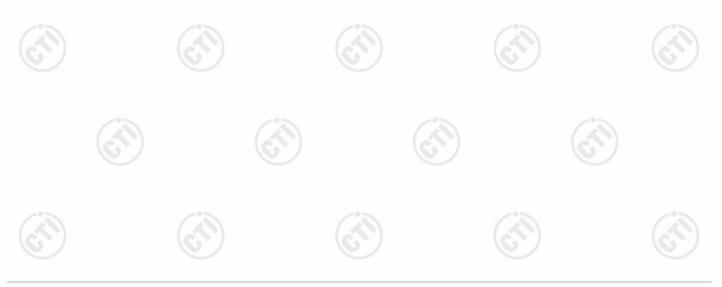


6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Control Control Power Supply Power TEMPERATURE CABNET	RF test System Instrument
	Remark: Offset=Cable loss+ attenua	ation factor.
Test Procedure:	within the RBW.	S bandwidth.
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	-0-
Test Results:	Refer to Appendix A	

6.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	RF test System Power port Supply Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



6.7 Radiated Spurious Emission & Restricted bands

16.7	165		183		163	, , , , , , , , , , , , , , , , , , , ,	
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205			
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)	-05	
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	OkHz Peak OkHz Average OkHz Quasi-peak OkHz Average OkHz Quasi-peak OkHz Quasi-peak OkHz Quasi-peak OkHz Average	
	Al 4011-	P		1MHz	3MHz	Peak	
	Above 1GHz		Peak	1MHz	10kHz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peak	3	
	216MHz-960MHz	6	200	46.0	Quasi-peak	3	
	960MHz-1GHz	/	500	54.0	Quasi-peak	3	
	Above 1GHz		500	54.0	Average	3	
	Above 1GHz 500 54.0 Average 3 Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

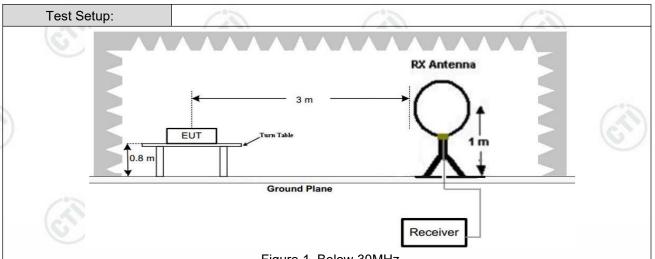


Figure 1. Below 30MHz

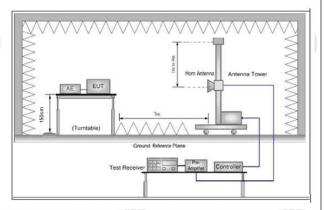


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

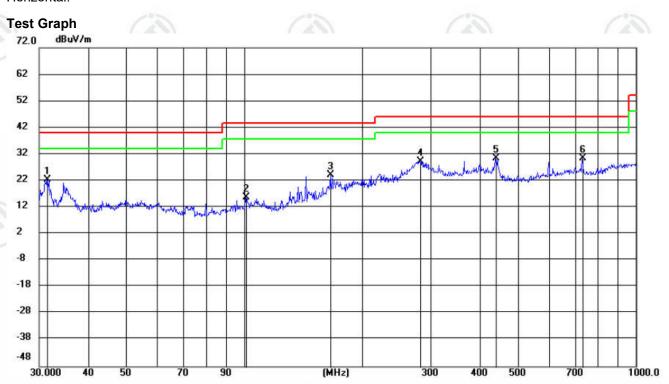
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32R80465901 Page 22 of 55

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



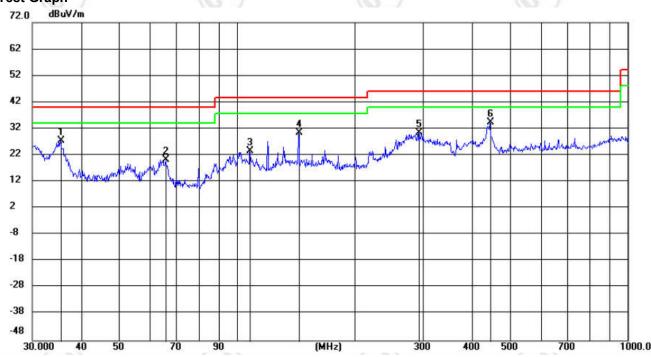
Report No.: EED32R80465901 Page 23 of 55

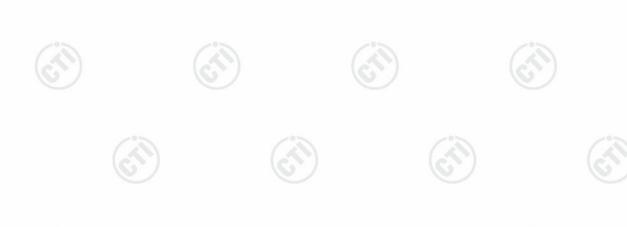
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.4212	9.79	12.44	22.23	40.00	-17.77	QP	199	39	
2		101.2174	2.53	13.33	15.86	43.50	-27.64	QP	199	7	
3		166.6221	13.00	11.18	24.18	43.50	-19.32	QP	100	75	
4		281.4019	13.43	15.88	29.31	46.00	-16.69	QP	100	12	
5		439.4251	10.37	20.07	30.44	46.00	-15.56	QP	199	122	
6	*	731.1507	6.00	24.45	30.45	46.00	-15.55	QP	100	218	





Page 24 of 55 Report No.: EED32R80465901

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.3812	14.80	12.66	27.46	40.00	-12.54	QP	100	112	
2		65.8377	8.43	11.77	20.20	40.00	-19.80	QP	100	112	
3		108.0581	9.69	14.00	23.69	43.50	-19.81	QP	100	101	
4		144.1577	20.16	10.41	30.57	43.50	-12.93	QP	100	70	
5		292.2120	14.11	16.28	30.39	46.00	-15.61	QP	100	154	
6	*	445.8665	14.26	20.15	34.41	46.00	-11.59	QP	100	185	

Page 25 of 55 Report No.: EED32R80465901

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

Mod	le:		Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	7
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1438.8293	13.17	37.24	50.41	74.00	23.59	Pass	Н	PK
2	2069.938	14.82	37.12	51.94	74.00	22.06	Pass	Н	PK
3	4642.6595	-9.22	52.61	43.39	74.00	30.61	Pass	Н	PK
4	6733.1989	-3.34	46.72	43.38	74.00	30.62	Pass	Н	PK
5	8769.1346	-0.15	45.83	45.68	74.00	28.32	Pass	Н	PK
6	9788.4026	1.11	45.69	46.80	74.00	27.20	Pass	Н	PK
7	1482.6988	13.14	37.50	50.64	74.00	23.36	Pass	V	PK
8	2009.4006	14.71	36.64	51.35	74.00	22.65	Pass	V	PK
9	3858.0572	-12.06	55.51	43.45	74.00	30.55	Pass	V	PK
10	4920.228	-8.18	49.72	41.54	74.00	32.46	Pass	V	PK
11	7341.6394	-2.86	46.93	44.07	74.00	29.93	Pass	V	PK
12	10411.1441	1.97	45.49	47.46	74.00	26.54	Pass	V	PK

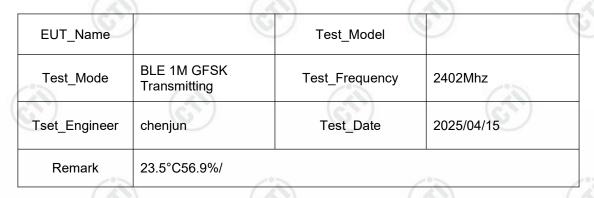
Mode	:		Bluetooth LE C	SFSK Transmi	tting	Channel:		2440 MHz			
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1514.1676	13.30	38.02	51.32	74.00	22.68	Pass	Н	PK		
2	2214.0809	15.25	37.52	52.77	74.00	21.23	Pass	Н	PK		
3	3999.1166	-11.68	54.47	42.79	74.00	31.21	Pass	Н	PK		
4	5412.3108	-6.65	48.38	41.73	74.00	32.27	Pass	Н	PK		
5	7816.8211	-1.93	47.23	45.30	74.00	28.70	Pass	Н	PK		
6	10249.2833	1.97	44.64	46.61	74.00	27.39	Pass	Н	PK		
7	1511.1007	13.29	38.46	51.75	74.00	22.25	Pass	V	PK		
8	2100.74	15.10	37.00	52.10	74.00	21.90	Pass	V	PK		
9	3893.8096	-11.98	54.14	42.16	74.00	31.84	Pass	V	PK		
10	4859.774	-8.43	49.94	41.51	74.00	32.49	Pass	V	PK		
11	7039.3693	-3.33	46.84	43.51	74.00	30.49	Pass	V	PK		
12	9787.7525	1.12	45.71	46.83	74.00	27.17	Pass	V	PK		

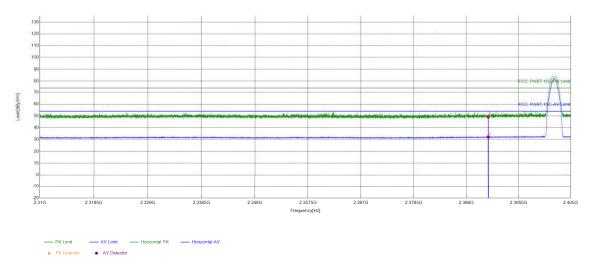
Report No. : EED32R80465901 Page 26 of 55

		20%		200		20%		1	0.00		
	Mode	:		Bluetooth LE G	SFSK Transmi	itting	Channel:		2480 MHz	<u>z</u>	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1446.9631	13.11	36.80	49.91	74.00	24.09	Pass	Н	PK	
3	2	1862.9909	14.50	37.23	51.73	74.00	22.27	Pass	Н	PK	
	3	3845.7064	-12.11	54.39	42.28	74.00	31.72	Pass	Н	PK	
	4	4797.3698	-8.61	50.80	42.19	74.00	31.81	Pass	Н	PK	
	5	7716.7144	-1.60	46.24	44.64	74.00	29.36	Pass	Н	PK	
	6	9787.7525	1.12	45.61	46.73	74.00	27.27	Pass	Н	PK	
	7	1339.6226	12.45	37.73	50.18	74.00	23.82	Pass	V	PK	
	8	1894.593	14.47	37.18	51.65	74.00	22.35	Pass	V	PK	
	9	3989.366	-11.73	54.49	42.76	74.00	31.24	Pass	V	PK	
	10	4931.9288	-8.12	49.87	41.75	74.00	32.25	Pass	V	PK	
3	11	7073.8216	-3.26	46.84	43.58	74.00	30.42	Pass	V	PK	
V	12	10247.9832	1.96	45.86	47.82	74.00	26.18	Pass	V	PK	

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

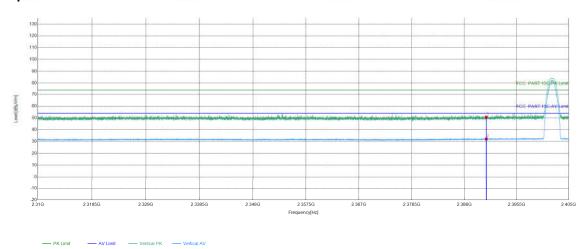


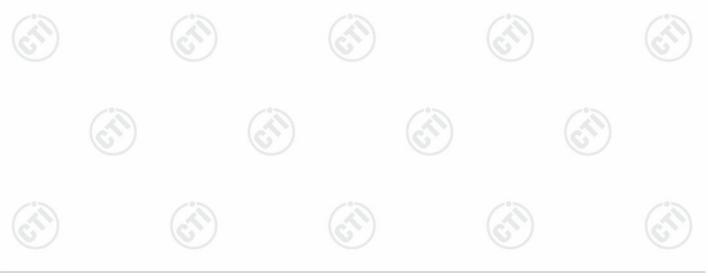


Restricted bands:

Test plot as follows:

	Suspecte	d List								
01	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2390	15.96	33.09	49.05	74.00	24.95	PASS	Horizontal	PK
	2	2390	15.96	16.26	32.22	54.00	21.78	PASS	Horizontal	AV

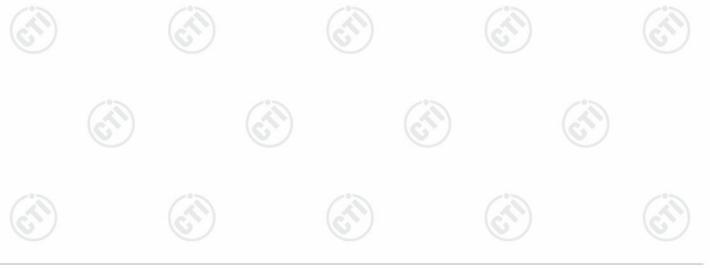




Page 28 of 55 Report No.: EED32R80465901

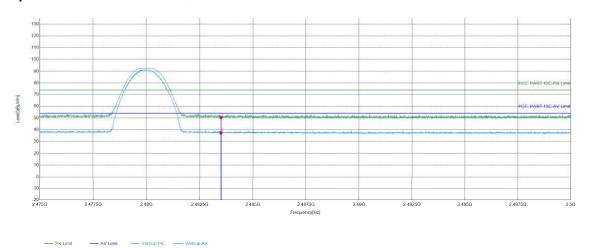
*_ * _ /	(0.5)	16.3	16.5
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/	Ci)	(1)


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	15.96	34.76	50.72	74.00	23.28	PASS	Vertical	PK	
2	2390	15.96	16.24	32.20	54.00	21.80	PASS	Vertical	AV	



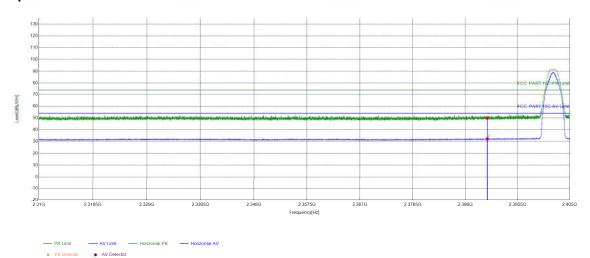
Page 29 of 55 Report No.: EED32R80465901

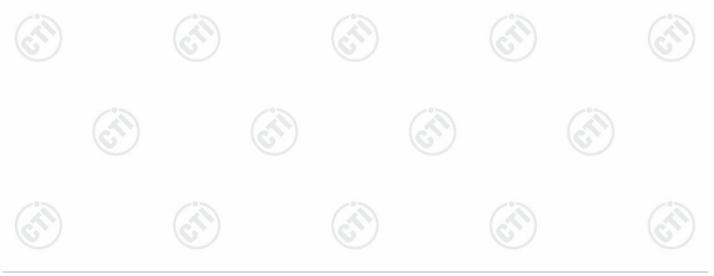
*_ * _ /	100	(6.7)	16.5
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/	Ci)	(1)


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	16.29	35.37	51.66	74.00	22.34	PASS	Horizontal	PK	
2	2483.5	16.29	21.05	37.34	54.00	16.66	PASS	Horizontal	AV	

Page 30 of 55 Report No.: EED32R80465901

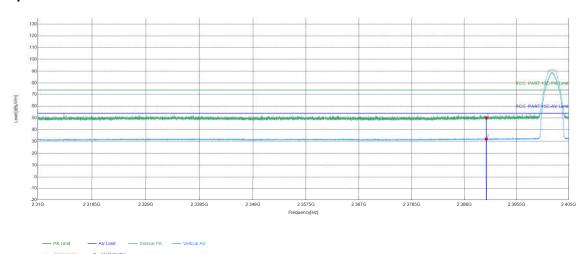
*_ * _ /	100	(6.7	16.5
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/		(3)

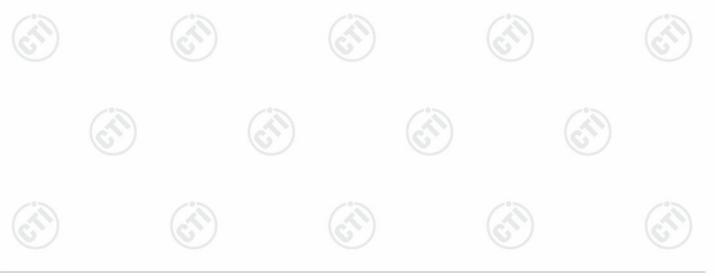

	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
Γ	1	2483.5	16.29	34.20	50.49	74.00	23.51	PASS	Vertical	PK		
	2	2483.5	16.29	21.09	37.38	54.00	16.62	PASS	Vertical	AV		



Page 31 of 55 Report No.: EED32R80465901

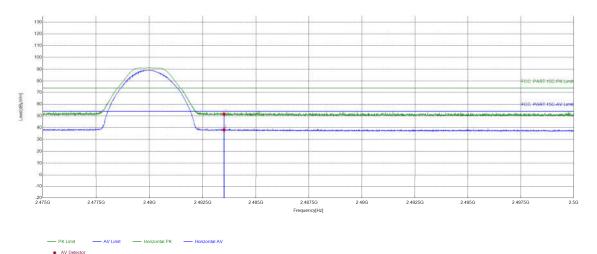
	(65)	(6.7)	163
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/		CO.


Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	15.96	34.00	49.96	74.00	24.04	PASS	Horizontal	PK			
2	2390	15.96	16.29	32.25	54.00	21.75	PASS	Horizontal	AV			



Page 32 of 55 Report No.: EED32R80465901

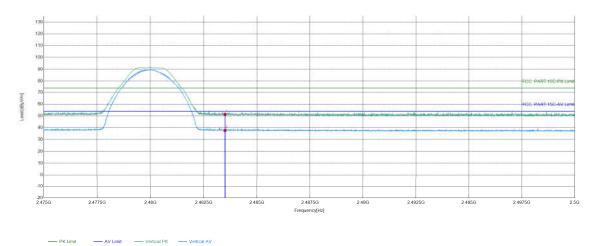
6.01	(0)	(C)	162
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/		


Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	15.96	33.97	49.93	74.00	24.07	PASS	Vertical	PK			
2	2390	15.96	16.21	32.17	54.00	21.83	PASS	Vertical	AV			

Page 33 of 55 Report No.: EED32R80465901

6.0	1000	16.5	16.5
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/		Ci)

Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5	16.29	35.42	51.71	74.00	22.29	PASS	Horizontal	PK			
2	2483.5	16.29	21.94	38.23	54.00	15.77	PASS	Horizontal	AV			



Report No.: EED32R80465901 Page 34 of 55

EUT_Name		Test_Model	
Test_Mode BLE 2M GFSK Transmitting		Test_Frequency	2480Mhz
Tset_Engineer	chenjun	Test_Date	2025/04/15
Remark	23.5°C56.9%/		

Test Graph

Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	16.29	35.15	51.44	74.00	22.56	PASS	Vertical	PK		
2	2483.5	16.29	21.42	37.71	54.00	16.29	PASS	Vertical	AV		

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix A

Refer to Appendix: Bluetooth LE of EED32R80465901

