

Test Report			
1. Client			
• Name : • Address :	Sena Technologies Co., Ltd. 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Republic of Korea		
2. Use of Report :	FCC & IC Approval		
3. Sample Description			
Product Name : Model Name :	X-COM 3 SP147		
4. Date of Receipt :	2023-10-26		
5. Date of Test :	2023-11-27 ~ 2023-12-04		
6. Test Method :	FCC Part 15 Subpart C 15.247 RSS-247 Issue 2(2017-02), RSS-GEN Issue 5(2019-03)		
7. Test Results :	Refer to the test results		
This test report must not be reproduced or reproduced in any way. The results shown in this test report are the results of testing the samples provided. This test report is prepared according to the requirements of ISO / IEC 17025.			

Affirmation	Tested by	26	Technical Manager	Amy
Ammation	Jong-Myoung, Shin	(Sabature)	Kyung-Taek, Lee	(Gignatur <u>e)</u>
			Dec 0	4, 2023
		EMC Lab	s Co., Ltd.	不可見

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 1 / 41

This test report shall not be reproduced except in full, Without the written approval.

<u>Contents</u>

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information	5
3.	Test Summary	6
4.	Used equipment on test······	7
5.	Antenna Requirement	7
6.	6 dB Bandwidth & Occupied Bandwidth (99%)	9
7.	Maximum Peak Output Power	13
8.	Peak Power Spectral Density	16
9.	TX Radiated Spurious Emission and Conducted Spurious Emission	19
10.	Conducted Emission	35
	APPENDIX	
APP	ENDIX I TEST SETUP	38

APPENDIX II UNCERTAINTY······ 40

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 2 / 41

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
KR0140-RF2312-002	Dec 04, 2023	Initial Issue

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 3 / 41

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant	Sena Technologies Co., Ltd.
Applicant Address 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Republic of Korea	
Contact Person	Seunghyun Kim
Telephone No.	+82-2-573-7772
Fax No.	+82-2-573-7710
E-mail	shkim77@sena.com

1.2. Manufacturer Information

Manufacturer Sena Technologies Co., Ltd.	
Manufacturer Address	19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Korea

1.3 Test Laboratory Information

Laboratory	EMC Labs Co., Ltd.
Laboratory Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of
	Korea
Contact Person	Jong-Myoung, Shin
Telephone No.	+82-31-637-8895
Fax No.	+82-505-116-8895
FCC Designation No.	KR0140
FCC Registration No.	580000
IC Site Registration No.	28751

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	X-COM 3
Model Name	SP147
FCC ID	S7A-SP147
IC	8154A-SP147
Rated Voltage	DC 3.8 V

2.2 Additional Information

Operating Frequency	2 402 MHz ~ 2 480 MHz	
Number of channel	40	
Modulation Type	GFSK	
Antenna Type	Dipole Antenna	
Antenna Gain	0.74 dBi	
Firmware Version	1.0	
Hardware Version	1.0	
Test software	BlueTest3 V3.3.5	

2.3 Test Frequency

Test mode	Test Frequency (MHz)		
	Low Frequency	Middle Frequency	High Frequency
BLE	2 402	2 442	2 480

2.4 Used Test Software Setting Value

Test Mode	Setting Item	
Test Mode	Power	
BLE	4	

2.5 Mode of operation during the test

 The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.6 Modifications of EUT

- None

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result	
\square	15.203	-	Antenna Requirement		С	
\square	15.247(a)	RSS-247 (5.2)	6 dB Bandwidth		С	
\square	_	RSS GEN (6.7)	Occupied Bandwidth (99%)		С	
	15.247(b)	RSS-247 (5.4)	Maximum Peak Output Power	Conducted	С	
	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		С	
\square	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission		С	
	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission Radiated		С	
\square	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	С	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable						

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

4. Used equipment on test

Description	Manufacturer	Model Name	Serial Name	Next Cal.
TEMP & HUMID CHAMBER	JFM	JFMA-001	20200929-01	2023.12.15
CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2023.12.15
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2023.12.15
MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2023.12.14
SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2023.12.14
VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2023.12.14
BLUETOOTH TESTER	TESCOM	TC-3000A	3000A480088	2023.12.14
DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2023.12.14
ATTENUATOR	AGILENT	8493C	73193	2023.12.14
TERMINATIOM	HEWLETT PACKARD	909D	07492	2023.12.14
POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2023.12.14
SLIDE-AC	DAEKWANG TECH	SV-1023	NONE	2024.11.10
DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2023.12.14
ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8GHz	A-0820.SM20.2	2024.04.04
DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2024.02.23
USB Peak Power Sensor	Anritsu	MA24408A	12321	2024.11.09
High Pass Filter	WT Microwave INC.	WT-A3314-HS	WT22111804-1	2023.12.14
High Pass Filter	WT Microwave INC.	WT-A1935-HS	WT22111804-2	2023.12.14
SPECTRUM ANALYZER	ROHDE & SCHWARZ	FSU26	200444	2024.02.22
ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2024.12.22
Biconilog ANT	Schwarzbeck	VULB 9160	3260	2025.01.09
Biconilog ANT	Schwarzbeck	VULB9168	902	2024.11.30
Horn ANT	Schwarzbeck	BBHA9120D	974	2024.11.30
Horn ANT	Schwarzbeck	BBHA9120D	1497	2024.01.09
Amplifier	TESTEK	TK-PA18H	200104-L	2024.03.14
Horn ANT	Schwarzbeck	BBHA9170	01188	2024.03.16
Horn ANT	Schwarzbeck	BBHA9170	01189	2024.03.16
AMPLIFIER	TESTEK	TK-PA1840H	220105-L	2024.03.14
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW44	101952	2024.03.14
Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2024.06.27
LISN	ROHDE & SCHWARZ	ENV216	100409	2024.01.09
PULSE LIMITER	lignex1	EPL-30	NONE	2024.01.09

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 7 / 41

5. Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a Dipole Antenna. The directional peak gain of the antenna is 0.74 dBi.)

6. 6 dB Bandwidth & Occupied Bandwidth (99%)

6.1 Test Setup

Refer to the APPENDIX I.

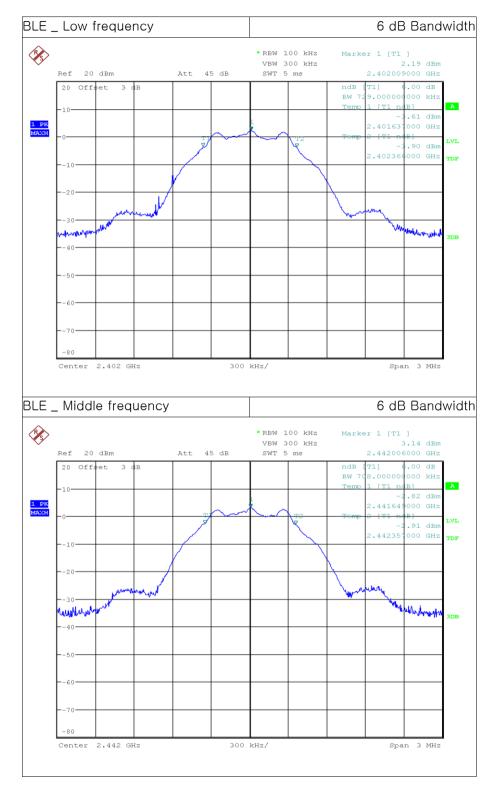
6.2 Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

6.3 Test Procedure

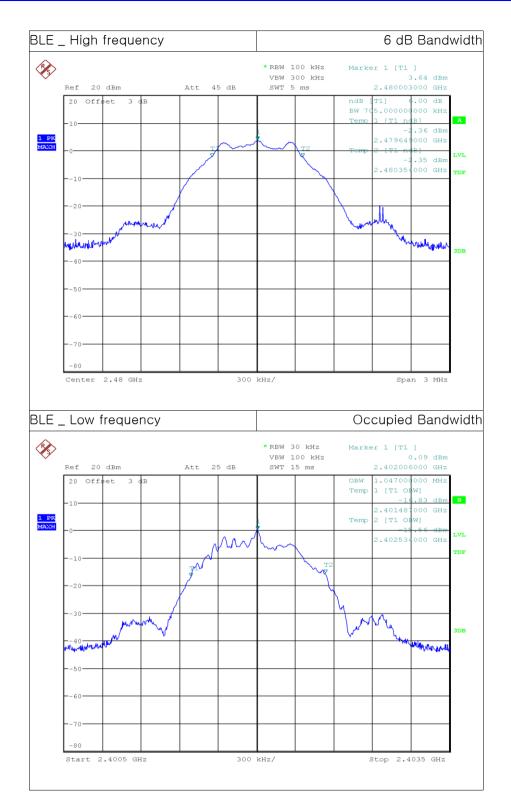
The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
 - Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW ≥ 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

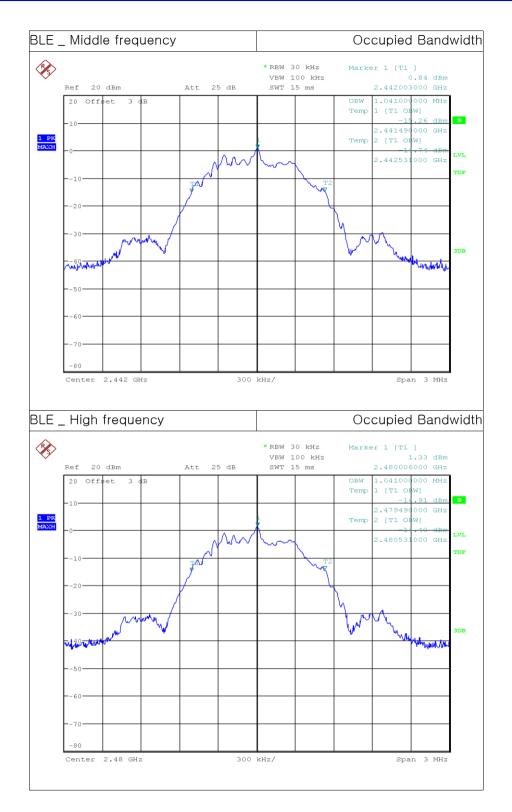

6.4 Test Result

Test Mode	Test Frequency	6 dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
	Low	0.729	1.047
BLE	Middle	0.708	1.041
	High	0.705	1.041

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 9 / 41



6.5 Test Plot


EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 10 / 41

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 11 / 41

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 12 / 41

This test report shall not be reproduced except in full, Without the written approval.

7. Maximum Peak Output Power

7.1 Test Setup

Refer to the APPENDIX I.

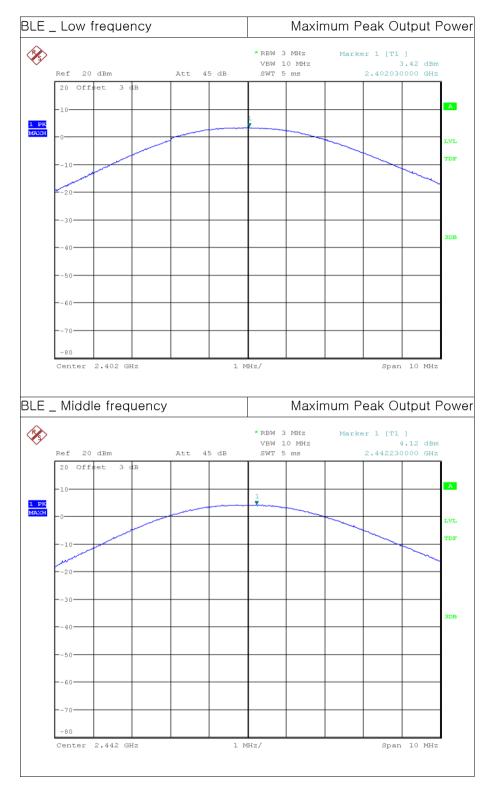
7.2 Limit

The maximum permissible conducted output power is 1 Watt.

7.3 Test Procedure

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set the RBW \geq DTS bandwidth
- 2. Set VBW \geq 3 x RBW
- 3. Set span \geq 3 x RBW.
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak search function to determine the peak amplitude level.


7.4 Test Result

Test Mode		Peak Output Power			
iest mode	Test Frequency	dBm	mW		
	Low	3.42	2.20		
BLE	Middle	4.12	2.58		
	High	4.71	2.96		

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 13 / 41


7.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 14 / 41

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 15 / 41

8. Peak Power Spectral Density

8.1 Test Setup

Refer to the APPENDIX I.

8.2 Limit

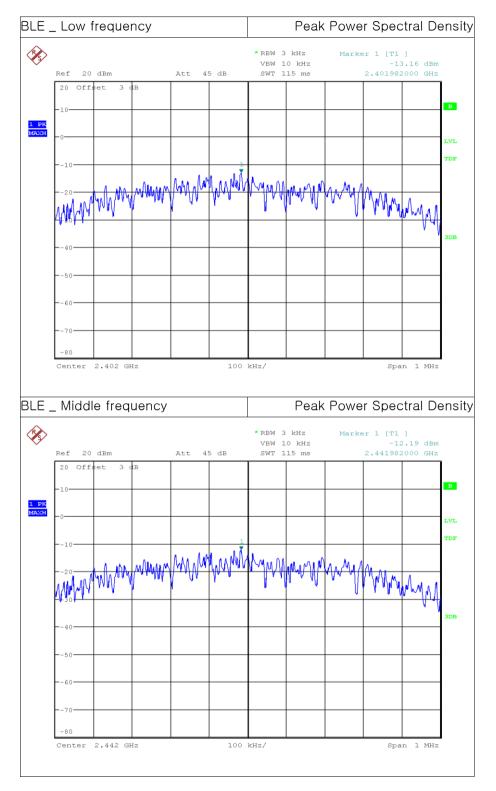
The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

8.3 Test Procedure

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

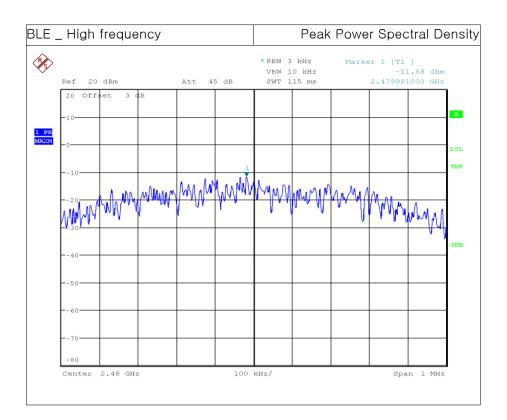
(ANSI C63.10-2013 _ Section 11.10.2 - Method PKPSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = Auto
- 7. Trace mode = Max Hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


Test Mode	Test Frequency	Peak Power Spectral Density (dBm)
	Low	-13.16
BLE	Middle	-12.19
	High	-11.68

8.4 Test Result

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 16 / 41


8.5 Test Plot

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 17 / 41

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 18 / 41

This test report shall not be reproduced except in full, Without the written approval.

9. TX Radiated Spurious Emission and Conducted Spurious Emission

9.1 Test Setup

Refer to the APPENDIX I.

9.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)							
0.009 ~ 0.490	2400/F (kHz)	300							
0.490 ~ 1705	24000/F (kHz)	30							
1705 ~ 30.0	30	30							
30 ~ 88	100 **	3							
88 ~ 216	150 **	3							
216 ~ 960	200 **	3							
Above 960	500	3							

radiator shall not exceed the field strength levels specified in the following table

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

561010		
MHz	MHz	GHz
16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
3600 ~ 4400	322 ~ 335.4	Above 38.6
	$\begin{array}{r} \mbox{MHz} \\ 16.42 ~ 16.423 \\ 16.69475 ~ 16.69525 \\ 16.80425 ~ 16.80475 \\ 25.5 ~ 25.67 \\ 37.5 ~ 38. \\ 25.73 ~ 74.6 \\ 74.8 ~ 75.2 \\ 108 ~ 121.94 \\ 149.9 ~ 150.05 \\ 156.52475 ~ 156.52525 \\ 156.7 ~ 156.9 \\ 162.0125 ~ 167.17 \\ 3345.8 ~ 3358 \\ 3600 ~ 4400 \\ 3345.8 ~ 3358 \\ \end{array}$	MHzMHz $16.42 \sim 16.423$ $399.90 \sim 410$ $16.69475 \sim 16.69525$ $608 \sim 614$ $16.80425 \sim 16.80475$ $960 \sim 1240$ $25.5 \sim 25.67$ $1300 \sim 1427$ $37.5 \sim 38.$ $1435 \sim 1626.5$ $25.73 \sim 74.6$ $1645.5 \sim 1646.5$ $74.8 \sim 75.2$ $1660 \sim 1710$ $108 \sim 121.94$ $1718.8 \sim 1722.2$ $149.9 \sim 150.05$ $2200 \sim 2300$ $156.52475 \sim 156.52525$ $2310 \sim 2390$ $156.7 \sim 156.9$ $2483.5 \sim 2500$ $162.0125 \sim 167.17$ $2690 \sim 3267$ $3600 \sim 4400$ $3332 \sim 3339$ $3345.8 \sim 3358$ $240 \sim 285$

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

9.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3.75 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. (The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

```
Peak Measurement
RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes
```

Average Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 21 / 41

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than tuning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

9.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below. Frequency range: 30 MHz ~ 26.5 GHz
 RBW = 100 kHz, VBW = 300 kHz, Sweep Time = Auto, Detector = Peak, Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

9.5 Test Result

9 kHz \sim 25 GHz Data for BLE

• Low frequency

Frequency	Rea	ding			2.05	Limits (dBuV/m)		Result (dBuV/m)		Mai	rgin
Trequency	(dBuV/m)		Pol.	T.F (dB)	DCF (dB)					(dB)	
(MHz)	AV /	[/] Peak		(46)	(00)	AV /	Peak	AV /	Peak	AV /	Peak
2 389.80	29.37	41.74	Н	9.48	2.08	54.0	74.0	40.9	51.2	13.1	22.8
4 803.58	28.88	40.36	V	-0.56	2.08	54.0	74.0	30.4	39.8	23.6	34.2

• Middle frequency

Fraguaday	Rea	ding	тс		0.05	Lin	nits	Re	sult	Mai	gin
Frequency	(dBuV/m)		Pol. (dB)		DCF (dB)	(dBuV/m)		(dBuV/m)		(dB)	
(MHz)	AV ,	/ Peak		(00)	(00)	AV /	Peak	AV /	Peak	AV /	Peak
4 883.46	29.44	40.66	V	-0.60	2.08	54.0	74.0	30.9	40.1	23.1	33.9

• High frequency

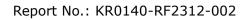
	Rea	ding			0.05	Limits (dBuV/m) AV / Peak		Result (dBuV/m) AV / Peak		Ма	rgin
Frequency	(dBuV/m)		Pol.	T.F (dB)	T.F DCF - (dB) (dB) -					(dB)	
(MHz)	AV / Peak			(46)						AV / Peak	
2 485.17	38.51	50.52	Н	10.21	2.08	54.0	74.0	50.8	60.7	3.2	13.3
4 959.78	28.49	39.77	V	-0.42	2.08	54.0	74.0	30.2	39.4	23.8	34.7

Note 1: The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCF(Duty Cycle Factor)

- T_{on} = 0.386 ms / T_{off} = 0.238 ms

- Duty Cycle = T_{on} / ($T_{on}+T_{off}$) = 0.386 / (0.386+0.238) = 0.619


- DCF = $10 \times \log(1/\text{Duty Cycle}) dB = 10 \times \log(1/0.619) dB = 2.08 dB$

Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCF

TF = Ant factor + Cable Loss + Filter Loss - Amp Gain + Distance Factor

Distance Factor = 20log(applied distance/required distance) = 20log(3.75m/3m) = 1.94

9.6 Test Plot for Radiated Spurious Emission

• BLE _ Low frequency

	-					F	Restricte	ed Bano	d – Peak
MultiView 🕀	Spectrum	Spectrur	m 2 🕅	Spectrum 3	X Spectru	um 4 🕅 🕱			
Ref Level 97 Att Input	7.00 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW On Note	V 1 MHz V 3 MHz Mod ch Off	e Auto Sweep			Fre	equency 2.35	500000 GHz
1 Frequency S								M1[1]	
90 dBµV								2	.3898002 GHz
80 dBµV									
70 dBµV									
en de vu									
60 dBµV									
50 dBµV									м
40 dBµV									- meddweddod
30 dBµV						and a state of the state	a stadiographic and	water West agented	W
20 dBµV	nundunturation	in her half an an her of	howhen	and a second and a s	Mohmulling	Appendical free from a sub-			
10 dBµV									
0 dBµV 2.31 GHz			1001 pt:	S	8	.0 MHz/			2.39 GHz
						Rest	ricted (Band –	Averade
	C						ricted (Band –	
MultiView Ref Level 87 Att	7.00 dBµV		V 1 MHz		SGL Count 100/100	um 4 🛛 🕱			
	7.00 dBµV 0 dB SWT 1 AC PS		V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	⊽ 500000 GHz • 1Rm Avg
Ref Level 87 Att Input	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 500000 GHz
Ref Level 87 Att Input 1 Frequency S	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 Att Input I Frequency S 80 d8µv	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 Att Input Frequency 9 80 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 Att Input I Frequency S 80 d8µv	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 ● Att Input Input 1 1 Frequency S 80 dBµV 70 dBµV 60 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 # Att Input 1 Frequency 5 80 d8µV 70 d8µV 60 d8µV 50 d8µV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 # Att Input 1 1 80 d8µv 70 d8µv 60 d8µv 50 d8µv 40 d8µv	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	▼ 5000000 GHz ● 1Rm Avg 29.37 dBµV
Ref Level 87 Att Input 1 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	v 5000000 GHz 9.37 dBµV .3899600 GHz
Ref Level 87 # Att Input # Frequency 5 80 d8µV 70 d8µV 60 d8µV 50 d8µV 40 d8µV 30 d8µV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	v 5000000 GHz 9.37 dBµV .3899600 GHz
Ref Level 87 Att Input 1 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod		SGL	um 4 🛛 🕱		equency 2.35	v 5000000 GHz 9.37 dBµV .3899600 GHz
Ref Level 87 Att Input 1 1 80 d8µV 70 d8µV 60 d8µV 50 d8µV 30 d8µV 20 d8µV 10 d8µV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	V 1 MHz V 3 MHz Mod	e Auto Sweep	SGL Count 100/100	um 4 🛛 🕱		equency 2.35	500000 GHz 1Rm Avg 29.37 dBµV 23899600 GHz

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 24 / 41

							ç	Spuriou	s – Peak
MultiView	# Spectrum	x Sp	ectrum 2	X Spect	rum 3 🛛 🕱	2			▽
Ref Level 80. Att	.00 dBµV	·	1 MHz	e Auto Sweep		1	En)40000 GHz
Input 1 Frequency S	1 AC PS	Off Note		e Hato Sweep				equency 4.80	• 1Pk Max
								M1[1] 4.	40.36 dBµV 80358042 GHz
70 dBµV									
60 dBµV									
00 0844									
50 dBµV									
40 devu				M1					
40 dBµV	comments and prove	in all interesting to the state of the second	on have been been been been been been been be	aligner and the star	mathematic	Markanalask	montere	ange probable	nuntractedall
30 dBµV									
20 dBµV									
20 0644									
10 dBµV									
0 dBµV									
U UBPY									
-10 dBµV									
CF 4.804 GHz			1001 pt	IS .	1	.0 MHz/		S	pan 10.0 MHz
							Spu	rious –	Average
MultiView	# Spectrum	x Sp	ectrum 2	Spect	rum 3 🗊	, î			▽
Ref Level 80.	.00 dBµV	● RBW	1 MHz	<u> </u>	SGL				
Att Input 1 Frequency S	1 AC PS	1.01 ms ● VBW Off Note	n Off Mode n Off	e Auto Sweep	Count 100/100		Fr	equency 4.80	040000 GHz
111 equency e								M1[1]	28.88 dBµV 80398002 GHz
70 dBµV									50398002 012
60 dBµV									
50 dBµV									
40 dBµV									
30 dBµV				. Nameroward	C. C	4			
30 dBµV		Lannakankakanka	and the second	wallow of the	k Marywaya ha	aller and a start of the start	generation for the generation	Marine and the second	et was the second
30 dBµV	Manana	(salpriordge-dgeboughd	and the second second	and an angeline	t Maraguarga (m. 1990) Maraguarga (m. 1990)	Wey-engly array (has	procession and a firmed	hi Annan an	et a constant
30 dBµV			andren - American	and an of the second		Way-may Jay and any fragments	error and the first	Mr.A.a.cogticanali	where a start water a start
30 dвµV 20 dвµV 10 dвµV	er Agemanning			a a de la construcción de la con	hatingunghing	alley and go of the second second	and a second	tof - A a constrained	
30 dBµV 20 dBµV			5	a nation and a second				http://www.anglobiographics.com	
30 dbµV 20 dbµV 10 dbµV								242-4,	
30 dBµV 20 dBµV 10 dBµV 0 dBµV								54/~~_n~~yta_aadd	VI

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 25 / 41

• BLE _ Middle frequency

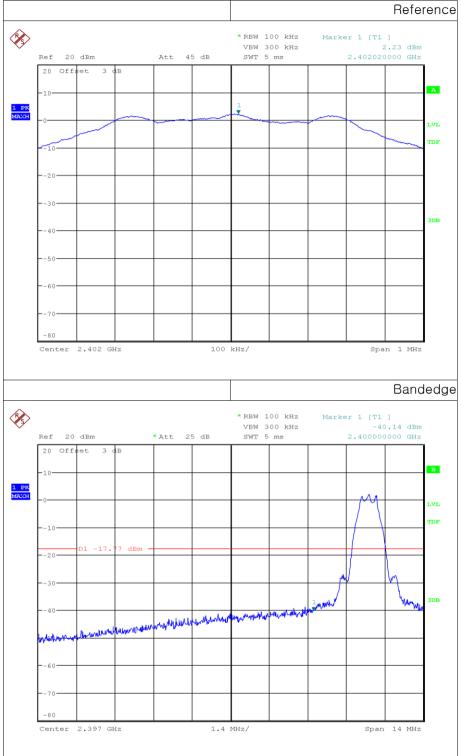
				Sp	urious - Pea
MultiView # Sp	ectrum 🕱 S	pectrum 2 🕱 Sp	ectrum 3 🛛 🕱		∇
		W 1 MHz W 3 MHz Mode Auto Swee tch Off		Froque	ency 4.8840000 GHz
Input 1 A	C PS Off No	tch Off	P	neque	• 1Pk Max
					M1[1] 40.66 dBµV 4.88346054 GHz
70 dBµV					
50 dBµV					
0 00pv					
0 dBµV					
0 dBµV		M1			
and a should be and	ener and the	what when and when the second	and mander and the manufactured	nontronocontradu	nurskylundersourch
ю dBµV					
0 dBµV					
5 00p.					
0 dBµV					
dвµV					
10 dBµV					
F 4.884 GHz		1001 pts	1.0 MHz/		Span 10.0 MHz
				Spuric	ous - Averag
MultiView 💠 Sp	ectrum 🕱 S	pectrum 2 🕱 Sp	ectrum 3		∇
Ref Level 80.00 dBu	V BB	W 1 MHz	SGI	Frague	ency 4.8840000 GHz
Input 1 A Frequency Sweep	C PS Off No	W 3 MHz Mode Auto Swee tch Off	p Count 100/100	Heque	1Rm Avg
					M1[1] 29.44 dBµV 4.88394006 GHz
'0 dBµV					
0 dBµV					
0 08µv					
0 dBµV					
o dout					
0 dBµV					
0 dBµV		hannes and provide allow market the	N3		
0 dBµV		harran and a providence and a second s	No	uha than that the state state of the	Marguer Martinegous spece
0 dBµV		and an and the second	10 		
10 dBµV					Mary Larrow Day of a straining by a signal
0 dBµV 10 dBµV 0 dBµV		han mana kati ya ma kaji			
0 d8µV					
0 d8µV 0 d8µV 0 d8µV					
а dayv мала сооролого сооролого а dayv а dayv		1001 pts			

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 26 / 41

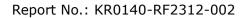
• BLE _ High frequency

Inequency					F	Restricte	ed Ban	d - Pea
MultiView 🕀 Spectrum	X Spectrur		Spectrum 3	Spectru	um 4 🛛 🕱			∇
Input 1 AC P	₩T 1.01 ms 🖷 VB₩		e Auto Sweep			Fre	equency 2.4	917500 GHz
I Frequency Sweep							M1[1]	 1Pk Max 50.52 dBµV 2.4851731 GHz
90 dBµV								
30 dBµV								
70 dBµV								
50 dBµV								
50,0944 million in from the los	Martin							
844944	· · · · · · · · · · · · · · · · · · ·	how will have have a	howhowy	durant more	millioninia	alling to the		
30 dBµV							Kardo-Anntaka	www.lunamuum.
20 dBµV								
IO dBµV								
о dвµv 2.4835 GHz		1001 pt	S	1.	.65 MHz/			2.5 GHz
					Rest	ricted (Band -	Averag
MultiView 🕀 Spectrum	X Spectrum	n 2 🕱	Spectrum 3	X Spectru	um 4 🕱			▽
Ref Level 87.00 dBµV Att 0 dB S Input 1 AC P	₩T 1.01 ms = VB₩			SGL Count 100/100	1	Fre	equency 2.4	917500 GHz
I Frequency Sweep						M	1[1]	●1Rm Avg 38.51 dBµV 2.4835907 GHz
80 dBµV								214000507 012
70 dBµV								
60 dBµV								
50 dBµV								
PD dBµV								
30 dBµV	where the process with a straight and a straight a stra	warmand	Samon	manundard				
an mpha	1			V8/14/	marking	manuman	when when the	moundary
20 dBµV								
20 dBµV								
20 dBµV								

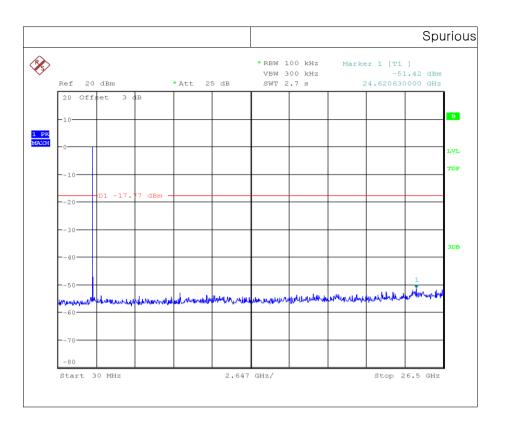
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 27 / 41


								Spuriou	s – Peal
MultiView 🕀	Spectrum	x Sp	ectrum 2	X Spect	rum 3 🛛 🕱	3			∇
Ref Level 80.00 Att	0 dB SWT	1.01 ms ⊜ VBW		Auto Sweep		-4	Fr	equency 4.96	500000 GHz
Input I Frequency Sw	1 AC PS veep	Off Notd	h Off					M1[1]	• 1Pk Max
								M1[1] 4.	39.77 dBµV 95978022 GHz
70 dBµV									
60 dBµV									
50 dBµV									
				M1					
f0 dBµV	Maruhanta	waldenandra	underweiten als	mannahla	whenness	the way where	markenterrow	mannan	lament of months of
30 dBµV									
20 dBµV									
20 dBha									
LO dBµV									
) dвµV									
-10 dBµV									
F 4.96 GHz			1001 pt	s	1	.0 MHz/		5	pan 10.0 MHz
							uqZ	rious -	Average
							•		-
	Y					7			
MultiView	D dBµV	● RBW	ectrum 2 1 MHz		SGL				▽
Ref Level 80.00 Att Input	0 dBµV 0 dB SWT 1 AC PS		1 MHz 3 MHz Mode	<u> </u>			Fr	equency 4.96	500000 GHz
Ref Level 80.00 Att Input	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL	ī	Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Frequency Sw	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz
Ref Level 80.00 Att Input Frequency Sw 70 dBµV	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL	<pre> </pre>	Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Frequency Sw 70 dBµV	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input I Frequency Sw 70 dBµV	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Frequency Sw 60 d8µV 50 d8µV	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input Frequency Sw 60 d8µV 50 d8µV 40 d8µV	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Att Input Input 1Frequency Sw 70 d8µV 60 d8µV 50 d8µV 40 d8µV 30 d8µV	0 dBµV 0 dB SWT 1 AC PS	● RBW 1.01 ms ● VBW	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz ● 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input Frequency Sw 60 d8µV 50 d8µV 40 d8µV 30 d8µV	deµV 0 dB SWT 1AC PS reep	BBW BBW Off Notcl	1 MHz 3 MHz Mode	<u> </u>	SGL	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Fr	M1[1]	500000 GHz ● 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input Frequency Sw 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	deµV 0 dB SWT 1AC PS reep	BBW BBW Off Notcl	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input Contract of the second seco	deµV 0 dB SWT 1AC PS reep	BBW BBW Off Notcl	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz ● 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input Frequency Sw 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	deµV 0 dB SWT 1AC PS reep	BBW BBW Off Notcl	1 MHz 3 MHz Mode	<u> </u>	SGL		Fr	M1[1]	500000 GHz ● 1Rm Avg 28.49 dBµV
Ref Level 80.00 Att Input Input Frequency Sw 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	deµV 0 dB SWT 1AC PS reep	BBW BBW Off Notcl	1 MHz 3 MHz Mode	<u> </u>	SGL			M1[1]	500000 GHz 1Rm Avg 28.49 dBµV

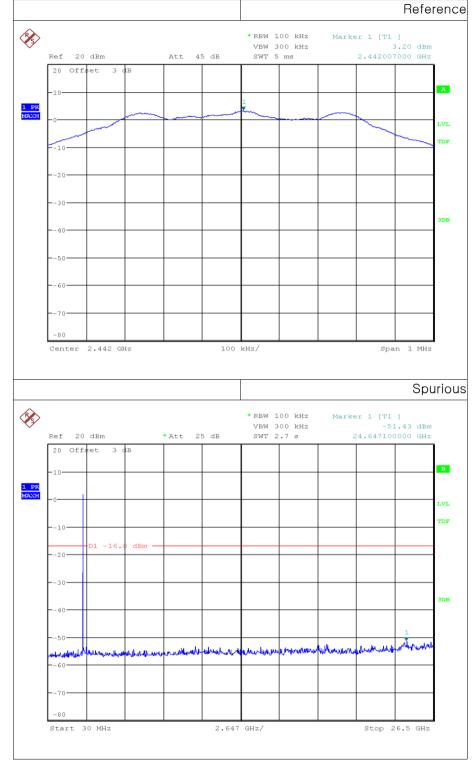
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 28 / 41

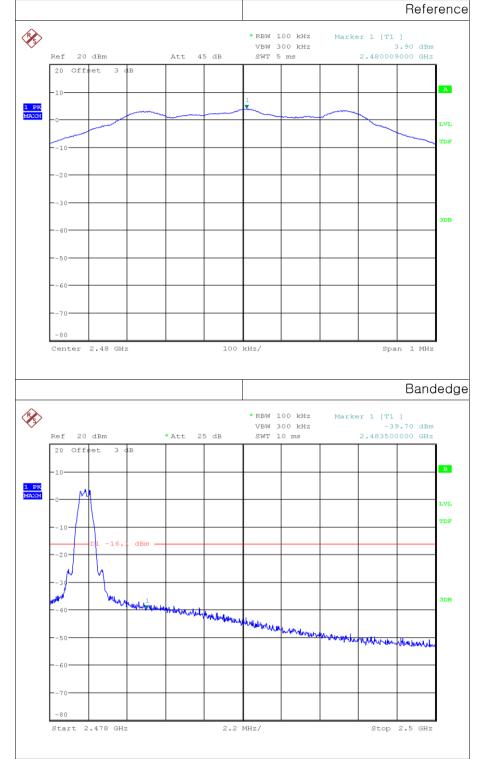


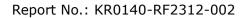
9.7 Test Plot for Conducted Spurious Emission

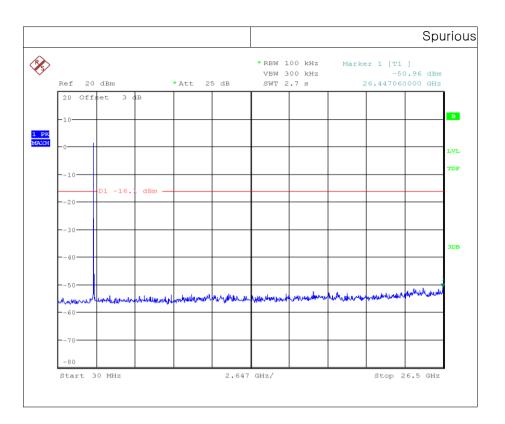

• BLE _ Low frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 29 / 41

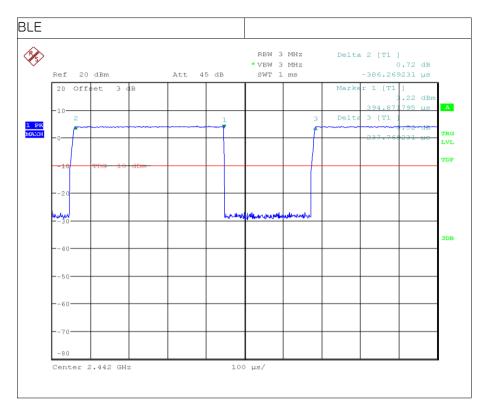



BLE _ Middle frequency


EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 31 / 41


BLE _ High frequency

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 32 / 41



9.8 Test Plot for Duty Cycle

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 34 / 41

10. Conducted Emission

10.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

10.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

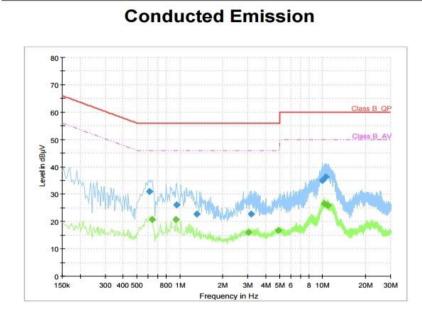
* Decreases with the logarithm of the frequency

10.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

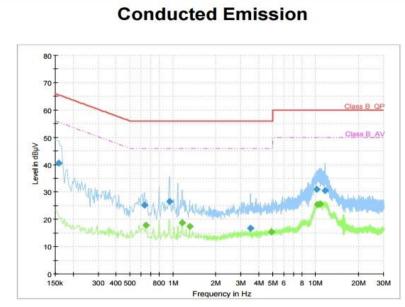
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 35 / 41



10.4 Test Result

• AC Line Conducted Emission (Graph)

SP147_BLE_L1



Final Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.610	30.87		56.00	25.13	9	L1	20.6
0.640		20.80	46.00	25.20	9	L1	20.4
0.940		20.79	46.00	25.21	9	L1	20.0
0.950	26.05		56.00	29.95	9	L1	20.0
1.310	22.65		56.00	33.35	9	L1	19.9
3.030		16.05	46.00	29.95	9	L1	19.9
3.160	22.76		56.00	33.24	9	L1	19.9
4.900		16.63	46.00	29.37	9	L1	19.9
9.970	34.89		60.00	25.11	9	L1	20.0
10.280		26.54	50.00	23.46	9	L1	20.0
10,480	36.26		60.00	23.74	9	L1	20.0
10.940		25.88	50.00	24.12		L1	20.0

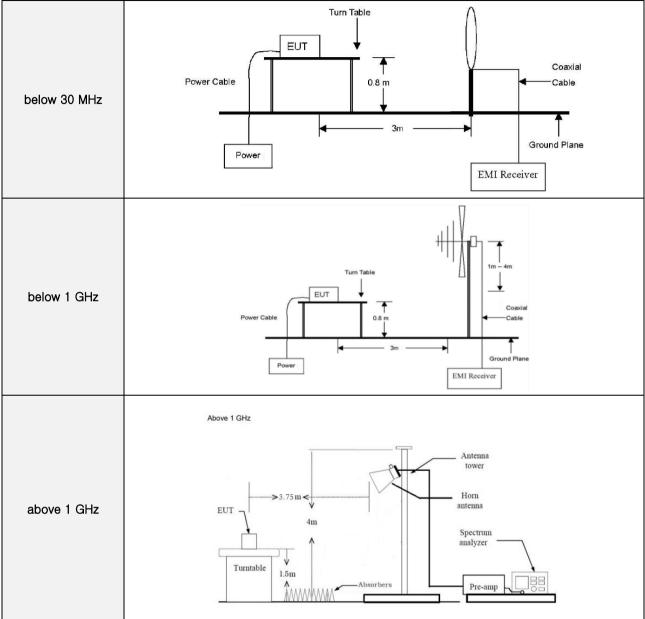
EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 36 / 41

SP147_BLE_N

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.158	40.64		65.57	24.93	9	N	20.8
0.630	25.25		56.00	30.75	9	N	20.5
0.650		17.88	46.00	28.12	9	N	20.3
0.950	26.48		56.00	29.52	9	N	20.0
1.160		18.76	46.00	27.24	9	N	20.0
1.310		17.47	46.00	28.53	9	N	19.9
3.500	16.79		56.00	39.21	9	N	19.9
4,880		15.42	46.00	30.58	9	N	19.9
10.140	30.88		60.00	29.12	9	N	20.0
10.360		25.33	50.00	24.67	9	N	20.0
10.730		25.61	50.00	24.39	9	N	20.0
11.700	30.56		60.00	29.44	9	N	20.1

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 37 / 41

This test report shall not be reproduced except in full, Without the written approval.


APPENDIX I

TEST SETUP

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 38 / 41

Radiated Measurement

• Conducted Measurement

		_			
Conducted	EUT		Attenuator	Spectrum Analyzer	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 39 / 41

APPENDIX II

UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 40 / 41

Measurement Item	Expanded Uncertainty U = <i>k</i> Uc (<i>k</i> =2)
Conducted RF power	0.32 dB
Conducted Spurious Emissions	0.32 dB
Radiated Spurious Emissions	6.34 dB
Conducted Emissions	1.74 dB

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 41 / 41