

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

SAR EVALUATION REPORT

FOR

Multi Path Blue Force Tracker

MODEL NUMBER: mBFT17(V)

FCC ID: 2AL3AHDJC-1801

REPORT NUMBER: 4788319772-S1V3

ISSUE DATE: 3/15/2018

Prepared for HYUNDAI J-COMM. CO., LTD. 27, Sagimakgol-ro 105beon-gil, Jungwon-gu, Seongnam-Si, GYEONGGI-DO, 13201, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	1/26/2018	Initial Issue	Sunghoon Kim
V2	3/13/2018	 Changed FCC ID in report. Sec.6.3., Sec.9.2. and Sec.10.1. -Revised target power and meas power in table. Removed test data of WCDMA Band in Report. Sec.7. and Sec.10.1. -Added body-worn test results for voice call in satellite mode. 	Sunghoon Kim
V3	3/15/2018	 1.Sec.4.3 and Appendix E -Added test item. 2.Sec.7, Sec.10.1 and Sec.10.2 -Revised RF exposure condition. 	Sunghoon Kim

Page 2 of 22

Table of Contents

1.	Attestation of Test Results	5			
2.	Test Specification, Methods and Procedures	6			
3.	Facilities and Accreditation	6			
4.	SAR Measurement System & Test Equipment	7			
4.1	SAR Measurement System	7			
4.2	SAR Scan Procedures	8			
4.3	Test Equipment	10			
5.	Measurement Uncertainty	10			
6.	Device Under Test (DUT) Information	11			
6.1	DUT Description	11			
6.2	Wireless Technologies	11			
6.3	Nominal and Maximum Output Power from Tune-up Procedure	11			
6.4	Satellite mode duty cycle Considerations	12			
7. RF	Exposure Conditions (Test Configurations)	13			
8.	Dielectric Property Measurements & System Check	14			
8.1	Dielectric Property Measurements	14			
8.2	System Check	16			
9.	Conducted Output Power Measurements	18			
9.1	Satellite mode	18			
9.2	Bluetooth LE	18			
10.	Measured and Reported (Scaled) SAR Results	18			
10.	1. Satellite mode	19			
10.	2. Bluetooth LE	20			
Sta	ndalone SAR Test Exclusion Considerations & Estimated SAR	20			
11.	SAR Measurement Variability	21			
12.	Simultaneous Transmission SAR Analysis	21			
Арре	ndixes	22			
478	8319772-S1V3 FCC Report SAR_App A_Photos & Ant. Locations	22			
4788319772-S1V3 FCC Report SAR_App B_Highest SAR Test Plots					
4788319772-S1V3 FCC Report SAR_App C_System Check Plots					
478	8319772-S1V3 FCC Report SAR_App D_SAR Tissue Ingredients	22			
478	8319772-S1V3 FCC Report SAR_App E_Probe Cal. Certificates	22			

Page 3 of 22

4788319772-S1V3 FCC Report SAR_App F_Dipole Cal. Certificates	4788319772-S1V3 FCC Report SAR	_App F_Dipole Cal.	. Certificates	
---	--------------------------------	--------------------	----------------	--

1. Attestation of Test Results

Applicant Name	HYUNDAI J-COMM. CO., LTD.				
FCC ID	2AL3AHDJC-1801				
Model Number	mBFT17(V)				
Applicable Standards	FCC 47 CFR § 2.1093 Published RF exposure KDB procedures				
	IEEE Std 1528-2013				
	SAR Limits (W/Kg)				
Exposure Category	Peak spatial-average(1g of tissue)	Extremities (hands, wrists, ankles, etc.) (10g of tissue)			
General population / Uncontrolled exposure	1.6	4.0			
	Equipment Class - Highest Reported SAR (W/kg)				
RF Exposure Conditions	Satellite mode	DTS (BLE)			
Body 1g SAR	0.73	N1/A			
Extremity (hands) 10g SAR 2.39		N/A			
Date Tested	ested 1/8/2018 , 3/13/2018				
Test Results	Pass				

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:	
flex	1 her	
Justin Park	Sunghoon Kim	
Lead Test Engineer	Associate Test Engineer	
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory	

Page 5 of 22

2. Test Specification, Methods and Procedures

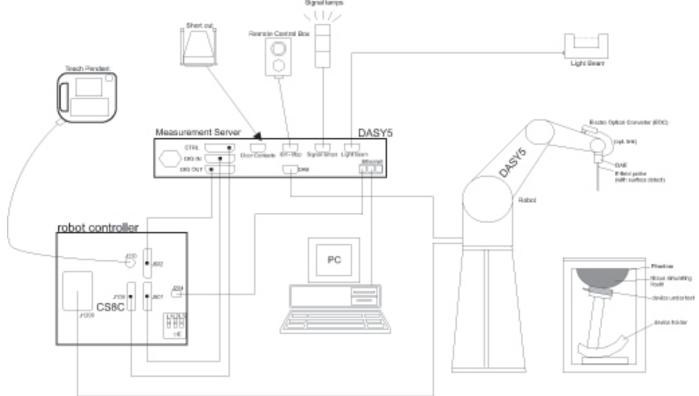
The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 447498 D01 General RF Exposure Guidance v06
- o 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 1 Room
SAR 2 Room
SAR 3 Room


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

Page 6 of 22

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 22

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Page 8 of 22

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			\leq 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	n graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3-4 \text{ GHz:} \leq 3 \text{ mm}$ $4-5 \text{ GHz:} \leq 2.5 \text{ mm}$ $5-6 \text{ GHz:} \leq 2 \text{ mm}$	
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤1.5·∆z	z _{zoom} (n-1)	
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property M	leasurements
------------------------------	--------------

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E5071C	MY46522054	8-8-2018
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	8-2-2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	8-11-2018
Thermometer	Lutron	MHB-382SD	AH.91478	8-10-2018
System Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY50145882	8-7-2018
Power Sensor	Agilent	U2000A	MY54260010	8-8-2018
Power Sensor	Agilent	U2000A	MY54260007	8-8-2018
Power Amplifier	EXODUS	1410025-AMP2027-10003	10003	8-8-2018
Directional Coupler	Agilent	778D	MY52180432	8-7-2018
Low Pass Filter	FILTRON	L14012FL	1410003S	8-7-2018
Attenuator	Agilent	8491B/003	MY39269292	8-7-2018
Attenuator	Agilent	8491B/010	MY39269315	8-7-2018
Attenuator	Agilent	8491B/020	MY39269298	8-7-2018
E-Field Probe	SPEAG	EX3DV4	7313	1-30-2018
E-Field Probe	SPEAG	EX3DV4	7330	1-22-2019
Data Acquisition Electronics	SPEAG	DAE4	1447	11-22-2018
Data Acquisition Electronics	SPEAG	DAE4	1494	7-20-2018
System Validation Dipole	SPEAG	D1640V2	334	3-22-2018
Thermometer (SAR2)	Lutron	MHB-382SD	AH.50215	8-16-2018
Thermometer (SAR3)	Lutron	MHB-382SD	AH.50213	8-16-2018

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 10 of 22

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer of 4788319772-S1V2 FCC Report SAR_App A_Photos & Ant. Locations			
Back Cover	⊠ Normal Battery Cover			
Battery Options	⊠ Standard – Lithium-ion battery, Rating 3.7V, 5800mAh			
Wireless Router (Hotspot)	Hotspot mode is not support			
Test sample information	No.	S/N	Notes	
	1	0008	Conduction & SAR	

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
Satellite mode	1616 MHz – 1626.5 MHz	Test mode	9.2 %
Bluetooth-LE	2.4 GHz	Version 4.1 LE	62.2 %

Note(s):

For Satellite mode, Maximum duty cycle is 9.3 % but Test mode is operated at 9.2 % by S/W. So we performed SAR test at 9.2 % and the SAR results is scaled to the Maximum duty cycle.

6.3. Nominal and Maximum Output Power from Tune-up Procedure

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Upper limit (dB):	~ 0.5	Max. RF Output Pow er (dBm)		
RF Air interface	Mode	Target	Max. tune-up tolerance limit	
Blue	tooth LE	2.5	3.0	

Upper limit (dB):	-1.0 ~ 1.0	Max. RF Output Pow er (dBm)						
RF Air interface Mode		Target	Max. tune-up tolerance limit	Time based avg. Pow er (Calculated)				
Satelli	te mode	37.0	38.0	27.7				

Note(s):

For Satellite mode, Time based avg. power is calculated from Maximum power with 9.3 % duty cycle.

Page 11 of 22

6.4. Satellite mode duty cycle Considerations

Time domain plots

1. Satellite mode (Duty Cycle : (8.25 / 90.00 ms)*100 = 9.2 %)

Specti	rum										
Ref Le	evel	20.00	dBm	👄 RE	W 1 MHz						`
👄 Att		30) dB 👄 SWT 10	00 ms 🛛 🛛 🛛 🛛 🗸	3W 1 MHz						
_ SGL TR)									
●1Pk Clr	rw										
						D	2[1]				0.06 dB
10 dBm-											.00000 ms
м1						M	1[1]				-0.80 dBm
T-dBm-	D1						1				D2 50.00 μs
	1										
<mark>r‡</mark> D dBm	ı——										- <mark>-</mark>
-20 dBm	·										
- 30 dBm											
-30 ubm		RG -30	1.000 dBm								
-40 dBm											
10 0.011											
50 dBm	ı						ļ				
			المقاديمين المعرفان فاللاب								
~ -60 dBm	· <mark>۳</mark> ٬	al <u>a subble da</u>	<mark>di pina pina pina pina pina pina pina pin</mark>	فليعط براز فعار فالغاذ	, i dia , i padante biat podite		ر باغار ب _و ينغانك (ل. 1	p // B // S / D / D / D / D / D / D / D / D /	n in the state of the	للبراد حاصد بالدابا بالالعاد والا	190 E
-70 dBm	ı—————————————————————————————————————										
CF 1.62	2102	0825 0	GHz		1000	1 pts					10.0 ms/
Marker											
Туре	Ref	Trc	X-value		Y-value	Func	tion		Func	tion Result	
M1		1		i0.0 µs	-0.80 dB						
D1	M1			.25 ms	-0.50 c						
D2	M1	1	9	0.0 ms	0.06 0	1B					

Note(s):

Satellite mode duty cycle was measured using Test mode in the device.

7. RF Exposure Conditions (Test Configurations)

Required Test Configurations

RF Exposure Conditions	Wireless technologies	Ant-to-User Test Separation Position		SAR Required	Note
Extremity	Satellite mode	0 mm	Rear	Yes	
Extremity	Bluetooth LE	0 mm	Rear	No	
	Satellite mode	0 mm	Rear	Yes	1
Body-worp	Satellite mode	0 mm	Front	Yes	1
Body-worn	Bluetooth LE	0 mm	Rear	No	
	BIGEIOUITEL	0 min	Front	No	

Note(s):

1. The device does not support both earpiece and internal speaker. So Head exposure test is not required. Voice call mode uses a mini-bag and earphone together. So Body-worn test are performed to device with mini-bag.

2. This device in not a smart phone and does not support hotspot mode and therefore, for body SAR, only front and rear sides are set for test.

Page 13 of 22

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	Head	Bo	dy
raiget requeitcy (Mirz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR 2 Room

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
Body 1625	Rody 1625	e'	53.4500	Relative Permittivity (c _r):	53.45	53.76	-0.58	5
	e"	15.5100	Conductivity (σ):	1.40	1.41	-0.56	5	
1-8-2018	Body 1610	e'	53.5000	Relative Permittivity (c _r):	53.50	53.80	-0.56	5
1-0-2010	Body 1010	e"	15.5000	Conductivity (σ):	1.39	1.40	-0.89	5
	Body 1640	e'	53.4100	Relative Permittivity (c _r):	53.41	53.72	-0.58	5
	B00y 1040	e"	15.5200	Conductivity (o):	1.42	1.42	-0.23	5

SAR 3 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 1625	e'	51.9100	Relative Permittivity (ε_r):	51.91	53.76	-3.44	5
B00y 1625	e"	15.3700	Conductivity (σ):	1.39	1.41	-1.45	5	
3-13-2018	Body 1610	e'	51.9300	Relative Permittivity (ε_r):	51.93	53.80	-3.48	5
5-15-2010	Body 1010	e"	15.3400	Conductivity (σ):	1.37	1.40	-1.91	5
	Body 1640	e'	51.8800	Relative Permittivity (ε_r):	51.88	53.72	-3.43	5
	Bouy 1040	e"	15.3900	Conductivity (σ):	1.40	1.42	-1.06	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	Freg. (MHz)	Target SAR Values (W/kg)		
	Senarivo.	Cal. Date	1 leq. (ivii iz)	1g/10g	Body	
D1640V2	334	3-22-2017	1640	1g	34.00	
0104012	554	5-22-2017	1040	10g	18.60	

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 2 Room

	System Dipole		то		Measured	d Results	Tonnat	Dalka	Dist
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
1-8-2017	1.0.0017 D1640\/0	D1640V2 334	Body	1g	3.39	33.90	34.00	-0.29	1, 2
1-0-2017	1-8-2017 D1640V2		Bouy	10g	1.85	18.50	18.60	-0.54	1, 2

SAR 3 Room

	System Dip		те		Measured	d Results	Tanat	Dalka	Dist
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
3-13-2017	2 42 2017 D1640\/2	D1640V2 334	Body	1g	3.28	32.80	34.00	-3.53	3, 4
5-15-2017	D1640V2 334		Body	10g	1.78	17.80	18.60	-4.30	3, 4

Page 17 of 22

9. Conducted Output Power Measurements

9.1. Satellite mode

Band (GHz)	Mode	Ch #	Freq. (MHz)	Slotted. Avg Pwr (dBm)	
	Satellite mode	1	1616.0208033	36.9	
1.6		75	1619.1041670	36.9	
1.0		150	1622.2291670	37.0	
		240	1625.9791670	37.0	

9.2. Bluetooth LE

Maximum tune-up tolerance limit is 3.0 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

TCB Workshop October, 2016 ; Page 22, :

These types of consumer products are not designed to be worn or used on the user's body;

- There is typically at least several cm or more of separation
- Such use conditions can easily qualify for SAR test exclusion to support potential portable exposure conditions

10.1. Satellite mode

RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Power	(dBm)	1-g SAR (W/kg)		Duty	Scaled	Plot
						Tune-up limit	Meas.	Meas.	Scaled	factor	SAR (W/kg)	No.
Body-worn	Satellite mode	0	Front	1	1616.02	38.0	36.9	0.433	0.559	1.01	0.564	
				75	1619.10	38.0	36.9	0.450	0.580	1.01	0.586	
				150	1622.23	38.0	37.0	0.572	0.727	1.01	0.734	1
				240	1625.98	38.0	37.0	0.498	0.626	1.01	0.632	
			Rear	240	1625.98	38.0	37.0	0.334	0.420	1.01	0.424	
		Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Power (dBm)		10-g SAR (W/kg)		Duty	Scaled	
RF Exposure	Mode					Tune-up		10 g 0/ (V//(g)			SCaleu	Plot
Conditions						limit	· Meas	Meas.	Scaled	factor	(W/kg)	No.
	Satellite	, ₀) Rear	1	1616.02	38.0	36.9	1.630	2.103	1.01	2.124	
Extremity				75	1619.10	38.0	36.9	1.770	2.281	1.01	2.304	
	mode			150	1622.23	38.0	37.0	1.860	2.363	1.01	2.386	2
				240	1625.98	38.0	37.0	1.740	2.187	1.01	2.209	

Note(s):

Duty factor is 9.3 %(Maximum duty cycle) / 9.2 %(test mode duty cycle).

10.2. Bluetooth LE

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

RF Air interface	RF Exposure	Frequency (GHz)		up tolerance w er	Min. test separation	SAR test exclusion	Estimated 1-g SAR
	Conditions		(dBm)	(mW)	distance (mm)		(W/kg)
Bluetooth	Body-w orn	2.480	3.0	2	5	0.6	0.084

Conclusion:

RF Air interface	RF Exposure	Frequency (GHz)		ıp tolerance v er	Min. test separation	SAR test exclusion	Estimated 10-g SAR (W/kg)	
	Conditions		(dBm)	(mW)	distance (mm)	Result*		
Bluetooth	Extremity	2.480	3.0	2	5	0.6	0.034	

Conclusion:

*: The computed value is ≤ 7.5; therefore, this qualifies for Standalone SAR test exclusion.

Page 20 of 22

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Peak spatial-average (1g of tissue)

Frequency			Test Position	Repeated	Highest	First Repeated	
Band (MHz)	Air Interface	RF Exposure Conditions		SAR (Yes/No)	Measured SAR (W/kg)	Measured SAR (W/kg)	Largest to Smallest SAR Ratio
1600	Satellite mode	Body-worn	Front	No	0.572	N/A	N/A

Peak spatial-average (10g of tissue)

Frequency			Test Position	Repeated	Highest	First Repeated	
Band (MHz)	Air Interface	RF Exposure Conditions		SAR (Yes/No)	Measured SAR (W/kg)	Measured SAR (W/kg)	Largest to Smallest SAR Ratio
1600	Satellite mode	Extremity	Rear	No	1.860	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. Simultaneous Transmission SAR Analysis

N/A.

Page 21 of 22

Appendixes

Refer to separated files for the following appendixes.

4788319772-S1V3 FCC Report SAR_App A_Photos & Ant. Locations 4788319772-S1V3 FCC Report SAR_App B_Highest SAR Test Plots 4788319772-S1V3 FCC Report SAR_App C_System Check Plots 4788319772-S1V3 FCC Report SAR_App D_SAR Tissue Ingredients 4788319772-S1V3 FCC Report SAR_App E_Probe Cal. Certificates 4788319772-S1V3 FCC Report SAR_App F_Dipole Cal. Certificates

END OF REPORT