

Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 1 of 38

C

Apply for company information

Test Specification Standard(s)	:	47 CFR Part 24E/47 CFR Part 22H/47 CFR Part 27
20		YDS50-4G PRO, YDS52-4G, YDS55-4G,YDS56-4G, YDS58-4G, YDS59-4G,YDS60-4G, YDS60-4G PRO, YDS62-4G, YDS65-4G, YDS66-4G, YDS68-4G,YDS69-4G,YDS80-4G PRO, YDS82-4G, YDS82-4G PRO, YDS86-4G, YDS88-4G,YDS89-4G,YDS90-4G, YDS90-4G PRO, YDS92-4G, YDS92-4G PRO,YDS96-4G,YDS98-4G, YDS99-4G
Series Model(s)	•	YDS22-4G,YDS25-4G,YDS26-4G,YDS28-4G,YDS29-4G,YDS50-4G,
Test Model(s)		YDS80-4G
Product Name	:	Solar Floodlight Camera
Address	:	Room 511, Building A, Tengjun Science and Technology Park, XinAn St, BaoAn District, Shenzhen, GuangDong Province, China
Applicant's Name	:	Shenzhen Yadas IOT Technology Co., Ltd

NOTE1:

DA

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

-

Compiled by:

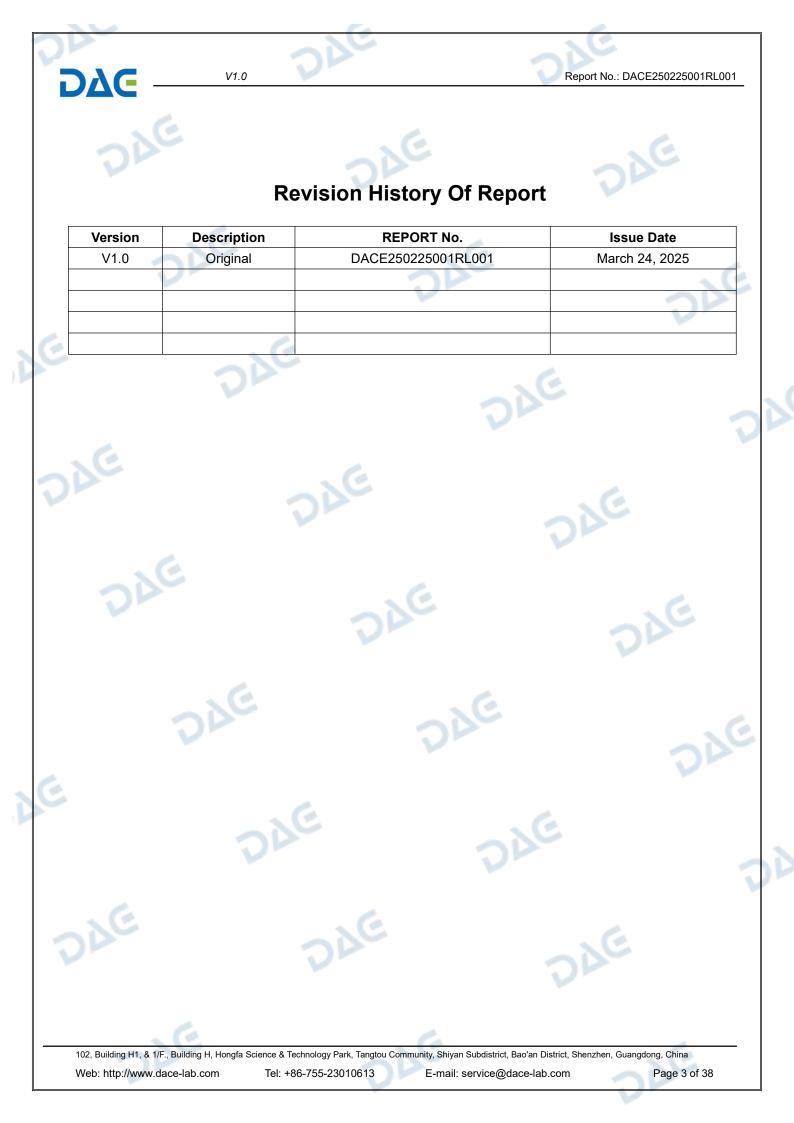
Keren Huang

Keren Huang / Test Engineer March 24, 2025

Supervised by: Ben Jang

Ben Tang / Project Engineer

March 24, 2025


Approved by:

Machael 1003

Machael Mo / Manager March 24, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 2 of 38

CONTENTS

λC	V1.0	Report No.: DACE250225001RL001
20	CONTEN	TS
1 TEST SUN	IMARY	
		<u></u>
2.1 CL		
		~
3.1 EF	FECTIVE (ISOTROPIC) RADIATED POWER OUTPUT	
	3.1.1 E.U.T. Operation:	
3.2 PE	AK TO AVERAGE RATIO	
	3.2.1 E.U.T. Operation:	
	3.2.2 Test Setup Diagram:	
	3.2.3 Test Data:	1
3.3 BA	NDWIDTH	1
	3.3.1 E.U.T. Operation:	
		1
	3.4.1 E.U.T. Operation:	
	3.4.3 Test Data:	
	3.6.1 FUT Operation:	
	3.6.2 Test Setun Diagram:	
	3 7 3 Test Data:	
4 TEST SET		

E-mail: service@dace-lab.com

Page 4 of 38

C

TEST SUMMARY 1

1.1 Test Standards

DΔC

The tests were performed according to following standards:

47 CFR Part 24E: Personal Communications Services - Broadband PCS 47 CFR Part 22H: Public Mobile Services - Cellular Radiotelephone Service 47 CFR Part 27: Miscellaneous Wireless Communications Services

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Effective (Isotropic) Radiated Power Output	47 CFR Part 24E 47 CFR Part 22H 47 CFR Part 27	ANSI C63.26-2015, Section 5.2.4.2	47 CFR Part 2.1046, Part 24.232 47 CFR Part 2.1046, Part 22.913 47 CFR Part 2.1046, Part 27.50(h)(2)	Pass
Peak To Average Ratio	47 CFR Part 24E 47 CFR Part 22H 47 CFR Part 27	ANSI C63.26-2015, Section 5.2.3.4	47 CFR Part 2.1046, Part 24.232(d) 47 CFR Part 2.1046, Part 22.913 (d) 47 CFR Part 2.1046, Part 27.50	Pass
Bandwidth	47 CFR Part 22H 47 CFR Part 24E 47 CFR Part 27	ANSI C63.26-2015, Section 5.4	47 CFR Part 2.1049(h)	Pass
Out of Band Emission	47 CFR Part 24E 47 CFR Part 22H 47 CFR Part 27	47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3	47 CFR Part 2.1051, Part 24.238(a) 47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Spurious Unwanted Emission	47 CFR Part 24E 47 CFR Part 22H 47 CFR Part 27	47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3	47 CFR Part 2.1051, Part 24.238(a) 47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Field Strength of Radiated Emission	47 CFR Part 24E 47 CFR Part 22H 47 CFR Part 27	ANSI C63.26-2015, Section 5.5.3	47 CFR Part 2.1053, Part 24.238(a) 47 CFR Part 2.1053, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Frequency Stability	47 CFR Part 24E 47 CFR Part 22H 47 CFR Part 27	ANSI C63.26-2015, Section 5.6	47 CFR Part 2.1055, Part 24.235 47 CFR Part 2.1055, Part 27.54	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 5 of 38

V1.0	Report No.: DACE250225001
GENERAL INF	ORMATION
Applicant's Name	: Shenzhen Yadas IOT Technology Co., Ltd
Address	 Shenzhen Yadas for rechnology Co., Ed Room 511, Building A, Tengjun Science and Technology Park, XinAn St, BaoAn District, Shenzhen, GuangDong Province, China
DL	
Manufacturer	: Shenzhen Yadas IOT Technology Co., Ltd
Address	: Room 511, Building A, Tengjun Science and Technology Park, XinAn St, BaoAn District, Shenzhen, GuangDong Province, China
Description of Dev	ice (EUT)
Product Name:	Solar Floodlight Camera
Model/Type reference:	YDS80-4G
Series Model:	YDS22-4G,YDS25-4G,YDS26-4G,YDS28-4G,YDS29-4G,YDS50-4G, YDS50-4G PRO, YDS52-4G, YDS55-4G,YDS56-4G, YDS58-4G, YDS59-4G,YDS60-4G, YDS60-4G PRO, YDS62-4G, YDS65-4G, YDS66-4G, YDS68-4G,YDS69-4G,YDS80-4G PRO, YDS82-4G, YDS82-4G PRO, YDS86-4G, YDS88-4G,YDS89-4G,YDS90-4G, YDS90-4G PRO, YDS92-4G, YDS92-4G PRO,YDS96-4G,YDS98-4G, YDS99-4G
Model Difference:	The product has many models, only the model name and color is different, a the other parts such as the circuit principle, pcb and electrical structure are t same.
Trade Mark:	N/A
Power Supply:	DC 5V~18V from Solar Charging: Battery:DC3.7V 20000mAh
Supported Channel Bandwidth	LTE BAND2: \boxtimes 1.4MHz \boxtimes 3MHz \boxtimes 5MHzLTE BAND4: \boxtimes 1.4MHz \boxtimes 3MHz \boxtimes 5MHzLTE BAND5: \boxtimes 1.4MHz \boxtimes 3MHz \boxtimes 5MHzLTE BAND12: \boxtimes 1.4MHz \boxtimes 3MHz \boxtimes 5MHzLTE BAND13: \boxtimes 5MHzLTE BAND66: \boxtimes 1.4MHz \boxtimes 3MHzSMHz \boxtimes 5MHz
Modilation Type	QPSK,16QAM
Antenna Type:	PIFAANT
Antenna Gain:	B2: 0.36dBi; B4:0.44dBi; B5:0.33dBi; B12:0.34dBi; B13:0.37dBi; B66:0.39dE
	14.0
Hardware Version:	V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

NE

DAE

2.3 Test channels:

DAG

E-UTRA Band 2								
Test Frequency ID	Bandwidth[MHz] NuL		Frequency of Uplink [MHz]	NDL	Frequency of Downlink[MHz]			
Low Range	1.4	18607	1850.7	607	1930.7			
	3	18615	1851.5	615	1931.5			
3	5	18625	1852.5	625	1932.5			
Mid Range	1.4/3/5	18900	1880	900	1960			
High Range	1.4	19193	1909.3	1193	1989.3			
	3	19185	1908.5	1185	1988.5			
	5	19175	1907.5	1175	1987.5			

e.

C	E-UTRA Band 4							
	Test Frequency ID	Bandwidth[MHz]	Nul	Frequency of Uplink [MHz]	Ndl	Frequency of Downlink[MHz]		
		1.4	19957	1710.7	1957	2110.7		
	Low Range	3	19965	1711.5	1965	2111.5		
		5	19975	1712.5	1975	2112.5		
	Mid Range	1.4/3/5	20175	1732.5	2175	2132.5		
		1.4 🔦	20393	1754.3	2393	2154.3		
	High Range	3	20385	1753.5	2385	2153.5		
		5	20375	1752.5	2375	2152.5		

	E-UTRA Band 5						
Test Frequency ID	Bandwidth[MHz]	Nul	Frequency of Uplink [MHz]	Ndl	Frequency of Downlink[MHz]		
V	1.4	20407	824.7	2407	869.7		
Low Range	3	20415	825.5	2415	870.5		
	5	20425	826.5	2425	871.5		
Mid Range	1.4/3/5	20525	836.5	2525	881.5		
	1.4	20643	848.3	2643	893.3		
High Range	3	20635	847.5	2635	892.5		
	5	20625	846.5	2625	891.5		

	E-UTRA Band 12					
Test Frequency ID	Bandwidth[MHz]	NUL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink[MHz]	
	1.4	23017	699.7	5017	729.7	
Low Range	3	23025	700.5	5025	730.5	
	5	23035	701.5	5035	731.5	
Mid Range	1.4/3/5	23095	707.5	5095	737.5	
	1.4	23173	715.3	5173	745.3	
High Range	3	23165	714.5	5165	744.5	
	5	23155	713.5	5155	743.5	
	2			OVG	6	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 7 of 38

DΔC

1

Report No.: DACE250225001RL001

C

E-UTRA Band 13						
Test Frequency ID	Bandwidth[MHz]	NUL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink[MHz]	
Low Range	5	23205	779.5	5205	748.5	
Mid Range	5	23230	782	5230	751	
High Range	5	23255	784.5	5255	753.5	
	(P.	-	·			

E-UTRA Band 66

Test Frequency ID	Bandwidth [MHz]	NUL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
	1.4	131979	1710.7	66443	2110.7
Low Range	3	131987	1711.5	66451	2111.5
	5	131997	1712.5	66461	2112.5
Mid Range	1.4/3/5	132322	1745	66786	
	1.4	132665	1779.3	67129	2179.3
Paired High Range2	3	132657	1778.5	67121	2178.5
. ungoz	5	132647	1777.5	67111	2177.5

2.4 Description of Test Modes

Title 🗸 🗸	Description	200
Band 2	Low, Middle, High Channels	V
Band 4	Low, Middle, High Channels	
Band 5	Low, Middle, High Channels	
Band 12	Low, Middle, High Channels	· Ce
Band 13	Low, Middle, High Channels	200
Band 66	Low, Middle, High Channels	V
	Band 2 Band 4 Band 5 Band 12 Band 13	Band 2Low, Middle, High ChannelsBand 4Low, Middle, High ChannelsBand 5Low, Middle, High ChannelsBand 12Low, Middle, High ChannelsBand 13Low, Middle, High Channels

)AC

NE

,AC

e

2.5 Description of Support Units

NE

The EUT was tested as an independent device.

e

NG

2.6 Equipments Used During The Test

DΔC

	Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
	RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0		/	
	Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10	
-	RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	DYC	
	Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11	
	Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05	
	Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05	
	Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05	
					6		

BECK BECK 2024-05-20 2025-05- Cable(LF)2 SCHWARZ BECK 50Ω / 2024-05-20 2025-05- Cable(LF)2 SCHWARZ BECK 50Ω / 2024-05-20 2025-05-		Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Cable(HF)1 BECK 50Ω / 2024-05-20 2025-05- Cable(LF)2 SCHWARZ BECK 50Ω / 2024-05-20 2025-05- Cable(LF)2 SCHWARZ BECK 50Ω / 2024-05-20 2025-05- Cable(LF)1 SCHWARZ 50Ω / 2024-05-20 2025-05-	Cable(HF)2	-	50Ω	1	2024-05-20	2025-05-19
Cable(LF)2 BECK 50Ω / 2024-05-20 2025-05- Cable(LF)1 SCHWARZ 50Ω / 2024-05-20 2025-05-	Cable(HF)1	-	50Ω	1	2024-05-20	2025-05-19
$(2024_05_0) = 2025_05_0$	Cable(LF)2	-	50Ω	1	2024-05-20	2025-05-19
	Cable(LF)1		50Ω	1	2024-05-20	2025-05-19
control MF MF-7802 MF780208362 2024-12-09 2025-12-	control	MF	MF-7802	MF780208362	2024-12-09	2025-12-08
Test ReceiverRohde & SchwarzESPI TEST RECEIVERID:1164.6607K 03-102109- MH2024-06-122025-06-	Test Receiver			03-102109-	2024-06-12	2025-06-11
EMI Test software Farad EZ -EMC V1.1.42 /	EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning ControllerMFMF-7802///	5	MF	MF-7802	1	1	/
Amplifier(18-40G) COM-POWER AH-1840 1010008-1 2023-05-19 2025-05-	Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2023-05-19	2025-05-18
Horn antenna COM-POWER AH-1840 (18-40G) 10100008 2023-05-19 2025-05-	Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-05-19	2025-05-18
Loop antenna ZHINAN ZN30900C ZN30900C 2024-06-14 2026-06-	Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Power amplifier(LF) Schwarzbeck BBV9743 9743-151 2024-06-12 2025-06-	Power amplifier(LF)) Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF) Schwarzbeck BBV9718 9718-282 2024-06-12 2025-06-	Power amplifier(HF)) Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Test Receiver R&S ESCI 3 1166.5950K03 -101431-Jq 2024-06-13 2025-06-	Test Receiver	R&S	ESCI 3		2024-06-13	2025-06-12
Horn Antenna Sunol Sciences DRH-118 A091114 2023-05-13 2025-05-	Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna Sunol Sciences JB6 Antenna A090414 2024-09-28 2026-09-	Broadband Antenna	a Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

2.7 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
RF conducted power	±0.733dB
Occupied Bandwidth	±3.63%
RF power density	±0.234%
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded uncertair confidence level using a coverage factor of k=2.	nty expressed at approximately the 95%

2.8 Authorizations

DAG

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01

2.9 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

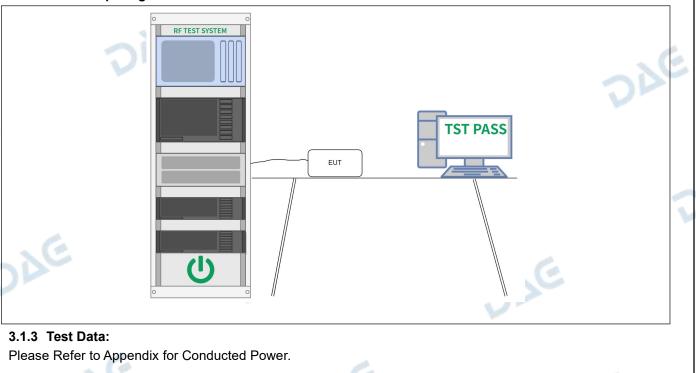
(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client(item 2.2). When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 10 of 38

DΔC

)De

3 Radio Spectrum Matter Test Results (RF)


3.1 Effective (Isotropic) Radiated Power Output

Test Requirement:	47 CFR Part 2.1046, Part 24.232
	47 CFR Part 2.1046, Part 22.913
	47 CFR Part 2.1046, Part 27.50(h)(2)
Test Limit:	Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.
Test Method:	ANSI C63.26-2015, Section 5.2.4.2
Procedure:	If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98%), then the following options can be implemented to facilitate measurement of the average power with an average power meter:
AE	 a) A gated average power meter can be used to perform the measurement if the gating parameters can be adjusted such that the power is measured only during active transmission bursts at maximum output power levels. b) A conventional average power meter with no signal gating capability can also be used if the measured burst duty cycle is constant (i.e., duty cycle variations are less than or equal to ±2%) by performing the measurement over the on/off burst cycles and then correcting (increasing) the measured level by a factor equal to [10 log (1/duty cycle)]. See 5.2.4.3.4 for guidance with respect to measuring the transmitter duty cycle.

3.1.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.7 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2, TM3, TM4, TM5, TM6				M4, TM5,TM6		2 C		
Final test mode: TM1, TM2, TM3			TM2, TM3, 1	M4, TM5,TM6		Jr Jr		

3.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 11 of 38

.

Report No.: DACE250225001RL001

DΔC

		Ľ	TE Band 2			
Bandwidth	Modulation	Channel	EIRP (EIRP (dBm)		
Danuwiutii		Channel	Vertical	Horizontal	 Limit (dBm) 	Result
	6	Low	24.58	25.355		
	QPSK	Mid	24.08	24.095		PASS
	0 F	High	23.96	23.985		
1.4MHz		Low	23.66	23.755	38.45	DP
	16QAM	Mid	24.02	23.955		PASS
		High	23.48	24.005		
		Low	24.06	23.915		
	QPSK	Mid	24.21	23.765		PASS
		High	23.4	23.995		
3MHz		Low	23.39	23.495	38.45	
	16QAM	Mid	23.72	23.455		PASS
		High	23.85	24.005		
		Low	24.16	23.775	-NC	
	QPSK	Mid	23.35	23.935	VE	PASS
		High	23.5	23.695		
5MHz		Low	23.88	24.025	38.45	
	16QAM	Mid	23.99	23.375		PASS
		High	24.28	23.605		

DAG

2

)AC

DAE

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)AC

1

)DE

DΔC

.

Report No.: DACE250225001RL001

1

		L	TE Band 4			
Bandwidth	Modulation	Channel	EIRP (dBm)		– Limit (dBm)	
Danuwiutn		Channel	Vertical	Horizontal		Result
		Low	24.86	24.665		
	QPSK	Mid	23.67	24.025		PASS
		High	23.66	23.985		
1.4MHz		Low	24.3	23.635	38.45	
	16QAM	Mid	23.65	24.085		PASS
		High	23.67	23.635		
	-	Low	23.84	23.905		
	QPSK	Mid	24.19	23.975	-	PASS
		High	24.1	24.135		
3MHz		Low	23.67	23.515	38.45	
	16QAM	Mid	23.43	23.995		PASS
		High	23.77	23.725		
		Low	24.13	24.115	. 6	
	QPSK	Mid	23.5	23.855	200	PASS
		High	23.81	24.105	VE	
5MHz		Low	23.52	23.815	38.45	
	16QAM	Mid	24.19	23.915		PASS
		High	24.12	24.205		C

DAG

2

DE

DAG

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

<

Page 13 of 38

DE

DΔC

٩.

Report No.: DACE250225001RL001

1

		L	TE Band 5			
Bandwidth	Modulation	Channel	ERP (c	lBm)	Limit (dBm)	Desult
	Modulation	Channel	Vertical	Horizontal		Result
		Low	23.24	22.52		
	QPSK	Mid	21.42	21.75		PASS
	20	High	21.34	21.83		
1.4MHz		Low	21.93	21.73	38.45	
	16QAM	Mid	21.26	21.43		PASS
		High	22.17	21.85		
		Low	21.30	21.48		
	QPSK	Mid	21.32	22.17		PASS
		High	22.20	21.44		
3MHz		Low	22.06	21.45	38.45	
	16QAM	Mid	21.30	21.22		PASS
C'		High	21.38	21.55		
		Low	21.66	21.22	6	
	QPSK	Mid	21.54	21.59		PASS
		High	21.85	22.16		
5MHz		Low	22.07	21.34	38.45	
	16QAM	Mid	21.79	21.93		PASS
		High	21.86	21.25		SC

DAG

2

DE

DAG

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

~

NE

DΔC

.

Report No.: DACE250225001RL001

		L	TE Band 12			
Bandwidth	Madulation	Modulation Channel		ERP (dBm)		Desult
Danuwiutii	wodulation	Channel	Vertical	Horizontal	 Limit (dBm) 	Result
		Low	22.40	22.58		
	QPSK	Mid	21.63	21.65		PASS
		High	22.15	21.47		
1.4MHz		Low	22.05	21.71	38.45	
	16QAM	Mid	22.05	22.12		PASS
		High	21.78	21.62		
		Low	22.15	21.44		
	QPSK	Mid	21.61	21.81	-	PASS
		High	21.70	21.69		
3MHz		Low	21.56	22.15	38.45	
	16QAM	Mid	21.53	21.70		PASS
L'E		High	21.99	21.39		
		Low	21.26	21.55	6	
	QPSK	Mid	21.83	21.89	20	PASS
		High	21.35	21.28		
5MHz		Low	21.43	21.26	38.45	
	16QAM	Mid	21.49	21.96		PASS
		High	21.53	21.79		C

DAG

2

DE

DAG

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

~

Page 15 of 38

NE

DΔC

2

1

NE

Report No.: DACE250225001RL001

1

	LTE Band 13								
Bandwidth Modu	Modulation	Channel	ERP (dBm)	Limit (dBm)	Result			
Danuwiutii	Modulation	Channel	Vertical	Horizontal	Einin (dBin)	Result			
		Low	22.70	22.97					
	QPSK	Mid	22.03	21.52		PASS			
		High	21.96	21.23					
5MHz		Low	22.02	21.87	38.45				
	16QAM	Mid	22.13	21.56		PASS			
		High	21.37	21.85					
	-	e							

		L	TE Band 66				
Dondwidth	Modulation	Channal	EIRP (dBm)	Limit (dBm)		
Bandwidth	Bandwidth	Channel	Vertical Horizontal			Result	
		Low	24.64	25.115			
	QPSK	Mid	23.69	23.945		PASS	
		High	24.23	24.025	. 6		
1.4MHz		Low	24.02	23.945	38.45	PASS	
	16QAM	Mid	23.37	23.875	VE		
-	G	High	23.64	23.915			
	N N	Low	23.37	24.195			
	QPSK	Mid	24	23.645		PASS	
		High	23.79	23.695			
3MHz		Low	23.6	23.535	38.45		
	16QAM	Mid	23.85	23.555		PASS	
	20	High	23.92	23.885			
	2F	Low	23.64	23.855			
	QPSK	Mid	23.62	23.535		PASS	
		High	24.25	23.525			
5MHz		Low	24.25	24.205	38.45		
	16QAM	Mid	24.03	23.575		PASS	
		High	24.31	23.815			

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

2AC

DAG

Report No.: DACE250225001RL001

٩

3.2 Peak To Average Ratio

DΔC

3.2 Peak To Average	Ratio
Test Requirement:	47 CFR Part 2.1046, Part 24.232(d) 47 CFR Part 2.1046, Part 22.913 (d) 47 CFR Part 2.1046, Part 27.50
Test Limit:	The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.
Test Method:	ANSI C63.26-2015, Section 5.2.3.4
Procedure:	 a) Set resolution/measurement bandwidth ≥ OBW or specified reference bandwidth. b) Set the number of counts to a value that stabilizes the measured CCDF curve. c) Set the measurement interval as follows: 1) For continuous transmissions, set to the greater of [10 × (number of points in sweep) ×(transmission symbol period)] or 1 ms. 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration. 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers. d) Record the maximum PAPR level associated with a probability of 0.1%. e) The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.
3.2.1 E.U.T. Operation:	

3.2.1 E.U.T. Operation:

Operating Environment:			
Temperature: 22.7 °C	Humidity: 49 %	Atmospheric Pressure:	102 kPa
Pretest mode:	TM1, TM2, TM3, TM4, TM5,TM6		
Final test mode:	TM1, TM2, TM3, TM4, TM5, TM6		6
3.2.2 Test Setup Diagra	m:		

3.2.2 Test Setup Diagram:

12. Bulding Ht, 8.14F., Bulding Ht, Hongfa Science & Technology Park, Targbu Community, Shiyan Subdisticit, Bacian District, Shenzen, Guangang, China	3.2.2 Test Setup Diagram:			
Please Refer to Appendix for Details. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China		EUT	TST PASS	Die
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China				
	Please Refer to Appendix for Details.			
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 38				

Page 18 of 38

٩

3.3 Bandwidth

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

DΔC

١

Test Requirement:	47 CFR Part 2.1049(h)
Test Limit:	OBW: No limit, only for report use. EBW: No limit, only for report use.
Test Method:	ANSI C63.26-2015, Section 5.4
Procedure:	OBW:
DA	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient). b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW. c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances. d) Set the detection mode to peak, and the trace mode to max-hold. e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies. f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall
	 be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s). EBW: a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement.
	 b) The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW. c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
	 NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances. d) The dynamic range of the spectrum analyzer at the selected RBW shall be more than 10 dB below the target "-X dB" requirement, i.e., if the requirement calls for measuring the -26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference level. e) Set spectrum analyzer detection mode to peak, and the trace mode to max hold.
	 f) Determine the reference value by either of the following: 1) Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). 2) Set the EUT to transmit an unmodulated carrier. Set the spectrum analyzer marker to the levelof the carrier.
	 g) Determine the "-X dB amplitude" as equal to (Reference Value - X). Alternatively this calculation can be performed on the spectrum analyzer using the delta-marker measurement function. h) If the reference value was determined using an unmodulated carrier, turn the EUT modulation on,then either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise the trace from step f) shall be used for step i).

ΔΔ Ε ——-	V1.0	Report No.: DACE250225001RL001
DAC	envelope of the spectral display dB amplitude" determined in ste value it should be as close as p frequency difference between t The spectral envelope can cross lowest or highest frequency sha farthest away from the center fr "-X dB amplitude." j) The OBW shall be reported b display, to include markers dep information (e.g., marker table)	e lowest and the other at the highest frequency of the y such that each marker is at or slightly below the "-X ep f). If a marker is below this "-X dB amplitude" possible to this value. The OBW is the positive he two markers. as the "-X dB amplitude" at multiple points. The all be selected as the frequencies that are the requency at which the spectral envelope crosses the hy providing plot(s) of the measuring instrument icting the relevant frequency and amplitude . The frequency and amplitude axis and scale shall a may be reported in addition to the plot(s).

3.3.1 E.U.T. Operation:

Operating Envir	onment:		C .			
Temperature:	22.7 °C	7	Humidity:	49 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM2, TM3, TM4, TM5, TM6					24	
Final test mode: TM1, TM2, TM3, TM4, TM5, TM6						

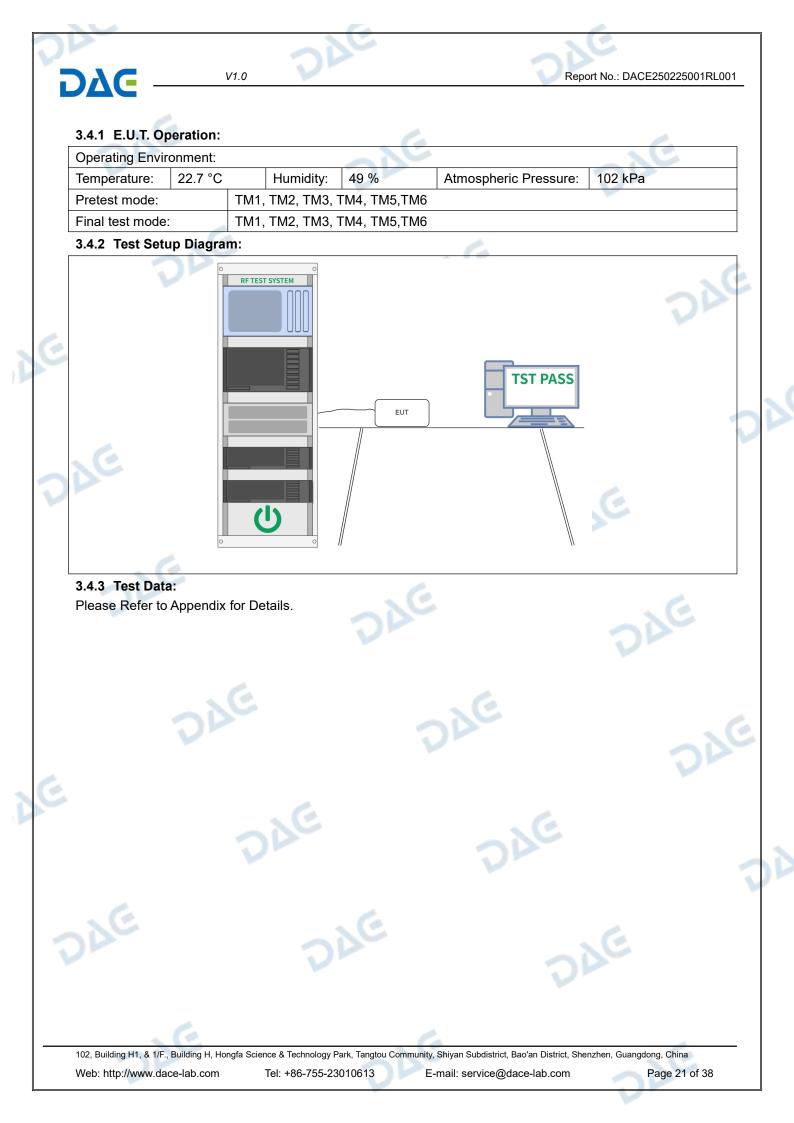
3.3.2 Test Setup Diagram:

RF TEST SYSTEM	LE.
	TST PASS
3.3.3 Test Data: Please Refer to Appendix for Details.	DAE

Report No.: DACE250225001RL001

1

3.4 Out of Band Emission


DΔC

Test Requirement:	47 CFR Part 2.1051, Part 24.238(a)
	47 CFR Part 2.1051, Part 22.917(a)
	47 CFR Part 2.1051, Part 27.53(m)(4)
Test Limit:	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
Test Method:	47 CFR Part 24.238(b)
	ANSI C63.26-2015, Section 5.7.3
Procedure:	Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (
	a) Set the spectrum analyzer center frequency to the block, band, or channel edge
	b) Set the span wide enough to capture the fundamental emission closest to the
	authorized block or band edge, and to include all modulation products that spill into the immediately adjacent frequency band. In some cases, it may be possible to se the center frequency and span so as to encompass the fundamental emission and the unwanted out-of-band (band-edge) emissions on either side of the authorized block, band, or channel. This can be accomplished with a single (slow) sweep, if adequate overload protection and sufficient dynamic range can be maintained. c) Set the number of points in sweep ≥ 2 × span / RBW.
	d) Sweep time should be auto for peak detection. For rms detection the sweep tim should be set as follows:
	 If the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweep time) > (number of points in sweep) × (symbol period) (e.g., by a factor of 10 × symbol period × number of points). Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols If the device cannot transmit continuously (duty cycle < 98%), a gated sweep shall be used when possible (i.e., gate triggered such that the analyzer only sweep when the device is transmitting at full power), set the sweep time > (number of points in sweep) × (symbol period) but the sweep time shall always be maintained at a value that is less than or equal to the minimum transmission time. If the device cannot be configured to transmit continuously (duty cycle < 98%)
	and a freerunning sweep must be used, set the sweep time so that the averaging is performed over multiple on/off cycles by setting the sweep time > (number of point in sweep) × (transmitter period) (i.e., the transmit on-time + the off-time). The spectrum analyzer readings shall subsequently be corrected by [10 log (1/duty cycle)]. This assumes that the transmission period and duty cycle is relatively constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit continuously and a free-running
	 4) If the device cannot be configured to transmit continuously and a free-tunning sweep must be used, and if the transmissions exhibit a non-constant duty cycle (duty cycle variations > ±2%), set the sweep time so that the averaging is performed over the on-period by setting the sweep time > (symbol period) × (number of points), while also maintaining the sweep time < (transmitter on-time). The trace mode shall be set to max hold, since not every display point will be averaged only over just the on-time. Thus, multiple sweeps (e.g., 100) in maximum hold are necessary to ensure that the maximum power is measured. e) The test report shall include the plots of the measuring instrument display and the measured data. f) See Annex I for example emission mask plots.
	<u>, , , , , , , , , , , , , , , , , , , </u>

Web: http://www.dace-lab.com

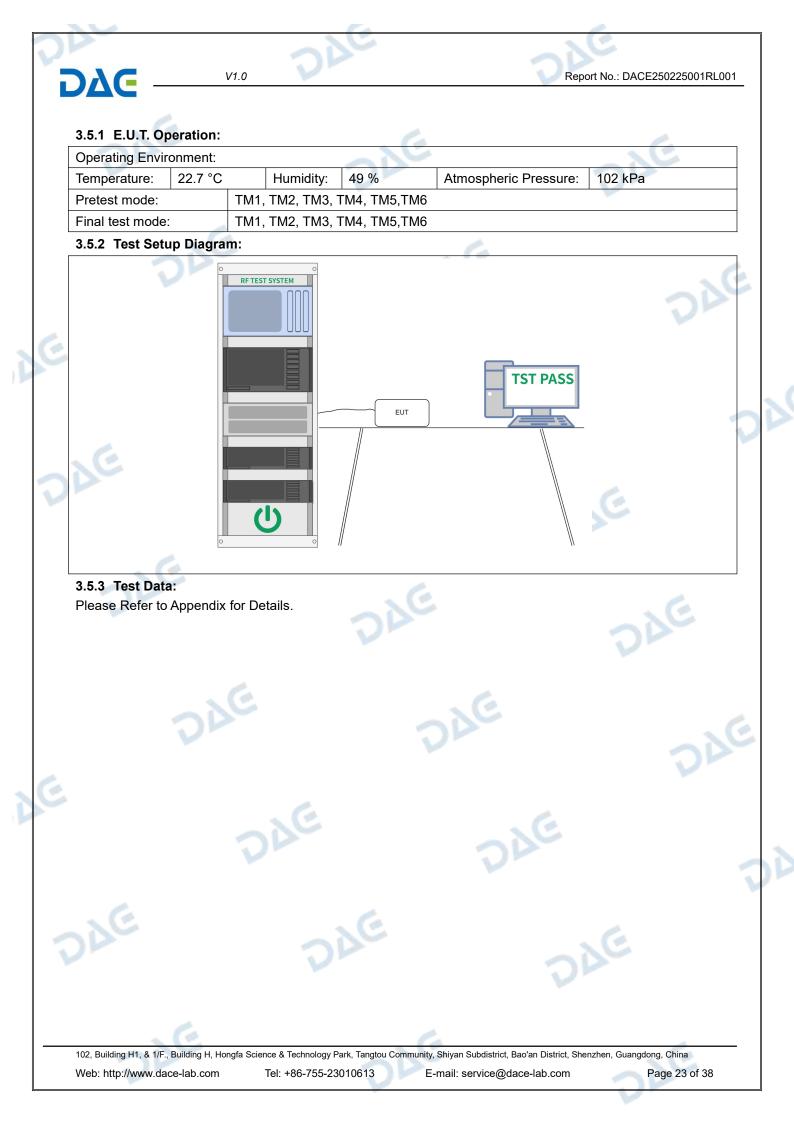
Page 20 of 38

Tel: +86-755-23010613 E-mail: service@dace-lab.com

DΔC

Report No.: DACE250225001RL001

1


Test Requirement: 47 CFR Part 2.1051, Part 22.2917(a) 47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 22.53(m)(4) The power of any emission outside of the authorize must be attenuated below the transmitting power (Flog(P) dB. Test Method: 47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or greabands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission bemission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to th frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions oblock, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic () Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points in sweep) × (s of 10 × symbol period > under of points in sweep) × (s of 10 × symbol period but the sweet is the avalue that is less than or equal to the minimum 3) If the device cannot transmit continuously (duty c) shall be used when possible (i.e., gate triggered su when the device is transmititing at full power), set th points in sweep) ×	
47 CFR Part 2.1051, Part 27.53(m)(4) Test Limit: The power of any emission outside of the authorize must be attenuated below the transmitting power (Flog(P) dB. Test Method: 47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or great bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emission or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ x span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duy or shall be used when possible (i.e., gate triggered su when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep time at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep)	
Test Limit: The power of any emission outside of the authorize must be attenuated below the transmitting power (Flog(P) dB. Test Method: 47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or great bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions ob block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggereds) when the device is transmitting at triggered by emission at equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × ((symbol period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle/). This assumes that the transmission period i constant (duty cycle variation ≤±2%).<	
must be attenuated below the transmitting power (Flog(P) dB. Test Method: 47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or great bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nart permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions o block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points, increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty chall be used when possible (i.e., gate triggered su when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit co and a freerunning sweep must be used, set the swe performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit co and a freerunning shall subsequently be cycle)]. This assumes that the transmission period a constant (dut	d operating frequency ranges
log(P) dB. Test Method: 47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or grea bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions of block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device is transmiting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit on spectrum analyzer readings shall subsequently be e cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit con	
Test Method: 47 CFR Part 24.238(b) ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or great bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundarm authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions o block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points in sweep) × (s of 10 × symbol period × number of points in lncreasis the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered su when the device is transmittiong at full powr), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit co and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be e cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%).	
 ANSI C63.26-2015, Section 5.7.3 Procedure: Compliance with these rules is based on the use of employing a resolution bandwidth of 1 MHz or great bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission be emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundament authorized block or band edge, and to include all me the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points in sweep) × (so for 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot the configured to the minimum 3) If the device cannot be configured to the minimum 3) If the device cannot be configured to the sweep the over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be or cycle). This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (duty cycle variation ≤ ±2%). 	
 employing a resolution bandwidth of 1 MHz or great bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to th frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty c shall be used when possible (i.e., gate triggered su when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be or cycle)]. This assumes that the transmission period constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant contant (duty cycle variation ≤ ±2%). 	
 bands immediately outside and adjacent to the freq bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spean wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (but y cycle variation ≤ ±2%). 	
 bandwidth of at least one percent of the emission b emission of the transmitter may be employed. A nar permitted in all cases to improve measurement acc power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (so f 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty chant is in sweep) × (symbol period) but the sweep time a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit continuously (duty cycle)]. This assumes that the transmission period and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (duty cycle variation ≤ ±2%). 	
 emission of the transmitter may be employed. A narpermitted in all cases to improve measurement acc power is integrated over the full required measurement. a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundament authorized block or band edge, and to include all methe immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic () Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contine the (sweep time) > (number of points in sweep) × (so of 10 × symbol period × number of points). Increasis the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered su when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit contant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (duty cycle variation ≤ ±2%). 	
 permitted in all cases to improve measurement acc power is integrated over the full required measurement a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundament authorized block or band edge, and to include all methe immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contine the (sweep time) > (number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered surwhen the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep erformed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit continues the sweep here the device cannot be configured to transmit continues the sweep here the device cannot be configured to transmit continues the sweep here the device cannot be configured to transmit or spectrum analyzer readings shall subsequently be a cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 	
 power is integrated over the full required measurem a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundament authorized block or band edge, and to include all methe immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic c) Set the number of points in sweep ≥ 2 × span / Red) Sweep time should be auto for peak detection. Fishould be set as follows: 1) If the device can be configured to transmit continine the (sweep time) > (number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep the the device is transmitting at full power), set the sweep speed when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep the avalue that is less than or equal to the minimum 3) If the device cannot be configured to transmit contand a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be acconstant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contand to the device cannot be configured to transmit contand a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be acconstant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contand to the device cannot be configured to transmit contand to the device cannot be configured to transmit contand to the device cannot be configured to transmit contand to the device	
 a) Set the spectrum analyzer center frequency to the frequency. b) Set the span wide enough to capture the fundame authorized block or band edge, and to include all me the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / Red) Sweep time should be auto for peak detection. Feshould be set as follows: 1) If the device can be configured to transmit continues the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered suwhen the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep time 3) If the device cannot be configured to transmit contant on and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (by cycle variation ≤ ±2%). 	
 frequency. b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device is transmit continuously (duty or shall be used when possible (i.e., gate triggered sur when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be a cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 	ent bandwidth (
 b) Set the span wide enough to capture the fundam authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered surwhen the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be or cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contant (buty cycle variation ≤ ±2%). 	e block, band, or channel edge
 authorized block or band edge, and to include all m the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered surwhen the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit contant or spectrum analyzer readings shall subsequently be or cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 	
 the immediately adjacent frequency band. In some the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasit the sweep speed) will allow for averaging over multi 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered su when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit contant data freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be or cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 	
 the center frequency and span so as to encompass the unwanted out-of-band (band-edge) emissions or block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered surwhen the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep efformed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period aconstant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit continuous to the device cannot be configured to transmit continuous to the device of the system of spectrum analyzer readings shall subsequently be a cycle)]. This assumes that the transmission period aconstant (duty cycle variation ≤ ±2%). 	
 the unwanted out-of-band (band-edge) emissions of block, band, or channel. This can be accomplished adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered survive) × (symbol period) but the sweep time at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 	
block, band, or channel. This can be accomplished adequate overload protection and sufficient dynami c) Set the number of points in sweep $\ge 2 \times \text{span} / \text{R}$ d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit of spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\le \pm 2\%$). 4) If the device cannot be configured to transmit con-	
 adequate overload protection and sufficient dynamic) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contint the (sweep time) > (number of points in sweep) × (so f 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty or shall be used when possible (i.e., gate triggered surwhen the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit continuous to the device cannot be configured to transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 	
 c) Set the number of points in sweep ≥ 2 × span / R d) Sweep time should be auto for peak detection. F should be set as follows: 1) If the device can be configured to transmit contin the (sweep time) > (number of points in sweep) × (s of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered surwhen the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit continuous to the device cannot be configured to transmit continuous to the device cannot be configured to transmit or spectrum analyzer readings shall subsequently be constant (duty cycle variation ≤ ±2%). 	
the (sweep time) > (number of points in sweep) × (so of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con-	
the (sweep time) > (number of points in sweep) × (so of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con-	
the (sweep time) > (number of points in sweep) × (so of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con-	
the (sweep time) > (number of points in sweep) × (so of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con-	(duty ayala > 0.0%) act
of 10 × symbol period × number of points). Increasi the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con	
the sweep speed) will allow for averaging over mult 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered sur- when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti- at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con- and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con-	
 2) If the device cannot transmit continuously (duty of shall be used when possible (i.e., gate triggered survey when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep til at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contact the transmit contact of the transmitter period (i.e., the transmit contact of the transmitter period) (i.e., the transmit contact of the transmitter period) (i.e., the transmit contact of the transmitter period) (i.e., the transmit contact of the transmitter period). 	
shall be used when possible (i.e., gate triggered survey when the device is transmitting at full power), set the points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con	
when the device is transmitting at full power), set th points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con	
points in sweep) × (symbol period) but the sweep ti at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swee performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be of cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con	
at a value that is less than or equal to the minimum 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the swe performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con	
 3) If the device cannot be configured to transmit con and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit constant constant (be configured to transmit constant). 	
and a freerunning sweep must be used, set the sweep performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit con-	
 performed over multiple on/off cycles by setting the in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit constant (be configured to transmit constant). 	
 in sweep) × (transmitter period) (i.e., the transmit or spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit constant (duty cycle variation ≤ ±2%). 	
spectrum analyzer readings shall subsequently be cycle)]. This assumes that the transmission period a constant (duty cycle variation $\leq \pm 2\%$). 4) If the device cannot be configured to transmit constant.	
 cycle)]. This assumes that the transmission period a constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit contract the transmit contract of the device cannot be configured to transmit contract. 	
 constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit config	
4) If the device cannot be configured to transmit con	ind duty cycle is relatively
sweep must be used, and if the transmissions exhibit	
(duty cycle variations > $\pm 2\%$), set the sweep time set	
performed over the on-period by setting the sweep	
(number of points), while also maintaining the swee	
The trace mode shall be set to max hold, since not	
averaged only over just the on-time. Thus, multiple	
hold are necessary to ensure that the maximum por	
e) The test report shall include the plots of the measure	suring instrument display and
the measured data.	
f) See Annex I for example emission mask plots.	

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 22 of 38

DΔC

Report No.: DACE250225001RL001

3.6 Field Strength of Radiated Emission

Test Requirement:	47 CFR Part 2.1053, Part 24.238(a)
	47 CFR Part 2.1053, Part 22.917(a)
	47 CFR Part 2.1051, Part 27.53(m)(4)
Test Limit:	The power of any emission outside of the authorized operating frequency ranges
	must be attenuated below the transmitting power (P) by a factor of at least 43 + 10
	log(P) dB.
Test Method:	ANSI C63.26-2015, Section 5.5.3
Procedure:	a) Place the EUT in the center of the turntable. The EUT shall be configured to
	transmit into the standard non-radiating load (for measuring radiated spurious
	emissions), connected with cables of minimal length unless specified otherwise. If
	the EUT uses an adjustable antenna, the antenna shall be
	positioned to the length that produces the worst case emission at the fundamental
	operating frequency.
	b) Each emission under consideration shall be evaluated:
	1) Raise and lower the measurement antenna in accordance 5.5.2, as necessary t
	enable detection of the maximum emission amplitude relative to measurement
	antenna height.
	2) Rotate the EUT through 360° to determine the maximum emission level relative
	to the axial position.
	3) Return the turntable to the azimuth where the highest emission amplitude level
	was observed.
	4) Vary the measurement antenna height again through 1 m to 4 m again to find the
	height associated with the maximum emission amplitude.
	5) Record the measured emission amplitude level and frequency using the
	appropriate RBW.
	c) Repeat step b) for each emission frequency with the measurement antenna
	oriented in both the horizontal and vertical polarizations to determine the orientation
	that gives the maximum emissions amplitude.
	d) Set-up the substitution measurement with the reference point of the substitution
	antenna located as near as possible to where the center of the EUT radiating
	element was located during the initial EUT measurement.
	e) Maintain the previous measurement instrument settings and test set-up, with the
	exception that the EUT is removed and replaced by the substitution antenna.
	f) Connect a signal generator to the substitution antenna; locate the signal
	generator so as to minimize
	any potential influences on the measurement results. Set the signal generator to the
	frequency where emissions are detected, and set an output power level such that
	the radiated signal can be detected by the measurement instrument, with sufficien
	dynamic range relative to the noise floor.
	g) For each emission that was detected and measured in the initial test [i.e., in ste
	b) and step c)]:
	1) Vary the measurement antenna height between 1 m to 4 m to maximize the
	received (measured) signal amplitude.
	2) Adjust the signal generator output power level until the amplitude detected by the
	measurement instrument equals the amplitude level of the emission previously
	measured directly in step b) and step c).
	3) Record the output power level of the signal generator when equivalence is
	achieved in step 2).
	h) Repeat step e) through step g) with the measurement antenna oriented in the
	opposite polarization.
	i) Calculate the emission power in dBm referenced to a half-wave dipole using the
	following equation:
	Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)
	where
	Pe = equivalent emission power in dBm

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

							2		
DA	E –		V1.0				Re	port No.: DACE250225001	RL001
		-	Ps	= se	ource (signa	l generator) power in dBm	6	
N N			NOT dipol		s to the me	asured ante	nna gain in decib	els relative to a half-w	ave
			j) Co	rrect the ante				ecessary to reference	
								rement antennas with I can be determined fr	
			gain	(dBd) = gain	(dBi) - 2.15	dB. If nece	ssary, the antenna	a gain can be calculat	
				calibrated an ovide the cor			n sults as a part of [·]	the test report.	
3.6.1 I	E.U.T. O	peration:	,		. <u>.</u>	76	•		
		ronment:						5	
Tempe	rature:	22.7 °C		Humidity:	49 %	Atmo	spheric Pressure:	102 kPa	
Pretest	mode:		TM1	, TM2, TM3, ⁻	TM4, TM5,T	M6			
Final te	est mode	:	TM1	, TM2, TM3, ⁻	TM4, TM5,T	M6	- 6		
3.6.2	Fest Set	up Diagra	m:				20		
]	
6									
							Antenna Tower		
			R	×	3m	+ ⁽⁰⁰⁰⁾		6	
				AE EUT		(m)	1m-4m		
					-	Horn Antenna			
				Sm		lm			
		S I		+ Gound Refer	ence Plane	¥ 0			
					Test Receiver	0 0 Pre-Amplifier	Controller	.6	
								24	

3.6.3 Test Data:

DAG

			LTE Ban	d 2				
		Spurious Emission						
Bandwidth	Channel	Frequency (MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Result
	20	364.63	Vertical	-39.73	-6.68	-46.41		
	V	2801.95	V	-48.49	-3.42	-51.91	- 13.00	PAS
	Low	2043.07	V	-58.51	-1.42	-59.93	-	
	LOW	367.53	Horizontal	-39.16	-6.68	-45.84		
		2275.37	Н	-51.15	-3.42	-54.57	- 13.00	PAS
	-	2503.17	Н	-57.29	-1.42	-58.71		
		357.39	Vertical	-39.90	-6.68	-46.58		
		1698.45	V	-51.14	-3.42	-54.56	- 13.00	PAS
	Mid	3000.63	V	-56.64	-1.42	-58.06		
1.4MHz	IVIIG	372.81	Horizontal	-40.78	-6.68	-47.46		
		1540.40	Н	-50.58	-3.42	-54.00	- 13.00	PAS
		3546.18	Н	-56.84	-1.42	-58.26	-	
		358.50	Vertical	-39.80	-6.68	-46.48		
	6	2301.51	V	-49.42	-3.42	-52.84	- 13.00	PAS
	High	3273.31	V	-58.81	-1.42	-60.23		
	High	369.59	Horizontal	-39.90	-6.68	-46.58		
		2038.46	H	-48.43	-3.42	-51.85	- 13.00	PAS
		2138.33	Н	-58.06	-1.42	-59.48		
		366.91	Vertical	-40.69	-6.68	-47.37		
	2	2197.49	V	-48.34	-3.42	-51.76	- 13.00	PAS
	P	3449.41	V	-58.01	-1.42	-59.43		
	Low	356.97	Horizontal	-38.30	-6.68	-44.98	1	7
		1033.29	Н	-49.18	-3.42	-52.60	- 13.00	PAS
		3365.29	Н	-57.20	-1.42	-58.62		
		372.25	Vertical	-38.93	-6.68	-45.61		
3MHz	Mid	1191.24	V	-49.65	-3.42	-53.07	- 13.00	PAS
		2066.28	V	-57.18	-1.42	-58.60		
		367.45	Horizontal	-40.10	-6.68	-46.78		
		2806.91	H	-50.63	-3.42	-54.05	- 13.00	PAS
		2694.13) H	-58.23	-1.42	-59.65		
	High	375.51	Vertical	-38.99	-6.68	-45.67	- 13.00	PAS
		2695.20	V	-49.27	-3.42	-52.69		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

	5	2105.41	V	-57.73	-1.42	-59.15	6	
Dr		369.77	Horizontal	-41.23	-6.68	-47.91	26	
		1944.95	н	-49.27	-3.42	-52.69	- 13.00	PASS
		3903.71	Н	-57.18	-1.42	-58.60		
	. 6	377.58	Vertical	-41.14	-6.68	-47.82		
		1308.18	V	-50.34	-3.42	-53.76	- 13.00	PASS
	Low	2815.00	V	-58.67	-1.42	-60.09		
	LOW	362.67	Horizontal	-40.20	-6.68	-46.88	1	
		2737.13	Н	-50.87	-3.42	-54.29	- 13.00	PASS
-		3218.07	Н	-57.02	-1.42	-58.44		
		378.71	Vertical	-39.52	-6.68	-46.20		
		1748.87	V	-51.26	-3.42	-54.68	- 13.00	PASS
	Mid	2247.58	V	-57.15	-1.42	-58.57		
6	IVIIG	372.41	Horizontal	-38.72	-6.68	-45.40		
5MHz		2647.43	L H	-49.46	-3.42	-52.88	- 13.00	PASS
		2637.87	Н	-57.83	-1.42	-59.25		
		372.38	Vertical	-39.50	-6.68 🔹	-46.18		
		1524.02	V	-49.24	-3.42	-52.66	- 13.00	PASS
	High	2139.38	V	-57.03	-1.42	-58.45		
DP	- ingri	363.49	Horizontal	-40.69	-6.68	-47.37		
		2853.94	T T	-49.22	-3.42	-52.64	- 13.00	PASS
		3296.69	Н	-58.55	-1.42	-59.97		

			LTE B	and 4				
		Frequency		Spurious Er	nission		Limit	
Bandwidth	Channel	(MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	(dBm)	Result
6		362.78	Vertical	-40.50	-6.68	-47.18		
		1038.19	V	-50.66	-3.42	-54.08	- 13.00	PASS
	Low	3514.48	V	-58.82	-1.42	-60.24		
	LOW	369.47	Horizontal	-38.86	-6.68	-45.54		
		1710.23	Н	-50.71	-3.42	-54.13	- 13.00	PASS
		2404.66	H	-56.51	-1.42	-57.93		
Ne		357.61	Vertical	-38.56	-6.68	-45.24		
		1109.00	V	-49.18	-3.42	-52.60	- 13.00	PASS
	Mid	2745.83	V	-57.89	-1.42	-59.31		
1.4MHz		365.68	Horizontal	-38.28	-6.68	-44.96	- 13.00	PASS

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

DΔC

V1.0

-									
DA	C -		V1.0				Report No.:	DACE25022	5001RL001
		5	2849.22	Н	-50.92	-3.42	-54.34	6	
			2162.54		-58.51	-1.42	-59.93	26	
			367.88	Vertical	-41.00	-6.68	-47.68		
			1196.95	V	-49.62	-3.42	-53.04	- 13.00	PASS
		High	3623.44	V	-58.31	-1.42	-59.73		
		riigii	362.60	Horizontal	-40.23	-6.68	-46.91		
			2135.89	Н	-49.43	-3.42	-52.85	- 13.00	PASS
			2996.82	Н	-57.83	-1.42	-59.25		
			371.76	Vertical	-41.25	-6.68	-47.93		
-			1710.63	V	-51.09	-3.42	-54.51	- 13.00	PASS
		Low	2321.01	V	-56.28	-1.42	-57.70		
		LOW	374.44	Horizontal	-40.68	-6.68	-47.36		
			2642.57	Н	-49.04	-3.42	-52.46	- 13.00	PASS
			2133.32	Н	-58.87	-1.42	-60.29		
			361.63	Vertical	-39.11	-6.68	-45.79		
3	MHz		2321.19	V	-48.44	-3.42	-51.86	- 13.00	PASS
		Mid	2092.17	V	-58.86	-1.42	-60.28		
			367.57	Horizontal	-38.90	-6.68	-45.58		
		9	1639.05	Н	-49.48	-3.42	-52.90	- 13.00	PASS
			2593.38	Н	-58.52	-1.42	-59.94		
		High	369.75	Vertical	-40.48	-6.68	-47.16	- 13.00	PASS
			1329.48	V	-49.48	-3.42	-52.90		
			2717.15	V	-56.87	-1.42	-58.29		
			361.86	Horizontal	-38.97	-6.68	-45.65		
		DP	1538.88	Н	-49.48	-3.42	-52.90	- 13.00	PASS
		V	3954.92	Н	-57.79	-1.42	-59.21		1
			378.73	Vertical	-40.03	-6.68	-46.71		
			1227.41	V	-50.27	-3.42	-53.69	- 13.00	PASS
		Low	2273.10	V	-57.46	-1.42	-58.88		
		LOW	366.55	Horizontal	-38.57	-6.68	-45.25		
			1095.31	Н	-50.67	-3.42	-54.09	- 13.00	PASS
			2714.36	Н	-58.52	-1.42	-59.94		
			375.92	Vertical	-41.01	-6.68	-47.69		
-			1529.96	V	-48.27	-3.42	-51.69	- 13.00	PASS
			0000 44	V	F7 00	4.40	50.04	1	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com

V

Horizontal

Η

Н

-57.82

-41.10

-49.04

-57.10

-1.42

-6.68

-3.42

-1.42

3238.14

364.37

1822.23

2058.22

Web: http://www.dace-lab.com

5MHz

Mid

-59.24

-47.78

-52.46

-58.52

Page 28 of 38

- 13.00

PASS

٩

	9	371.14	Vertical	-40.12	-6.68	-46.80	6	
		1250.30	V	-49.73	-3.42	-53.15	- 13.00	PASS
-	High	2012.15	V	-57.83	-1.42	-59.25		
	riigii	373.38	Horizontal	-40.11	-6.68	-46.79		
	. 6	2567.42	Н	-50.07	-3.42	-53.49	- 13.00	PASS
		3763.40	Н	-56.62	-1.42	-58.04		

	I		LTE B	and 5				
		Frequency		Spurious Ei	mission		Limit	_
Bandwidth	Channel	(MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	(dBm)	Resi
		362.32	Vertical	-40.53	-6.68	-47.21		
		1706.52	V	-49.23	-3.42	-52.65	- 13.00	PAS
	Low	2408.20	V	-58.83	-1.42	-60.25		
NG.	LOW	367.71	Horizontal	-38.53	-6.68	-45.21		
		2851.05	H	-50.67	-3.42	-54.09	- 13.00	PAS
		2600.49	Н	-56.50	-1.42	-57.92	P	
		377.57	Vertical	-38.51	-6.68	-45.19		
-		1518.25	V	-49.96	-3.42	-53.38	- 13.00	PAS
20	Mid	3838.90	V	-58.26	-1.42	-59.68		
V	IVIIC	376.31	Horizontal	-40.72	-6.68	-47.40		1
1.4MHz		1292.26	н	-50.52	-3.42	-53.94	- 13.00	PAS
		2825.14	Н	-56.71	-1.42	-58.13		
		363.87	Vertical	-41.00	-6.68	-47.68		
	2	1581.70	V	-49.36	-3.42	-52.78	- 13.00	PAS
	High	2709.60	V	-58.97	-1.42	-60.39		
	riigii	373.01	Horizontal	-39.29	-6.68	-45.97		76
		2968.74	Н	-50.35	-3.42	-53.77	- 13.00	PAS
		2842.65	Н	-57.40	-1.42	-58.82		
		368.02	Vertical	-40.12	-6.68	-46.80		
		1737.86	V	-50.65	-3.42	-54.07	- 13.00	PAS
	Low	2533.48	V	-58.22	-1.42	-59.64		
		371.60	Horizontal	-38.98	-6.68	-45.66		
24		1138.59	H	-49.09	-3.42	-52.51	- 13.00	PAS
)AC		2034.62	Н	-57.77	-1.42	-59.19		
		361.61	Vertical	-38.60	-6.68	-45.28		
3MHz		2505.28	V	-50.43	-3.42	-53.85	- 13.00	PAS
		2894.37	V	-56.29	-1.42	-57.71		

Web: http://www.dace-lab.com Tel: +86-755-23010613

DΔG

V1.0

E-mail: service@dace-lab.com

Page 29 of 38

	Mid					47.45		
20	IVIIO	377.73	Horizontal	-40.77	-6.68	-47.45	- 13.00	PASS
V		1701.51		-48.30	-3.42	-51.72	- 13.00	FA33
		2442.72	Н	-58.87	-1.42	-60.29		
	High	359.05	Vertical	-40.05	-6.68	-46.73	- 13.00	PASS
		1563.10	V	-48.97	-3.42	-52.39		
1		2236.99	V	-57.35	-1.42	-58.77		
		363.71	Horizontal	-38.92	-6.68	-45.60		
		1144.60	Н	-48.54	-3.42	-51.96	- 13.00	PASS
		3397.49	Н	-56.77	-1.42	-58.19		
		362.63	Vertical	-40.45	-6.68	-47.13		
		1846.14	V	-49.13	-3.42	-52.55	- 13.00	PASS
	Low	3114.32	V	-58.89	-1.42	-60.31		
		372.06	Horizontal	-40.25	-6.68	-46.93		
E		1359.74	Н	-48.48	-3.42	-51.90	- 13.00	PASS
		2988.78	н	-58.01	-1.42	-59.43	-	
		372.90	Vertical	-41.18	-6.68	-47.86	e.	
		2613.23	V	-48.63	-3.42 🔹	-52.05	- 13.00	PASS
	- Mid	3201.49	V	-58.00	-1.42	-59.42	-	
		376.38	Horizontal	-39.22	-6.68	-45.90		
5MHz		2270.28	Н 🔍 (-49.17	-3.42	-52.59	- 13.00	PASS
		3371.67	H)	-57.42	-1.42	-58.84		
		362.30	Vertical	-40.11	-6.68	-46.79	DE	
		1410.00	V	-51.12	-3.42	-54.54	- 13.00	PASS
	Link	3880.47	V	-57.95	-1.42	-59.37	-	
	High	358.06	Horizontal	-40.68	-6.68	-47.36		
		1635.08	Н	-48.68	-3.42	-52.10	- 13.00	PASS
		3619.99	Н	-57.12	-1.42	-58.54		

			LTE Ba	and 12				
		Frequency	:	Spurious Er	nission		Limit	
Bandwidth	Channel	(MHz)	Polarization	Reading	Factor	Level	(dBm)	Result
				(dBm)	(dB)	(dBm)		
6		369.02	Vertical	-40.15	-6.68	-46.83		
		1171.04	V	-48.92	-3.42	-52.34	- 13.00	PASS
	Low	2991.11	V	-58.14	-1.42	-59.56		
	Low	359.01	Horizontal	-40.53	-6.68	-47.21		
		2745.13	Н	-49.27	-3.42	-52.69	- 13.00	PASS
	6	3462.22	Н	-56.73	-1.42	-58.15		
· · · · · · · · · · · · · · · · · · ·								

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

DΔC

V1.0

E-mail: service@dace-lab.com

٩.

2		377.93	Vertical	-39.51	-6.68	-46.19		_
UP		2628.18	V	-48.66	-3.42	-52.08	- 13.00	PASS
	Mid	3196.35	V	-57.27	-1.42	-58.69		
	IVIIG	377.79	Horizontal	-38.71	-6.68	-45.39		
1.4MHz	. 6	2920.65	Н	-49.12	-3.42	-52.54	- 13.00	PASS
	5 V	3772.27	Н	-58.46	-1.42	-59.88		
		373.92	Vertical	-38.88	-6.68	-45.56		
		1792.84	V	-48.56	-3.42	-51.98	- 13.00	PASS
	High	2459.59	V	-57.64	-1.42	-59.06		
	riigii	369.67	Horizontal	-40.17	-6.68	-46.85		
		2040.98	Н	-48.36	-3.42	-51.78	- 13.00	PASS
		2106.34	Н	-56.39	-1.42	-57.81		
		365.03	Vertical	-39.72	-6.68	-46.40		
6		2833.40	V	-49.67	-3.42	-53.09	- 13.00	PASS
	Low	3031.83	V	-57.09	-1.42	-58.51		
	LOW	365.13	Horizontal	-38.41	-6.68	-45.09		
		1516.14	Н	-49.18	-3.42 🔹	-52.60	- 13.00	PASS
		2400.39	Н	-57.71	-1.42	-59.13		
	e	372.83	Vertical	-38.82	-6.68	-45.50		
3MHz		1321.43	V	-50.78	-3.42	-54.20	- 13.00	PASS
	Mid	2291.82	V	-56.48	-1.42	-57.90	20	
	IVIIG	370.93	Horizontal	-39.50	-6.68	-46.18		
		2425.00	Н	-50.04	-3.42	-53.46	- 13.00	PASS
		3166.29	Н	-57.69	-1.42	-59.11		
	High	378.94	Vertical	-40.96	-6.68	-47.64	- 13.00	PASS
	V	1041.51	V	-48.97	-3.42	-52.39		
		2970.27	V	-58.00	-1.42	-59.42		
		364.59	Horizontal	-38.34	-6.68	-45.02		
		1065.36	Н	-49.89	-3.42	-53.31	- 13.00	PASS
		3135.11	Н	-57.41	-1.42	-58.83		
		358.70	Vertical	-38.76	-6.68	-45.44		
		1504.93	V	-49.49	-3.42	-52.91	- 13.00	PASS
.6	Low	3834.63	V	-56.89	-1.42	-58.31		
DAG		359.23	Horizontal	-38.90	-6.68	-45.58		
		2294.98	Н	-49.27	-3.42	-52.69	- 13.00	PASS
		3651.73	Н	-58.63	-1.42	-60.05		
		368.75	Vertical	-40.04	-6.68	-46.72		
	6	2545.34	V	-49.23	-3.42	-52.65	- 13.00	PASS

DΔC

V1.0

E-mail: service@dace-lab.com

	Mid	2743.03	V	-57.35	-1.42	-58.77	C	
		358.33	Horizontal	-39.03	-6.68	-45.71	- 13.00	PAS
5MHz		1068.95	Н	-48.90	-3.42	-52.32	- 13.00	PAS
		3868.30	Н	-57.86	-1.42	-59.28		
	.0	368.97	Vertical	-39.48	-6.68	-46.16	40.00	
		1021.83	V	-50.45	-3.42	-53.87	- 13.00	PAS
	High	2381.43	V	-58.26	-1.42	-59.68		
		364.38	Horizontal	-41.24	-6.68	-47.92		
		1950.61	Н	-50.62	-3.42	-54.04	- 13.00	PAS
		2123.55	Н	-58.46	-1.42	-59.88		
	1							
			LTE B	and 13				
		Frequency		Spurious Er	nission		Limit	_
Bandwidth	Channel	(MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	(dBm)	Resu
		359.11	Vertical	-38.51	-6.68	-45.19		
		2300.11	V	-49.97	-3.42	-53.39	- 13.00	PAS
	Low	2954.29	V	-57.09	-1.42	-58.51		
		365.30	Horizontal	-38.49	-6.68	-45.17		
		2835.79	Н	-50.63	-3.42	-54.05	- 13.00	PAS
		3869.62	- J- D	-56.56	-1.42	-57.98		
		356.57	Vertical	-38.81	-6.68	-45.49		
		2774.33	V	-48.82	-3.42	-52.24	- 13.00	PAS
	Mid	2544.08	V	-58.38	-1.42	-59.80		
	Mid	364.45	Horizontal	-39.13	-6.68	-45.81		
5MHz	24	1870.14	Н	-50.85	-3.42	-54.27	- 13.00	PAS
		3550.88	Н	-58.96	-1.42	-60.38	- /	DP
		367.66	Vertical	-40.41	-6.68	-47.09		
		2996.32	V	-48.37	-3.42	-51.79	- 13.00	PAS
	L L'arts	2123.14	V	-58.96	-1.42	-60.38		
	High	363.18	Horizontal	-38.51	-6.68	-45.19		
		1616.54	Н	-48.80	-3.42	-52.22	- 13.00	PAS
		2076.32	Н	-59.05	-1.42	-60.47	-	
AG	<u></u>		DAG	<u> </u>		240		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 32 of 38

DΔC

Report No.: DACE250225001RL001

1

			LTE B	and 66				
		Frequency		Spurious Ei	mission			_
Bandwidth	Channel	(MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	(dBm)	Resu
	6	370.51	Vertical	-39.10	-6.68	-45.78		
	20	2114.04	V	-48.42	-3.42	-51.84	- 13.00	PAS
	Low	3744.69	V	-59.07	-1.42	-60.49		
	Low	373.66	Horizontal	-40.32	-6.68	-47.00		
		2188.69	Н	-50.55	-3.42	-53.97	- 13.00	PAS
		3847.29	Н	-57.68	-1.42	-59.10		
	-	376.40	Vertical	-40.33	-6.68	-47.01		
		1318.11	V	-49.89	-3.42	-53.31	- 13.00	PAS
	Mid	3992.96	V	-56.74	-1.42	-58.16		
	IVIIG	370.46	Horizontal	-39.04	-6.68	-45.72		
1.4MHz		2711.70	Н	-49.38	-3.42	-52.80	- 13.00	PAS
		3951.11	Н	-59.06	-1.42	-60.48		
		368.24	Vertical	-40.17	-6.68	-46.85	-	
		1465.32	V	-49.07	-3.42	-52.49	- 13.00	PAS
	High	3356.33	V	-59.13	-1.42	-60.55	-	
	rign	374.05	Horizontal	-39.62	-6.68	-46.30		
		2835.28	,H	-48.93	-3.42	-52.35	- 13.00	PAS
		3861.46	H	-56.84	-1.42	-58.26		
		358.39	Vertical	-40.62	-6.68	-47.30		
		2035.06	V	-50.09	-3.42	-53.51	- 13.00	PAS
		2789.70	V	-57.53	-1.42	-58.95	-	
	Low	375.49	Horizontal	-40.56	-6.68	-47.24		- >
		1863.15	Н	-49.32	-3.42	-52.74	- 13.00	PAS
		2226.28	Н	-57.33	-1.42	-58.75		
		369.79	Vertical	-39.58	-6.68	-46.26		
3MHz		2485.59	V	-51.13	-3.42	-54.55	- 13.00	PAS
011112	Mid	3262.01	V	-57.41	-1.42	-58.83		
	IVIIC	378.60	Horizontal	-38.88	-6.68	-45.56		
		2087.87	Н	-48.33	-3.42	-51.75	- 13.00	PAS
		2554.24	H	-58.70	-1.42	-60.12	1	
	High	361.97	Vertical	-40.04	-6.68	-46.72	- 13.00	PAS
		1390.99	V	-50.23	-3.42	-53.65		
		2230.21	V	-57.74	-1.42	-59.16		
		356.78	Horizontal	-38.66	-6.68	-45.34		

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

1

	5	1889.91	н	-48.50	-3.42	-51.92	- 13.00	PASS
2r		2866.96	H D	-58.22	-1.42	-59.64	Ne	
		371.27	Vertical	-39.48	-6.68	-46.16		
		1404.06	V	-50.50	-3.42	-53.92	- 13.00	PASS
	Low	2996.76	V	-57.66	-1.42	-59.08		
	LOW	373.80	Horizontal	-40.92	-6.68	-47.60		
		2724.08	Н	-49.42	-3.42	-52.84	- 13.00	PASS
		3022.03	Н	-57.28	-1.42	-58.70		
		374.59	Vertical	-39.29	-6.68	-45.97		
		2844.30	V	-50.46	-3.42	-53.88	- 13.00	PASS
	Mid	2085.75	V	-58.55	-1.42	-59.97		
	IVIIC	357.13	Horizontal	-40.45	-6.68	-47.13		
5MHz		1282.77	Н	-50.19	-3.42	-53.61	- 13.00	PASS
E		2967.51	Н	-57.62	-1.42	-59.04		
		373.54	Vertical	-39.13	-6.68	-45.81		
		2365.31	V	-50.35	-3.42	-53.77	- 13.00	PASS
	High	3513.52	V	-57.72	-1.42 🔎	-59.14		
	High	376.93	Horizontal	-38.41	-6.68	-45.09		
		1656.52	Н	-49.25	-3.42	-52.67	- 13.00	PASS
2P		3385.87	Н 🔍 (-58.88	-1.42	-60.30		

V1.0

DΔG

2

3

DAG

DAE

DAG

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)AC

0

Page 34 of 38

NE

DγC

est Requirement:	47 CFR Part 2.1055, Part 24.235
	47 CFR Part 2.1055, Part 27.54
ēst Limit:	The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.
est Method:	ANSI C63.26-2015, Section 5.6
Procedure:	 Frequency stability over variations in temperature: a) Supply the EUT with a nominal 60 Hz ac voltage, dc voltage, or install a new or fully charged battery in the EUT. b) If possible a dummy load should be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible. c) Turn on the EUT, and tune it to the center frequency of the operating band. d) Couple the transmitter output to the measuring instrument through a suitable
	 attenuator and coaxial cable. If connection to the EUT output is not possible, make the measurement by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away). NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument. e) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow measurement
	 of the operating or fundamental frequency of the EUT). Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate frequency measurements over the applicable frequency stability limits. f) Turn the EUT off, and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit. g) Set the temperature control on the chamber to the highest temperature specifie in the regulatory requirements for the type of device, and allow the oscillator heater and the chamber temperature to stabilize. Unless otherwise instructed by the regulatory authority, this temperature should be 50 °C. h) While maintaining a constant temperature inside the environmental chamber,
	 turn on the EUT and allow sufficient time for the EUT temperature to stabilize. i) Measure the frequency. j) Switch off the EUT, but do not switch off the oscillator heater. k) Lower the chamber temperature to the next level that is required by the standar and allow the temperature inside the chamber to stabilize. Unless otherwise instructed by the regulators, this temperature step should be 10 °C. l) Repeat step h) through step k) down to the lowest specified temperature. Unless otherwise instructed by the regulators, this temperature should be -30 °C. When the frequency stability limit is stated as being sufficient such that the fundamental emissions stay within the authorized bands of operation, a reference point shall be established at the applicable unwanted emissions limit using a RBW
	 equal to the RBW required by the unwanted emissions specification of the applicable regulatory standard. These reference points measured using the lowest and highest channel of operation shall be identified as fL and fH respectively. The worst-case frequency offset determined in the above methods shall be added or subtracted from the values of fL and fH and the resulting frequencies must remain within the band. m) The following additional information is required for equipment incorporating heater type crystal oscillators to be used in mobile stations except for battery powered, hand carried, and portable equipment having mean output power lower than the threshold specified.

E-mail: service@dace-lab.com

Tel: +86-755-23010613

Web: http://www.dace-lab.com

Page 35 of 38

V1.0

1) Measurement data showing variation in transmitter output frequency from a cold start and the elapsed time necessary for the frequency to stabilize within the applicable tolerance. Tests shall be made after temperature stabilization at each of the ambient temperature levels required by the standard.

2) Beginning at each temperature level specified, the frequency shall be measured within 60 s after application of primary power to the transmitter and at intervals of no more than 60 s thereafter until 10 min have elapsed or until sufficient measurements are obtained to indicate clearly that the frequency has stabilized within the applicable tolerance, whichever time period is greater.

3) The elapsed time necessary for the frequency to stabilize within the applicable tolerance from each beginning temperature level as determined from the tests specified in this paragraph shall be specified in the instruction book for the transmitter furnished to the user.

4) When it is impracticable to subject the complete transmitter to this test because of its physical dimensions or power rating, only its frequency determining and stabilizing portions need be tested.

Frequency stability when varying supply voltage:

a) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial cable. If connection to the EUT output is not possible make the measurement by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away) b) Supply the EUT with nominal ac or dc voltage. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

c) Turn on the EUT, and couple its output to a frequency counter or other frequencymeasuring instrument.

d) Tune the EUT to the center frequency of the operating band. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate frequency measurements over the applicable frequency stability limits.

NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument. e) Measure the frequency.

f) Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.

g) For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

h) Repeat the frequency measurement.

NOTE—For band-edge compliance, it can be required to make these measurements at the low and high channel of the operating band.

3.7.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.7 °C		Humidity:	49 %		Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3, 1	ГМ4, ТІ	M5,TM6		C	
Final test mode:		TM1,	TM2, TM3, 1	ΓM4, TI	M5,TM6	2		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

700	S.C.	.C.
DΔG —	V1.0	Report No.: DACE250225001RL001
-		
3.7.2 Test Setup Diag	gram:	DAC
E		TST PASS
3.7.3 Test Data: Please Refer to Appen	ndix for Details.	DIE
		DAE
.C.		
102, Building H1, & 1/F., Building H Web: http://www.dace-lab.co		hiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China nail: service@dace-lab.com Page 37 of 38

