

FCC TEST REPORT

Report No.: HK2105261651-1E

Test report
On Behalf of
Shenzhen Samoon Technology Co., Ltd.
For
Car Dash Camera
Model No.: R3, CHF53HIT-B

FCC ID: 2A20E-R3

Prepared for: Shenzhen Samoon Technology Co., Ltd.

Floor 6, Building 7, Zhongyuntai Science and Technology Industrial Factory,

Songbai Road, Shiyan Street, Baoan District, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jun. 01, 2021 ~ Jul. 28, 2021

Date of Report: Jul. 28, 2021

Report Number: HK2105261651-1E

TEST RESULT CERTIFICATION

Applicant's name...... Shenzhen Samoon Technology Co., Ltd.

Floor 6, Building 7, Zhongyuntai Science and Technology Industrial

Report No.: HK2105261651-1E

Address Factory, Songbai Road, Shiyan Street, Baoan District, Shenzhen,

China

Manufacture's Name Shenzhen Shunmeng Technology Co., Ltd

Floor 6, Building 7, Zhongyuntai Science and Technology Industrial

Address Factory, Songbai Road, Shiyan Street, Baoan District, Shenzhen,

China

Product description

Trade Mark: ROVE

Product name...... Car Dash Camera

Model and/or type reference .: R3, CHF53HIT-B

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests Jun. 01, 2021 ~ Jul. 28, 2021

Test Result..... Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

Report No.: HK2105261651-1E

1.	Test Result Summary	
	1.1. TEST PROCEDURES AND RESULTS	¹⁰⁶ 5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	6
2.	EUT Description	7
	2.1. GENERAL DESCRIPTION OF EUT	7
	2.2. OPERATION OF EUT DURING TESTING	8
	2.3. DESCRIPTION OF TEST SETUP	
3.	Genera Information	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	12
4.	Test Results and Measurement Data	13
	4.1. CONDUCTED EMISSION	13
	4.2. Test Result	
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4 FMISSION BANDWIDTH	18
	4.5. POWER SPECTRAL DENSITY	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	30
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	40
	4.8. ANTENNA REQUIREMENT	66
	4.9. PHOTOGRAPH OF TEST	67
	The property of the property o	TING

** Modified History **

Report No.: HK2105261651-1E

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jul. 28, 2021	Jason Zhou
TNG.	ING ING	THE THE	G mG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1. Test Result Summary

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Report No.: HK2105261651-1E

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 TESTIN	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK

2. EUT Description

2.1. GENERAL DESCRIPTION OF EUT

Equipment	Car Dash Camera	O HUAN I	MUAK IL
Model Name	R3	TESTING	
Serial No.	CHF53HIT-B	O HUN	WAKTESTING
Model Difference	All model's the function, softwhe same, only with a product el named different. Test samp	color, appearan	
FCC ID	2A2OE-R3	O HUAK I	O HUAN
Antenna Type	Internal Antenna		
Antenna Gain	1.2dBi	HUAKTESTING	HUAKTESTIN
Operation frequency	802.11b/g/n 20:2412~2462 MH: 802.11n 40: 2422~2452MHz	Z Z	
Number of Channels	802.11b/g/n20: 11CH 802.11n 40: 7CH	HUAN	HUAKTESTING
Modulation Type	CCK/OFDM/DBPSK/DAPSK	LAKTESTING	
Power Source	DC 12-24V	, IAK TESTIN	E HUAN TESTING
Power Rating	DC 12-24V	0,000	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Carrier Frequency of Channels

	Channel List for 802.11b/802.11g/802.11n (HT20)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	.Ca	

Report No.: HK2105261651-1E

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CING OF	04	2427	07	2442	w	
w M	AKTE	05	2432	08	2447	IN TEST	THUAKTE
03	2422	06	2437	09	2452	(1) Marie	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.2. Operation of EUT during testing

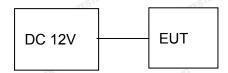
Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.3. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

3. Genera Information

3.1. Test environment and mode

Operating Environment:	257 25	V
Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	V TESTING
Test Mode:		
Engineering mode:	Keep the EUT in continuou by select channel and mod value of duty cycle is 98.46	lulations(The

Report No.: HK2105261651-1E

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Report No.: HK2105261651-1E

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

4L

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	IG I HUANTESTI	I STING	I HUMA TESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAI

Report No.: HK2105261651-1E

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://

4. Test Results and Measurement Data

4.1. Conducted Emission

Test Specification

-7111		A11.	
FCC Part15 C Section 15.207			
ANSI C63.10:2013			
150 kHz to 30 MHz			
RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto		
Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50	
Poferon	ace Plane	alG FSTR	
Remark E.U.T. Equipment Under Test LISN Filter AC power Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m			
Charging + transmitting with modulation			
 The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 			
N/A	HUANTE	HUAKTES	
	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30 Referent 40cm E.U.T Ac power through a Least table height=0.8m Charging + transmitting 1. The E.U.T is connectine impedance state provides a 500hm/s measuring equipment 2. The peripheral device power through a Least table height=0.8m 2. The peripheral device power through a Least table height=0.8m 2. The peripheral device power through a Least table height=0.8m 3. Both sides of A.C conducted interfere emission, the relative the interface cables ANSI C63.10: 2013	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep time Frequency range	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021
LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 09, 2021
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 10, 2020	Dec. 09, 2021
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A

Report No.: HK2105261651-1E

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. Test Result

N/A

Note: EUT powers supply by DC Power, so this test item not applicable.

4.3. Maximum Conducted Output Power

Test Specification

Test Requirement:	FCC Part15 C Section 15	.247 (b)(3)				
Test Method:	KDB 558074	O HURE				
Limit:	30dBm	AL TEMPS				
Test Setup:	Power meter	EUT AUDITOSTINS				
Test Mode:	Transmitting mode with m	Transmitting mode with modulation				
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report. 					
Test Result:	PASS					

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	Dec. 09, 2021	
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

TESTING	TESTING	TX 802.11b Mode	TESTING TESTING
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	17.8	30
CH06	2437	17.51	30
CH11	2462	20.16 ALLER TO THE REPORT OF THE PERSON NAMED IN COLUMN TO THE PER	30
MAKTESTA	HUAKTE	TX 802.11g Mode	HANTESTA
CH01	2412	19.76	30
CH06	2437	19.94	30
CH11	2462	20.26	30 MARTE
ING		TX 802.11n20 Mode	SING
CH01	2412	19.76	30 TESTING
CH06	2437	19.9	30
CH11	2462	20.27	30
MAKTESTING	HUAKTES	TX 802.11n40 Mode	HANTESTIN
CH03	2422	20.33	30
CH06	2437	15.77	30
CH09	2452	15.8	30 HUMATTER

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Report No.: HK2105261651-1E

4.4. Emission Bandwidth

Test Specification

Test Requirement:	FCC Part15 C Section 1	FCC Part15 C Section 15.247 (a)(2)						
Test Method:	KDB 558074	O HONE						
Limit:	>500kHz	NY TESTING						
Test Setup:	Spectrum Analyzer	EUT NG	TING					
Test Mode:	OK The WIAR	Transmitting mode with modulation						
Test Procedure:	15.247 Meas Guidan 2. Set to the maximum p EUT transmit continu 3. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 k	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 						
Test Result:	PASS TESTING	O HUM	TING					

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

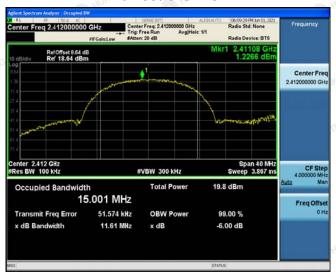
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

CATION

Test data

Carlo			0.00			
Test channel	6dB Emission Bandwidth (MHz)					
rest channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)		
Lowest	11.61	16.38	15.14	35.14		
Middle	10.61	16.39	15.99	35.19		
Highest	10.61	16.37	15.15	35.20		
Limit:		HUAR	>500k	MIAN.		
Test Result:	LAKTESTING	Ī	PASS	. 18		

Report No.: HK2105261651-1E


Test plots as follows:

802.11b Modulation

Lowest channel

Report No.: HK2105261651-1E

Middle channel

Highest channel

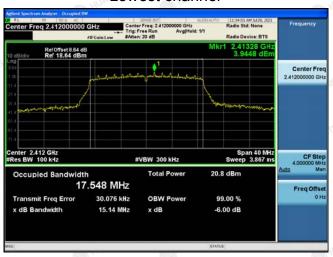

802.11g Modulation

Lowest channel

Report No.: HK2105261651-1E

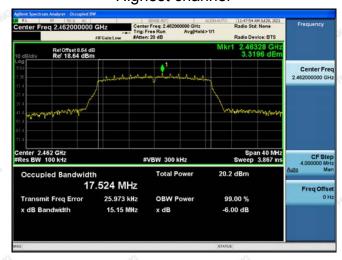
Middle channel

Highest channel



802.11n (HT20) Modulation

Lowest channel

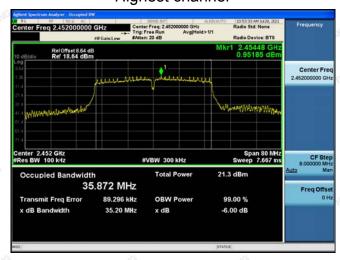

Report No.: HK2105261651-1E

Middle channel

Highest channel

802.11n (HT40) Modulation

Lowest channel


Report No.: HK2105261651-1E

Middle channel

Highest channel

4.5. Power Spectral Density

Test Specification

Test Requirement:	FCC Part15 C Section 15	.247 (e)	Th.			
Test Method:	KDB 558074	HUAK TES S	HUAKTESIA			
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with m	odulation	3			
Test Procedure:	1. The testing follows Meanethod PKPSD of FCO 15.247 Meas Guidance 2. The RF output of EUT vanalyzer by RF cable was compensated to the measurement. 3. Set to the maximum por EUT transmit continuous. 4. Make the measurement resolution bandwidth (kHz. Video bandwidth to at least 1.5 times the street of 100 traces. Use the determine the maximum 6. Measure and record the street of 100 traces.	C KDB Publication e v05r02 was connected to and attenuator. The results for each ower setting and erously. t with the spectrur RBW): 3 kHz ≤ REVBW ≥ 3 x RBW. The OBW. The power beak marker function power level.	the spectrum e path loss nable the n analyzer's SW ≤ 100 Set the span ole. er a minimum tion to			
Test Result:	PASS	n/G				

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

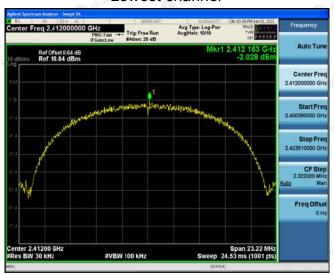
AFICATION.

Report No.: HK2105261651-1E

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-2.03	-12.03
802.11b	Middle	-2.27	-12.27
	Highest	-0.32	-10.32
	Lowest	-3.78	-13.78
802.11g	Middle	-3.73	-13.73
	Highest	-3.81	-13.81
	Lowest	-3.8	-13.8
802.11n(H20)	Middle	-3.76	-13.76
	Highest	-3.74	-13.74
	Lowest	1.21	8.79 MINI
802.11n(H40)	Middle	-4.91	-14.91
	Highest	-4.66	-14.66
PSD test result (dBm/	3kHz)= PSD tes	t result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	TES	PASS	TESTING LAKTESTING


Test plots as follows:

802.11b Modulation

Lowest channel

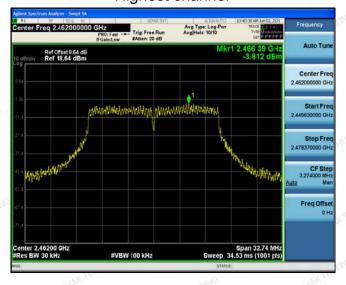
Report No.: HK2105261651-1E

Middle channel

Highest channel

802.11g Modulation

Lowest channel


Report No.: HK2105261651-1E

Middle channel

Highest channel

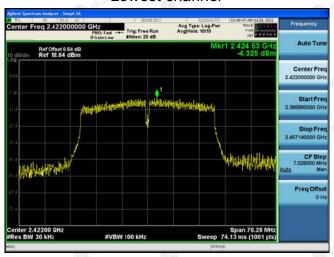
802.11n (HT20) Modulation

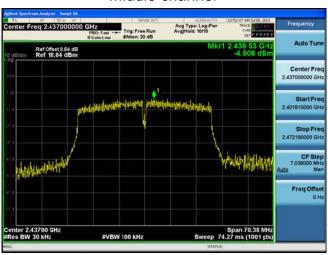
Lowest channel

Report No.: HK2105261651-1E

Middle channel

Highest channel




802.11n (HT40) Modulation

Lowest channel

Report No.: HK2105261651-1E

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.6. Conducted Band Edge and Spurious Emission Measurement

Test Specification

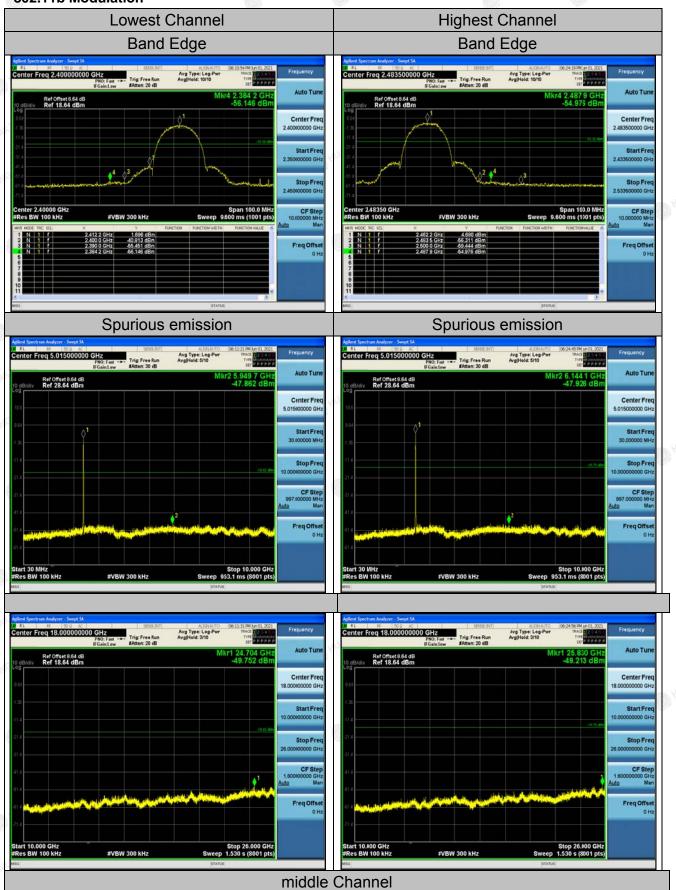
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB558074					
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).					
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
Test Result:	PASS					

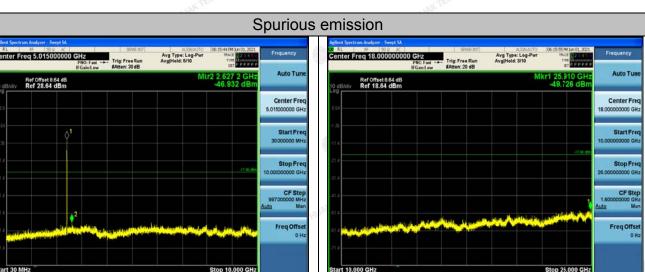
AFICATION

Report No.: HK2105261651-1E

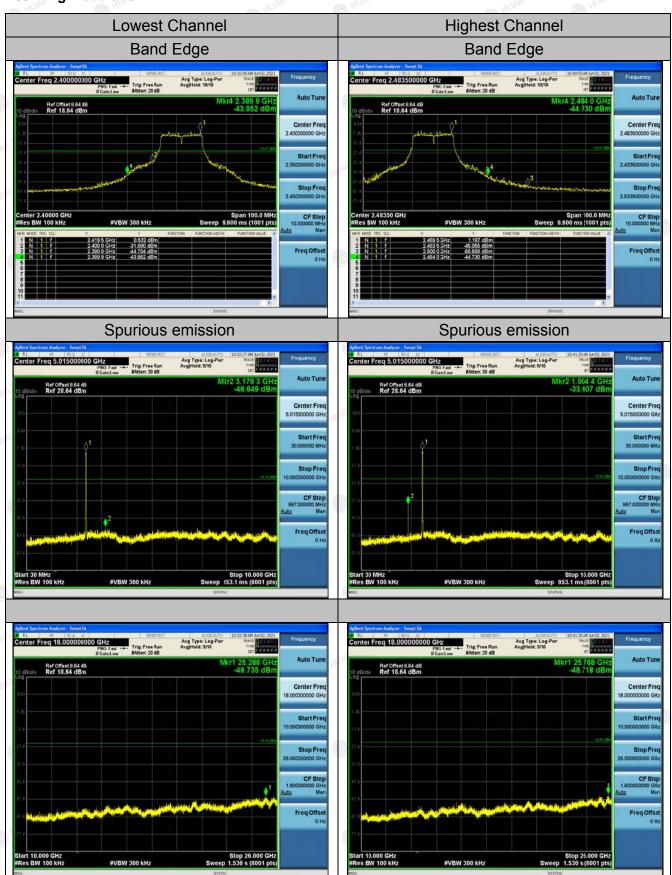
Test Instruments

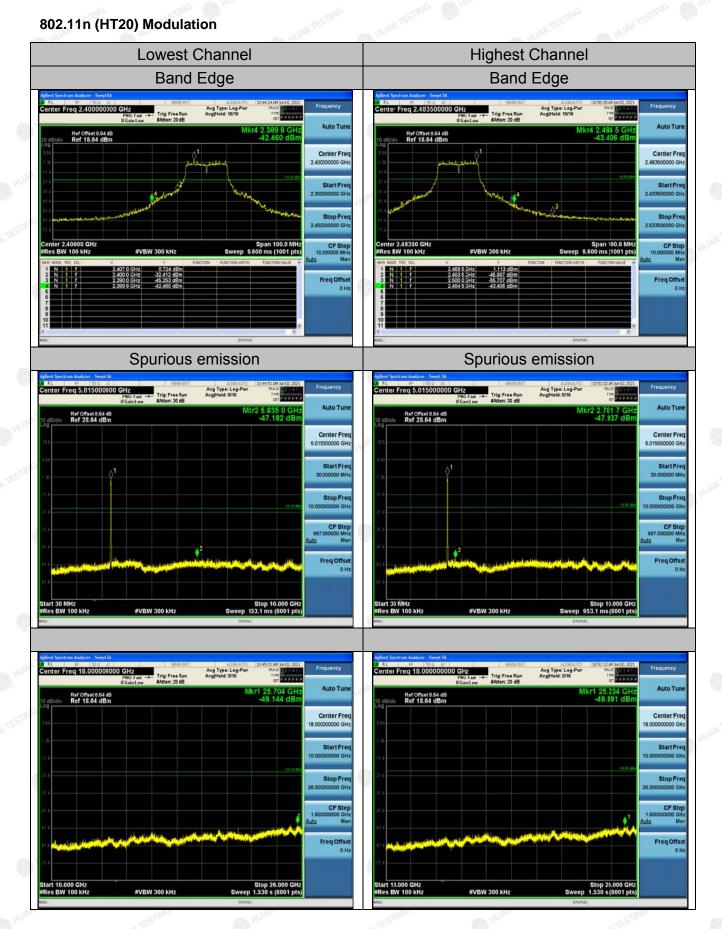
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A


Report No.: HK2105261651-1E


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

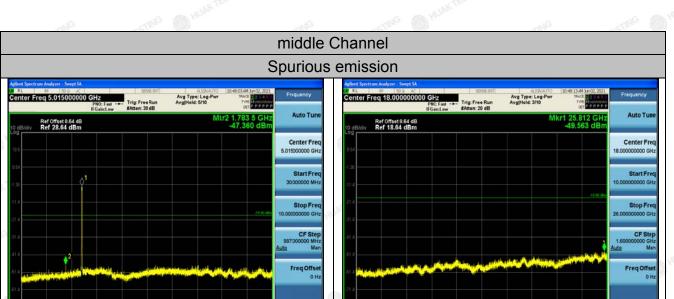
Test Data


802.11b Modulation



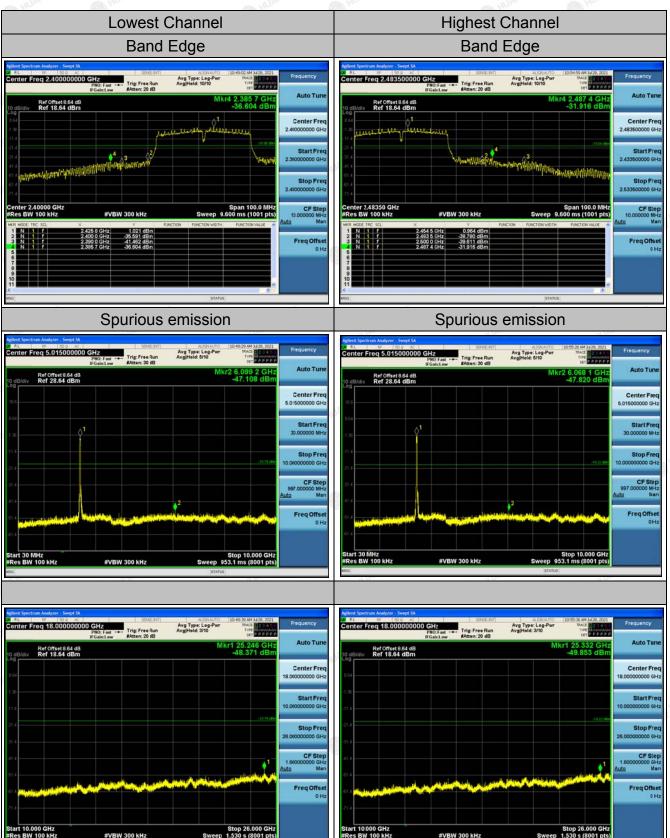
802.11g Modulation

JAKTES

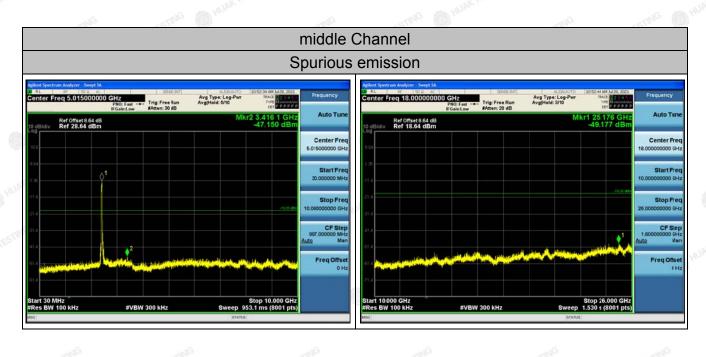


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

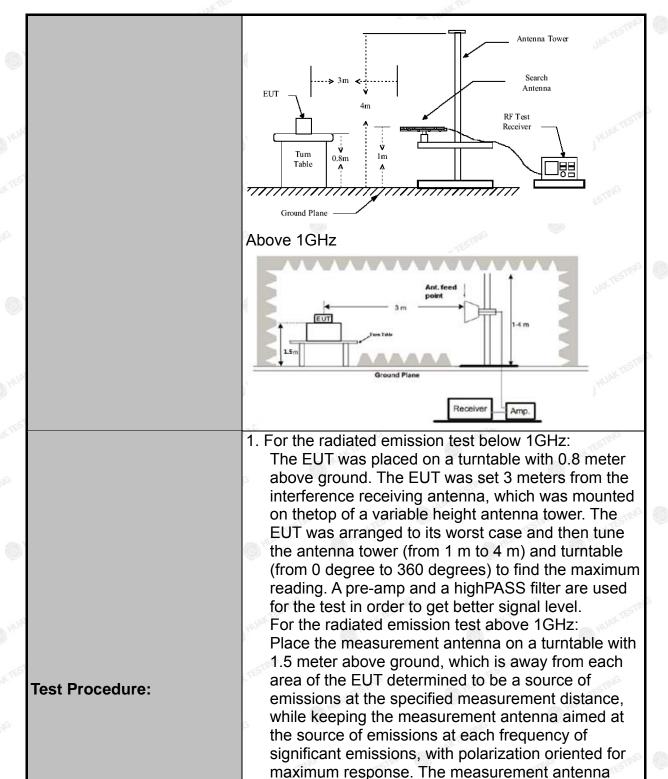
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Report No.: HK2105261651-1E



802.11n (HT40) Modulation



4.7. Radiated Spurious Emission Measurement

Test Specification

Test Requirement:	FCC Part15	C Section	n 1	15.209	TESTI	NG	TESTIN
Test Method:	ANSI C63.10	0: 2013		•	HUAN		HUAR
Frequency Range:	9 kHz to 25 (GHz			CTING		
Measurement Distance:	3 m	Y TESTING		HI HI	AKTE		V TESTING
Antenna Polarization:	Horizontal &	Vertical			.C.		HOM
Operation mode:	Transmitting	mode w	/ith	modulati	on		
	Frequency 9kHz- 150kHz	Detecto Quasi-pe		RBW 200Hz	VBW 1kHz		Remark si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-pe		9kHz	30kHz		si-peak Value
riccono. Colup.	30MHz-1GHz	Quasi-pe	ak	120KHz	300KHz	Quas	si-peak Value
	Above 1GHz	Peak	TING	1MHz	3MHz		eak Value
	1,0070 10112	Peak		1MHz	10Hz	Ave	erage Value
	Frequency			Field Stre		Measurement Distance (meters)	
	0.009-0.490			2400/F(KHz)			300
	0.490-1.705			24000/F(KHz)	30	
	1.705-30 30-88			30	NG.	000	30
	88-216			100 150		3	
Limit:	216-960			200		STING	3 (15)
	Above 960			500			3
	Frequency		Field Strength (microvolts/meter)		Measure Distan (mete	nce	Detector
	Alana 4011a	W KUAK TE	500		HUAK TO	- /	Average
	Above 1GHz		5	000	3		Peak
	For radiated	emissio	ns	below 30	MHz		TING
Test setup:	0.8 m		ı Table	i m	RX Ant		A MIC
	30MHz to 10	SHz		•	HUAR		WHUAT THE

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

may have to be higher or lower than the EUT, depending on the radiation pattern of the emission

and staying aimed at the emission source for receiving the maximum signal. The final

maximizes the emissions. The measurement

measurement antenna elevation shall be that which

antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Test results:	PASS
Test results:	measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimumtransmission duration over which the transmitter is on and is transmitting at its maximumpower control level for the tested mode of operation.
	(P23) (P23)

AFICATION.

Report No.: HK2105261651-1E

Dec. 09, 2021

Test Instruments

Horn Antenna

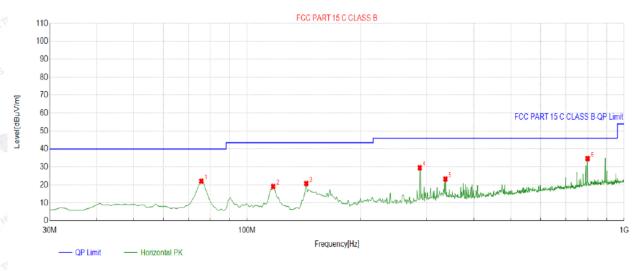
Radiated Emission Test Site (966) Name of Calibration Serial Manufacturer **Calibration Due** Model **Equipment** Number **Date** Receiver R&S ESCI 7 HKE-010 Dec. 10, 2020 Dec. 09, 2021 Dec. 09, 2021 Spectrum analyzer Agilent N9020A HKE-048 Dec. 10, 2020 R&S FSP40 HKE-025 Dec. 10, 2020 Dec. 09, 2021 Spectrum analyzer LB-180400KF Schwarzbeck HKE-054 Dec. 10, 2020 Dec. 09, 2021 High gain antenna **BBV 9743** Preamplifier Schwarzbeck HKE-006 Dec. 10, 2020 Dec. 09, 2021 EMC051845S HKE-015 Preamplifier **EMCI** Dec. 10, 2020 Dec. 09, 2021 83051A HKE-016 Dec. 10, 2020 Preamplifier Agilent Dec. 09, 2021 Loop antenna Schwarzbeck **FMZB 1519 B** HKE-014 Dec. 10, 2020 Dec. 09, 2021 **VULB 9163** Broadband antenna Schwarzbeck HKE-012 Dec. 10, 2020 Dec. 09, 2021 Horn antenna Schwarzbeck HKE-013 Dec. 10, 2020 Dec. 09, 2021 9120D High pass filter unit **Tonscend** JS0806-F HKE-055 Dec. 10, 2020 Dec. 09, 2021 Antenna Mast Keleto CC-A-4M N/A N/A N/A Position controller Taiwan MF MF7802 HKE-011 Dec. 10, 2020 Dec. 09, 2021 N/A Radiated test TS+ Rev Tonscend HKE-082 N/A software 2.5.0.0 RF cable Times 9kHz-1GHz HKE-117 Dec. 10, 2020 Dec. 09, 2021 RF cable Times 1-40G HKE-034 Dec. 10, 2020 Dec. 09, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

HKE-017

Dec. 10, 2020

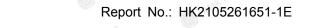
BBHA 9170

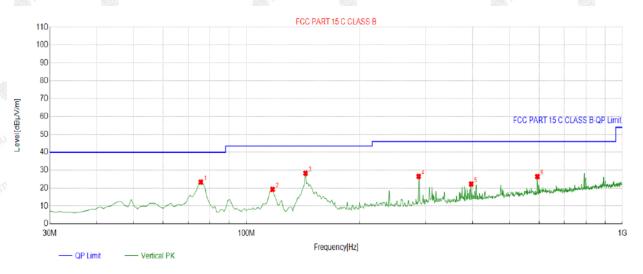

Schewarzbeck

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz


Horizontal


QP Detector

	Suspe	cted List								
3	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	75.6356	-18.68	40.86	22.18	40.00	17.82	100	357	Horizontal
	2	117.3874	-16.66	35.87	19.21	43.50	24.29	100	137	Horizontal
	3	143.6036	-19.09	39.94	20.85	43.50	22.65	100	153	Horizontal
	4	287.3073	-12.95	42.53	29.58	46.00	16.42	100	288	Horizontal
	5	335.8559	-11.62	35.02	23.40	46.00	22.60	100	54	Horizontal
	6	799.9800	-3.12	37.83	34.71	46.00	11.29	100	197	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

QP Detector

Suspe	Suspected List											
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	75.6356	-18.68	42.01	23.33	40.00	16.67	100	52	Vertical			
2	117.3874	-16.66	36.00	19.34	43.50	24.16	100	44	Vertical			
3	143.6036	-19.09	47.43	28.34	43.50	15.16	100	44	Vertical			
4	287.3073	-12.95	39.51	26.56	46.00	19.44	100	151	Vertical			
5	396.0561	-10.50	32.82	22.32	46.00	23.68	100	338	Vertical			
6	594.1341	-6.50	32.92	26.42	46.00	19.58	100	354	Vertical			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (M	lHz) Lev	rel@3m (dBµV/m	n) Limit@	Limit@3m (dBµV/m	
-inG	AKTES	mG	"JAK TES"		MG
MAK TES	(i)	TAK TES			AKTES
.		3	-0		
	X TES III		OK TESTING		

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Above 1GHz

Report No.: HK2105261651-1E

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.37	-3.64	55.73	74	-18.27	peak
4824	43.66	-3.64	40.02	54	-13.98	AVG
7236	55.17	-0.95	54.22	74	-19.78	peak
7236	43.11	-0.95	42.16	54	-11.84	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.69	-3.64	55.05	74	-18.95	peak
4824	46.37	-3.64	42.73	54	-11.27	AVG
7236	56.19	-0.95	55.24	74	-18.76	peak
7236	44.38	-0.95	43.43	54	-10.57	AVG
Remark: Factor	r = Antenna Factor +	Cable Loss	- Pre-amplifier.	NG.	TESTING	TE

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.37	-3.51	56.86	74	-17.14	peak
4874	45.62	-3.51	42.11	54 HUA	-11.89	AVG
7311	57.99	-0.82	57.17	74	-16.83	peak
7311	45.69	-0.82	44.87	54	-9.13	AVG
.G	45.69 r = Antenna Factor		.G	54	-9.13	A

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.37	-3.51	55.86	74	-18.14	peak
4874	45.16	-3.51	41.65	54 HUA	-12.35	AVG
7311	58.22	-0.82	57.4	74	-16.6	peak
7311	42.37	-0.82	41.55	54	-12.45	AVG
TESTINI -	- Matana Fastan	0111	THE TEST		TESTING.	y TEST

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	60.67	-3.43	57.24	74	-16.76	peak
§ 4924	45.32	-3.43	41.89	54	-12.11	AVG
7386	56.88	-0.75	56.13	74	-17.87	peak
7386	41.28	-0.75	40.53	54	-13.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	61.37	-3.43	57.94	74	-16.06	peak
4924	45.32	-3.43	41.89	54	-12.11	AVG
7386	56.56	-0.75	55.81	74 m	-18.19	peak
7386	40.38	-0.75	39.63	54	-14.37	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes bandedge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified inprovision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHzfor measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, theAverage Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

Report No.: HK2105261651-1E

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.35	-3.64	57.71	74	-16.29	peak
4824	49.37	-3.64	45.73	54 MARC	-8.27	AVG
7236	55.39	-0.95	54.44	74	-19.56	peak
7236	42.16	-0.95	41.21	54	-12.79	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	Pre-amplifier.		AKTESTING	"IAK TESTIME

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.70	-3.64	56.06	74	-17.94	peak
4824	46.27	-3.64	42.63	54	-11.37	AVG
7236	57.16	-0.95	56.21	74 TESTING	-17.79	peak
7236	43.69	-0.95	42.74	54	-11.26	AVG

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.37	-3.51	55.86	74	-18.14	peak
4874	47.19	-3.51	43.68	54	-10.32	AVG
7311	56.38	-0.82	55.56	74	-18.44	peak
7311	42.58	-0.82	41.76	54	-12.24	AVG

Vertical:

Reading Result	Factor	Emission Level	Limits ■	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.99	-3.51	55.48	74	-18.52	peak
45.67	-3.51	42.16	54	-11.84	AVG
57.24	-0.82	56.42	74	-17.58	peak
44.16	-0.82	43.34	54	-10.66	AVG
	(dBµV) 58.99 45.67 57.24	(dBµV) (dB) 58.99 -3.51 45.67 -3.51 57.24 -0.82	(dBμV) (dB) (dBμV/m) 58.99 -3.51 55.48 45.67 -3.51 42.16 57.24 -0.82 56.42	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.99 -3.51 55.48 74 45.67 -3.51 42.16 54 57.24 -0.82 56.42 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.99 -3.51 55.48 74 -18.52 45.67 -3.51 42.16 54 -11.84 57.24 -0.82 56.42 74 -17.58

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11g Mode)/2462

Report No.: HK2105261651-1E

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.87	-3.43	56.44	74	-17.56	peak
s ⁽¹⁾⁰ 4924	45.62	-3.43	42.19	54	-11.81	AVG
7386	55.27	-0.75	54.52	74	-19.48	peak
7386	40.36	-0.75	39.61	54	-14.39	AVG
Demark: Factor	= Antenna Factor	+ Cable Loss	Dre amplifier	- MAK TEGO		

Vertical:

voi troui.		1000000	10/2017			10227
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	္လ္ေ(dΒμV/m)	(dB)	Type
4924	58.67	-3.43	55.24	74	-18.76	peak
4924	47.25	-3.43	43.82	54	-10.18	AVG
7386	56.98	-0.75	56.23	74	-17.77	peak
7386	42.32	-0.75	41.57	54	-12.43	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes bandedge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified inprovision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHzfor measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, theAverage Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.37	-3.64	55.73	74	-18.27	peak
4824	42.15	-3.64	38.51	54	-15.49	AVG
7236	56.87	-0.95	55.92	74	-18.08	peak
7236	42.08	-0.95	41.13	54	-12.87	AVG

Report No.: HK2105261651-1E

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.67	-3.64	55.03	74	-18.97	peak
46.35	-3.64	42.71	54 HUNK	-11.29	AVG
56.82	-0.95	55.87	74	-18.13	peak
41.14	-0.95	40.19	54	-13.81	AVG
	(dBµV) 58.67 46.35 56.82	(dBµV) (dB) 58.67 -3.64 46.35 -3.64 56.82 -0.95	(dBμV) (dB) (dBμV/m) 58.67 -3.64 55.03 46.35 -3.64 42.71 56.82 -0.95 55.87	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.67 -3.64 55.03 74 46.35 -3.64 42.71 54 56.82 -0.95 55.87 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.67 -3.64 55.03 74 -18.97 46.35 -3.64 42.71 54 -11.29 56.82 -0.95 55.87 74 -18.13

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.69	-3.51	55.18	74.00	-18.82	peak
4874	46.37	-3.51	42.86	54.00	-11.14	AVG
7311	56.21	-0.82	55.39	74.00	-18.61	peak
7311	44.35	-0.82	43.53	54.00	-10.47	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	Pre-amplifier.		JAK TESTING	- JUAK TESTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.71	-3.51	56.20	74.00	-17.80	peak
4874	43.16	-3.51	39.65	54.00	-14.35	AVG
7311	57.28	-0.82	56.46	74.00	-17.54	peak
7311	43.29	-0.82	42.47	54.00	-11.53	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: HK2105261651-1E

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924	61.38	-3.43	57.95	74	-16.05	peak
4924	45.87	-3.43	42.44	54	-11.56	AVG
7386	55.39	-0.75	54.64	74	-19.36	peak
7386	42.58	-0.75	41.83	54	-12.17	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	Pre-amplifier.	AC WALL	ESTING	TESTING

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
58.67	-3.43	55.24	74	-18.76	peak
45.32	-3.43	41.89	54	-12.11	AVG
55.14	-0.75	54.39	74	-19.61	peak
45.26	-0.75	44.51	54	-9.49	AVG
	(dBµV) 58.67 45.32 55.14	(dBµV) (dB) 58.67 -3.43 45.32 -3.43 55.14 -0.75	(dBμV) (dB) (dBμV/m) 58.67 -3.43 55.24 45.32 -3.43 41.89 55.14 -0.75 54.39	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.67 -3.43 55.24 74 45.32 -3.43 41.89 54 55.14 -0.75 54.39 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.67 -3.43 55.24 74 -18.76 45.32 -3.43 41.89 54 -12.11 55.14 -0.75 54.39 74 -19.61

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: HK2105261651-1E

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	59.37	-3.63	55.74	74	-18.26	peak
4844	48.17	-3.63	44.54	54	-9.46	AVG
7266	57.24	-0.94	56.3	74	-17.7	peak
7266	44.36	-0.94	43.42	54	-10.58	AVG
	= Antenna Factor	IK.		UR WHAK,	TING	ESTING

Vertical:

Frequency	cy Reading Result	uency Reading Result Factor Emission Level	Limits	Margin	Detector Tyre	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.19	-3.63	54.56	74	-19.44	peak
4844	45.37	-3.63	41.74	54	-12.26	AVG
7266	57.33	-0.94	56.39	74	-17.61	peak
7266	42.66	-0.94	41.72	54	-12.28	AVG
Domark: Eactor	r = Antenna Factor :	+ Cable Loce	Dro amplifier	We My	TING	ESTING

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

dΒμV)	(dB)	X 70	7	20.00	Detector Type
	(GD)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.69	-3.51	55.18	74	-18.82	peak
45.32	-3.51	41.81	54	-12.19	AVG
57.49	-0.82	56.67	74	-17.33	peak
43.01	-0.82	42.19	54	-11.81	AVG
	58.69 45.32 57.49 43.01	45.32 -3.51 57.49 -0.82 43.01 -0.82	45.32 -3.51 41.81 57.49 -0.82 56.67	45.32 -3.51 41.81 54 57.49 -0.82 56.67 74	45.32 -3.51 41.81 54 -12.19 57.49 -0.82 56.67 74 -17.33

Report No.: HK2105261651-1E

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	58.47	-3.51	54.96	74	-19.04	peak
4874	45.32	-3.51	41.81	54	-12.19	AVG
7311	56.65	-0.82	55.83	74	-18.17	peak
7311	44.38	-0.82	43.56	54 AKTEST	-10.44	AVG
D Lo N = Lo	A CATHE AND IN		G	10 MIN 10	- G	TNG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tuus
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.96	-3.43	55.53	74	-18.47	peak
43.16	-3.43	39.73	54	-14.27	AVG
56.87	-0.75	56.12	74	-17.88	peak
43.35	-0.75	42.6	54	-11.4	AVG
	(dBµV) 58.96 43.16 56.87	(dBµV) (dB) 58.96 -3.43 43.16 -3.43 56.87 -0.75	(dBμV) (dB) (dBμV/m) 58.96 -3.43 55.53 43.16 -3.43 39.73 56.87 -0.75 56.12	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.96 -3.43 55.53 74 43.16 -3.43 39.73 54 56.87 -0.75 56.12 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.96 -3.43 55.53 74 -18.47 43.16 -3.43 39.73 54 -14.27 56.87 -0.75 56.12 74 -17.88

Vertical:

Frequency	uency Reading Result	ncy Reading Result Factor Emission Level	Limits	Margin	Detector Tune	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	59.37	-3.43	55.94	74	-18.06	peak
4904	45.63	-3.43	42.2	54	-11.8	AVG
7356	56.82	-0.75	56.07	74	-17.93	peak
7356	44.89	-0.75	44.14	54	-9.86	AVG

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

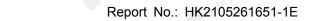
Test Result of Radiated Spurious at Band edges

Report No.: HK2105261651-1E

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data et Ca Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	61.57	-5.81	55.76	74 TESTING	-18.24	peak
2310.00	45.49	-5.81	39.68	54	-14.32	AVG
2390.00	60.35	-5.84	54.51	74	-19.49	peak
2390.00	48.37	-5.84	42.53	54	-11.47	AVG


Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	62.38	-5.81	56.57	74	-17.43	peak
2310.00	47.11	-5.81	41.3	54	-12.7	AVG
2390.00	60.59	-5.84	54.75	74	-19.25	peak
2390.00	47.21	-5.84	41.37	54	-12.63	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	60.35	-5.81	54.54	74 HUAN	-19.46	peak
2483.50	48.77	-5.81	42.96	54	-11.04	AVG
2500.00	61.33	-6.06	55.27	74	-18.73	peak
2500.00	45.62	-6.06	39.56	54	-14.44	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits 🔘	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	60.98	-5.81	55.17	74	-18.83	peak
2483.50	47.25	-5.81	41.44	54	-12.56	AVG
2500.00	60.46	-6.06	54.4	74	-19.6	peak
2500.00	48.37	-6.06	42.31	54	-11.69	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.38	-5.81	54.57	74	-19.43	peak
2310.00	46.98	-5.81	41.17	54	-12.83	AVG
2390.00	60.24	-5.84	54.4	74	-19.6	peak
2390.00	46.33	-5.84	40.49	54	-13.51 [©]	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.37	-5.81	54.56	74 HUAN	-19.44	peak
2310.00	46.27	-5.81	40.46	54	-13.54	AVG
2390.00	61.22	-5.84	55.38	74	-18.62	peak
2390.00	47.25	-5.84	41.41	54	-12.59	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

AFICATION.

HARK

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data ata a Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	61.38	-5.65	55.73	74	-18.27	peak
2483.50	45.98	-5.65	40.33	54	-13.67	AVG
2500.00	61.24	-5.65	55.59	74	-18.41	peak
2500.00	44.22	-5.65	38.57	54	-15.43	AVG

Report No.: HK2105261651-1E

Vertical:

Date of an True	Margin	Limits	Emission Level	Factor	Reading Result	Frequency
Detector Typ	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-19.3	74	54.7	-5.65	60.35	2483.50
AVG	-12.43	54	41.57	-5.65	47.22	2483.50
peak	-18.04	74	55.96	-5.65	61.61	2500.00
AVG	-15.37	54	38.63	-5.65	44.28	2500.00

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	D. L. L. STING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.47	-5.81	54.66	74	-19.34	peak
2310.00	49.35	-5.81	43.54	54	-10.46	AVG
2390.00	61.33	-5.84	55.49	74	-18.51	peak
2390.00	48.27	-5.84	42.43	54	-11.57	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	D. L. K. TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.47	-5.81	54.66	74	-19.34	peak
2310.00	46.32	-5.81	40.51	54	-13.49	AVG
2390.00	60.25	-5.84	54.41	74	-19.59	peak
2390.00	46.77	-5.84	40.93	54	-13.07	AVG

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HUAK TES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	60.38	-5.65	54.73	74 HUA	-19.27	peak
2483.50	47.19	-5.65	41.54	54	-12.46	AVG
2500.00	62.33	-5.65	56.68	74	-17.32	peak
2500.00	46.32	-5.65	40.67	54	-13.33	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	61.38	-5.65	55.73	74	-18.27	peak
2483.50	45.98	-5.65	40.33	54	-13.67	AVG
2500.00	61.22	-5.65	55.57	74	-18.43	peak
2500.00	46.33	-5.65	40.68	54	-13.32	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Reading Result	Factor	Emission Level	Limits	Margin	Data ata Tura
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
59.37	-5.81	53.56	74	-20.44	peak
STING /	-5.81	N ESTING	54	1	AVG
58.69	-5.84	52.85	74	-21.15	peak
G HUA	-5.84	1	54	1	AVG
	(dBµV) 59.37	(dBµV) (dB) 59.37 -5.81 / -5.81 58.69 -5.84	(dBμV) (dB) (dBμV/m) 59.37 -5.81 53.56 / -5.81 / 58.69 -5.84 52.85	(dBμV) (dB) (dBμV/m) (dBμV/m) 59.37 -5.81 53.56 74 / -5.81 / 54 58.69 -5.84 52.85 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 59.37 -5.81 53.56 74 -20.44 / -5.81 / 54 / 58.69 -5.84 52.85 74 -21.15

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data 44 TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	58.64	-5.81	52.83	74	-21.17	peak
2310.00	1	-5.81	HUMYTES	54	1	AVG
2390.00	57.16	-5.84	51.32	74	-22.68	peak
2390.00	OK TESTING OF THE	-5.84	ING LOK TESTING	54	V TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HUAKTEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	58.17	-5.65	52.52	74	-21.48	peak
2483.50	1	-5.65	O HUM	54	1	AVG
2500.00	58.34	-5.65	52.69	74	-21.31	peak
2500.00	HAK TESTIN	-5.65	HUAK TESTI	54	HAK TETTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
TR	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
ľ	2483.50	57.16	-5.65	51.51	74	-22.49	peak
	2483.50	1	-5.65	1	54	1	AVG
Ī	2500.00	56.37	-5.65	50.72	74	-23.28	peak
A.C.	2500.00	1	-5.65	0 1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

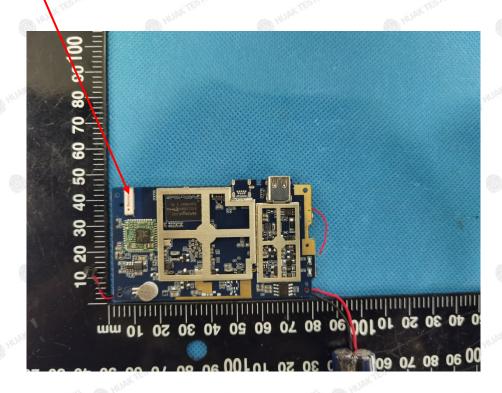
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: HK2105261651-1E

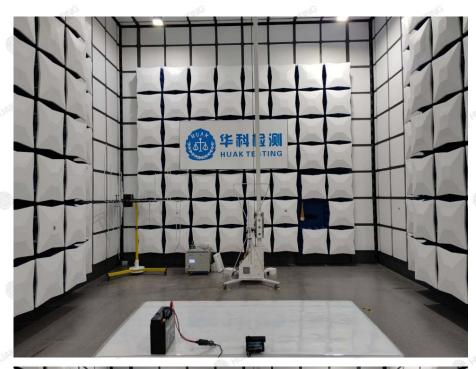

Refer to statement below for compliance.

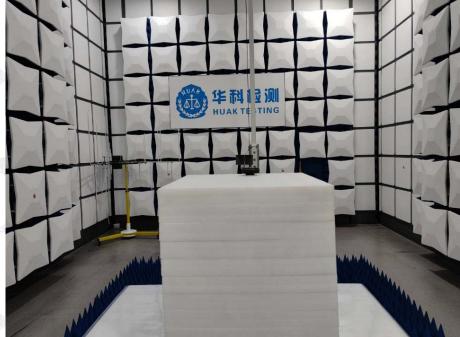
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.2dBi.

WIFI ANTENNA




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.9. PHOTOGRAPH OF TEST

4.10. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

Report No.: HK2105261651-1E

End of test report-