

## FCC/ISED - TEST REPORT

| Report Number : | 709502403822-00D Rev1 | Date of Issue: | October 31, 2024 |
|-----------------|-----------------------|----------------|------------------|
|-----------------|-----------------------|----------------|------------------|

Model : Lime-CCU23

Product Type : CCU

Applicant : Neutron Holdings, Inc.

Address : 85 2nd St, San Francisco, CA 94105 USA

Production Facility : Quectel Wireless Solutions Co., Ltd.

Address : Building 5, Shanghai Business Park Phase III (Area B), No.1016

Tianlin Road.Minhang District, Shanghai 200233, China

Test Result : ■ Positive □ Negative

Total pages including

Appendices : 41

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.



# 1 Table of Contents

| 1  | Table of Contents                             | 2  |
|----|-----------------------------------------------|----|
| 2  | Details about the Test Laboratory             | 3  |
| 3  | Description of the Equipment under Test       | 4  |
| 4  | Summary of Test Standards                     | 9  |
| 5  | Summary of Test Results                       | 10 |
| 6  | General Remarks                               | 12 |
| 7  | Test Setups                                   | 13 |
| 8  | Systems test configuration                    | 16 |
| 9  | Technical Requirement                         | 17 |
| 9. | 1 Conducted peak output power & EIRP          | 17 |
| 9. | 2 6dB bandwidth and 99% Occupied Bandwidth    | 19 |
| 9. | 3 Power spectral density                      | 22 |
| 9. | 4 Spurious RF conducted emissions             | 24 |
| 9. | 5 Band edge                                   | 28 |
| 9. | 6 Spurious radiated emissions for transmitter | 31 |
| 10 | Test Equipment List                           | 38 |
| 11 | System Measurement Uncertainty                | 39 |
| 12 | Photographs of Test Set-ups                   | 40 |
| 13 | Photographs of EUT                            | 41 |



# 2 Details about the Test Laboratory

# **Details about the Test Laboratory**

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

No.16 Lane, 1951 Du Hui Road,

Shanghai 201108,

P.R. China

Telephone: +86 21 6141 0123

Fax: +86 21 6140 8600

FCC Registration

No.:

820234

FCC Designation

Number:

CN1183

ISED CAB

CN0101

identifier

IC Registration

31668

No.:



# **Description of the Equipment under Test**

# **Description of the Equipment Under Test**

Product: CCU

Model no.: Lime-CCU23

Hardware Version

Identification No. (HVIN)

**Product Marketing Name** Lime-CCU23

(PMN)

FCC ID: 2APB2-LIME-CCU23

IC: 32977-LIMECCU23

Options and accessories:

Rating: DC 42V/54V

RF Transmission For 2.4G Wi-Fi:

Frequency: For 802.11b/g/n-HT20: 2412~2462 MHz

Lime-CCU23

For 5G Wi-Fi:

5180~5240 MHz (U-NII-1) 5260~5320 MHz (U-NII-2A) 5500~5720 MHz (U-NII-2C) 5745~5825 MHz (U-NII-3)

The device shall not be capable of transmitting in the 5600-5650 MHz

The device shall not be capable of transmitting in the 5600-5650 MHz

band.

For BLE (Module1): 2402~2480 MHz

For EDR (Module1): 2402~2480 MHz

For BLE (Module2): 2402~2480 MHz

For EDR (Module2): 2402~2480 MHz

No. of Operated Channel: For 2.4G Wi-Fi:

11 for 802.11b/802.11g/802.11n(H20)

For 5G Wi-Fi:



5180~5240 MHz (U-NII-1) 5260~5320 MHz (U-NII-2A)

5500~5590, 5660~5720 MHz (U-NII-2C)

5745~5825 MHz (U-NII-3)

For BLE (Module1): 40

For EDR (Module1): 79

For BLE (Module2): 40

For EDR (Module2): 79

Modulation: For 2.4G Wi-Fi:

Direct Sequence Spread Spectrum (DSSS) for 802.11b

Orthogonal Frequency Division Multiplexing (OFDM) for 802.11g/n

For 5G Wi-Fi:

Orthogonal Frequency Division Multiplexing (OFDM) for 802.11a/n/ac

For BLE (Module1): GFSK

For EDR (Module1): GFSK, π/4 DQPSK, 8DPSK

For BLE (Module2): GFSK

For EDR (Module2): GFSK, π/4 DQPSK, 8DPSK

Hardware Version: EG21GGFR07A01M4G\_OCPU\_NCFG\_QDM549\_01.200.01.002

Software Version: V1.2

Data speed: For 2.4G Wi-Fi:

11b 1-11Mbps 11g 6-54Mbps

11n(H20) 6.5-72.2Mbps

For 5G Wi-Fi:

11a 6 ~ 54Mbps,

11n HT20 6.5 ~ 72.2Mbps,

11ac VHT20 6.5 ~ 86.7Mbps, 11ac VHT40 13.5 ~ 200Mbps,

11ac VHT80 29.3 ~ 433.3Mbps

For BLE (Module1): 1Mbps

For EDR (Module1): 1Mbps, 2Mbps, 3Mbps

For BLE (Module2): 1Mbps, 2Mbps



For EDR (Module2): 1Mbps, 2Mbps, 3Mbps

Channel list:

For 2.4G Wi-Fi:

|    | 802.11b/g/n(HT20) |    |          |  |  |  |  |
|----|-------------------|----|----------|--|--|--|--|
| Ch | Fre(MHz)          | Ch | Fre(MHz) |  |  |  |  |
| 1  | 2412              | 7  | 2442     |  |  |  |  |
| 2  | 2417              | 8  | 2447     |  |  |  |  |
| 3  | 2422              | 9  | 2452     |  |  |  |  |
| 4  | 2427              | 10 | 2457     |  |  |  |  |
| 5  | 2432              | 11 | 2462     |  |  |  |  |
| 6  | 2437              |    |          |  |  |  |  |

## For 5G Wi-Fi:

| 1 01 3G WI-1 1.   |                                | ,                                                             |
|-------------------|--------------------------------|---------------------------------------------------------------|
| Band (GHz)        | Operating<br>Channel<br>Number | Channel center<br>frequencies for<br>20MHz bandwidth<br>(MHz) |
|                   | 36                             | 5180                                                          |
| 5.15GHz~5.25GHz   | 40                             | 5200                                                          |
| 3.13GHZ~3.23GHZ   | 44                             | 5220                                                          |
|                   | 48                             | 5240                                                          |
|                   | 52                             | 5260                                                          |
| 5.25GHz~5.35GHz   | 56                             | 5280                                                          |
| 5.25GHZ~5.55GHZ   | 60                             | 5300                                                          |
|                   | 64                             | 5320                                                          |
|                   | 100                            | 5500                                                          |
|                   | 104                            | 5520                                                          |
|                   | 108                            | 5540                                                          |
|                   | 112                            | 5560                                                          |
| 5.5GHz~5.7GHz     | 116                            | 5580                                                          |
|                   | 132                            | 5660                                                          |
|                   | 136                            | 5680                                                          |
|                   | 140                            | 5700                                                          |
|                   | 144                            | 5720                                                          |
|                   | 149                            | 5745                                                          |
|                   | 153                            | 5765                                                          |
| 5.725GHz~5.825GHz | 157                            | 5785                                                          |
|                   | 161                            | 5805                                                          |
|                   | 165                            | 5825                                                          |
|                   |                                |                                                               |

| Band (GHz)      | Operating<br>Channel<br>Number | Channel center<br>frequencies for<br>40MHz bandwidth<br>(MHz) |
|-----------------|--------------------------------|---------------------------------------------------------------|
| 5.15GHz~5.25GHz | 38                             | 5190                                                          |
| 5.15GH2~5.25GH2 | 46                             | 5230                                                          |
| 5.25GHz~5.35GHz | 54                             | 5270                                                          |
| 5.25GHZ~5.35GHZ | 62                             | 5310                                                          |
| 5.5GHz~5.7GHz   | 102                            | 5510                                                          |



|                   | 110 | 5550 |
|-------------------|-----|------|
|                   | 134 | 5670 |
|                   | 142 | 5710 |
| 5.725GHz~5.825GHz | 151 | 5755 |
| 5.725GHZ~5.625GHZ | 159 | 5795 |

| Band (GHz)        | Operating<br>Channel<br>Number | Channel center<br>frequencies for<br>80MHz bandwidth<br>(MHz) |
|-------------------|--------------------------------|---------------------------------------------------------------|
| 5.15GHz~5.25GHz   | 42                             | 5210                                                          |
| 5.25GHz~5.35GHz   | 58                             | 5290                                                          |
| 5.5GHz~5.7GHz     | 106                            | 5530                                                          |
|                   | 138                            | 5690                                                          |
| 5.725GHz~5.825GHz | 155                            | 5775                                                          |

# For BLE

| 1 01 01 |          |    |          |    |          |    |          |
|---------|----------|----|----------|----|----------|----|----------|
| Ch      | Fre(MHz) | Ch | Fre(MHz) | Ch | Fre(MHz) | Ch | Fre(MHz) |
| 0       | 2402     | 10 | 2422     | 20 | 2442     | 30 | 2462     |
| 1       | 2404     | 11 | 2424     | 21 | 2444     | 31 | 2464     |
| 2       | 2406     | 12 | 2426     | 22 | 2446     | 32 | 2466     |
| 3       | 2408     | 13 | 2428     | 23 | 2448     | 33 | 2468     |
| 4       | 2410     | 14 | 2430     | 24 | 2450     | 34 | 2470     |
| 5       | 2412     | 15 | 2432     | 25 | 2452     | 35 | 2472     |
| 6       | 2414     | 16 | 2434     | 26 | 2454     | 36 | 2474     |
| 7       | 2416     | 17 | 2436     | 27 | 2456     | 37 | 2476     |
| 8       | 2418     | 18 | 2438     | 28 | 2458     | 38 | 2478     |
| 9       | 2420     | 19 | 2440     | 29 | 2460     | 39 | 2480     |

# For EDR

| Ch | Fre<br>(MH) | Ch | Fre<br>(MH) | Ch | Fre<br>(MH) | Ch | Fre<br>(MH) | Ch | Fre<br>(MHz) |
|----|-------------|----|-------------|----|-------------|----|-------------|----|--------------|
| 1  | 2402        | 17 | 2418        | 33 | 2434        | 49 | 2450        | 65 | 2466         |
| 2  | 2403        | 18 | 2419        | 34 | 2435        | 50 | 2451        | 66 | 2467         |
| 3  | 2404        | 19 | 2420        | 35 | 2436        | 51 | 2452        | 67 | 2468         |
| 4  | 2405        | 20 | 2421        | 36 | 2437        | 52 | 2453        | 68 | 2469         |
| 5  | 2406        | 21 | 2422        | 37 | 2438        | 53 | 2454        | 69 | 2470         |
| 6  | 2407        | 22 | 2423        | 38 | 2439        | 54 | 2455        | 70 | 2471         |
| 7  | 2408        | 23 | 2424        | 39 | 2440        | 55 | 2456        | 71 | 2472         |
| 8  | 2409        | 24 | 2425        | 40 | 2441        | 56 | 2457        | 72 | 2473         |
| 9  | 2410        | 25 | 2426        | 41 | 2442        | 57 | 2458        | 73 | 2474         |
| 10 | 2411        | 26 | 2427        | 42 | 2443        | 58 | 2459        | 74 | 2475         |
| 11 | 2412        | 27 | 2428        | 43 | 2444        | 59 | 2460        | 75 | 2476         |
| 12 | 2413        | 28 | 2429        | 44 | 2445        | 60 | 2461        | 76 | 2477         |
| 13 | 2414        | 29 | 2430        | 45 | 2446        | 61 | 2462        | 77 | 2478         |
| 14 | 2415        | 30 | 2431        | 46 | 2447        | 62 | 2463        | 78 | 2479         |
| 15 | 2416        | 31 | 2432        | 47 | 2448        | 63 | 2464        | 79 | 2480         |
| 16 | 2417        | 32 | 2433        | 48 | 2449        | 64 | 2465        |    |              |



Antenna Type: For 2.4G Wi-Fi: FPC

For 5G Wi-Fi: FPC

For BLE (Module1): FPC

For EDR (Module1): FPC

For BLE (Module2): FPC

For EDR (Module2): FPC

Antenna Gain: For 2.4G Wi-Fi: 1.96 dBi

For 5G Wi-Fi: 3.52 dBi

For BLE (Module1): 1.96 dBi

For EDR (Module1): 1.96 dBi

For BLE (Module2): 3.16 dBi

For EDR (Module2): 3.16 dBi

Description of the EUT: The Equipment Under Test (EUT) is a CCU with Wi-Fi Module, BLE/EDR

Module and LTE Module. The EUT support Wi-Fi operated at 2.4GHz and

5GHz.

Test sample no.: SHA-843416-2 (Radiated sample)

SHA-843416-3 (Conducted sample)

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment, antenna gain or any information supplied.



# 4 Summary of Test Standards

|                                                                                          | Test Standards                                                                                                               |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| FCC Part 15 Subpart C                                                                    | PART 15 - RADIO FREQUENCY DEVICES                                                                                            |
| 10-1-2023 Edition                                                                        | Subpart C - Intentional Radiators                                                                                            |
| RSS-Gen Issue 5<br>April 2018 + Amendment 1<br>March 2019 + Amendment 2<br>February 2021 | General Requirements for Compliance of Radio Apparatus                                                                       |
| RSS-247<br>Issue 3 August 2023                                                           | Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices |

All the test methods were according to KDB 558074 D01 15.247 Measurement Guidance v05r02 and ANSI C63.10-2013.



# 5 Summary of Test Results

|                                      | Technical Requirements              |                                                 |                  |              |             |       |            |  |
|--------------------------------------|-------------------------------------|-------------------------------------------------|------------------|--------------|-------------|-------|------------|--|
| FCC Part 15 Subpa                    | art C & RSS-247 Is                  | ssue 3/RSS-Gen Issue 5                          |                  |              |             |       |            |  |
| Test Condition                       |                                     |                                                 | Pages            | Test<br>Site | Tes<br>Pass | t Res | ult<br>N/A |  |
| §15.207                              | RSS-GEN 8.8                         | Conducted emission AC power port                |                  | Site 1       |             |       |            |  |
| §15.247 (b) (3)                      | RSS-247 5.4(d)                      | Conducted peak output power                     | 17-18            | Site 1       |             |       |            |  |
|                                      | RSS-247 5.4(d)                      | Equivalent Isotropic<br>Radiated Power          | 17-18            | Site 1       |             |       |            |  |
| §15.247(a)(1)                        | RSS-247 5.1(a)<br>& RSS-Gen 6.7     | 20dB bandwidth and<br>99% Occupied<br>Bandwidth |                  |              |             |       |            |  |
| §15.247(a)(1)                        | RSS-247 5.1(b)                      | Carrier frequency separation                    | ' '     -        |              |             |       |            |  |
| §15.247(a)(1)(iii)                   | RSS-247 5.1(d)                      | Number of hopping frequencies                   | · · · ·          |              |             |       |            |  |
| §15.247(a)(1)(iii)                   | RSS-247 5.1(d)                      | Dwell Time - Average<br>Time of Occupancy       |                  |              |             |       |            |  |
| §15.247(a)(2)                        | RSS-247<br>5.2(a) & RSS-<br>GEN 6.7 | 6dB bandwidth and<br>99% Occupied<br>Bandwidth  | 19-21            | Site 1       |             |       |            |  |
| §15.247(e)                           | RSS-247<br>5.2(b)                   | Power spectral density                          | 19-21            | Site 1       |             |       |            |  |
| §15.247(d)                           | RSS-247 5.5                         | Spurious RF<br>conducted<br>emissions           | onducted 19-21 S |              |             |       |            |  |
| §15.247(d)                           | RSS-247 5.5                         | Band edge                                       | 19-21            | Site 1       |             |       |            |  |
| §15.247(d) &<br>§15.209 &<br>§15.205 | RSS-247 5.5<br>& RSS-Gen<br>6.13    | Spurious radiated emissions for transmitter     | 19-21            | Site 1       |             |       |            |  |
| §15.203                              | RSS-Gen 6.8                         | Antenna requirement                             | See note 1       |              |             |       |            |  |

Remark 1: N/A – Not Applicable.

Remark 2: The EUT only operation at 2.4G Wi-Fi and 5G Wi-Fi UNII Band (5180MHz-5240MHz, 5260~5320 MHz, 5500~5720 MHz, 5745MHz-5825MHz).

Note 1: The EUT uses a FPC antenna, which gain is 1.96 dBi for 2.4GWi-Fi, 3.52 dBi for 5GWi-Fi. In accordance to §15.203 and RSS-Gen 6.8, It is considered sufficiently to comply with the provisions of this section.



15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi



## 6 General Remarks

#### Remarks

This submittal(s) (test report) is intended for FCC ID: 2APB2-LIME-CCU23, IC: 32977-LIMECCU23 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-247, RSS-GEN.

This report is only for BLE (Module1) test report, for the 5GHz Wi-Fi test report please refer to 709502403822-00A, for the 2.4GHz Wi-Fi test report please refer to 709502403822-00C, for the EDR (Module1) test report please refer to 709502403822-00E, for the BLE (Module2) test report please refer to 709502403822-00F, for the EDR (Module2) test report please refer to 709502403822-00G.

We tested it and listed the worst data in this report.

#### **SUMMARY:**

All tests according to the regulations cited on page 10 were

- - Performed
- ☐ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

Testing Start Date:

August 2, 2024

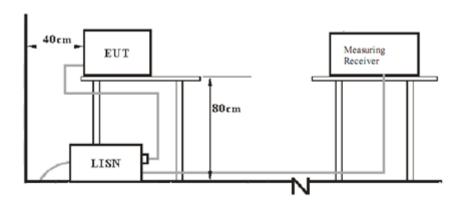
Testing End Date:

August 26, 2024

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

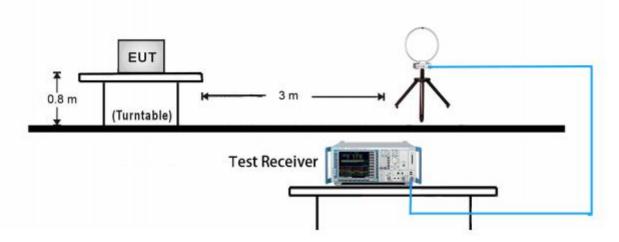
Reviewed by: Prepared by: Tested by:

Hui TONG Wenqiang LU Review Engineer Project Engineer


Chengjie GUO Test Engineer

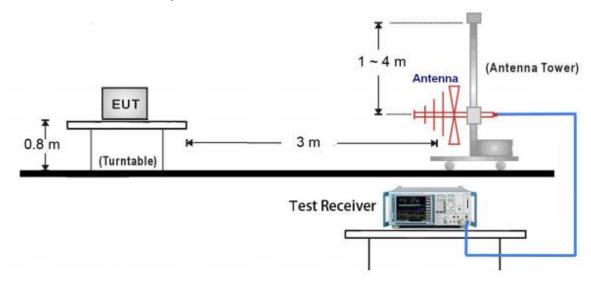
Curchengiel



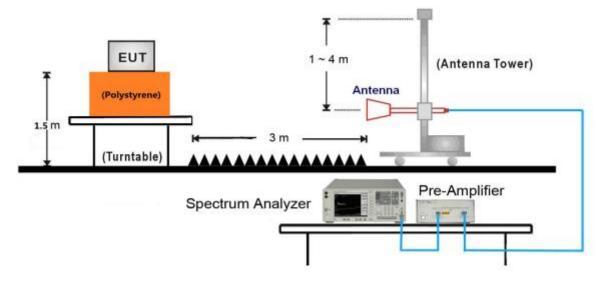

# 7 Test Setups

# 7.1 AC Power Line Conducted Emission test setups



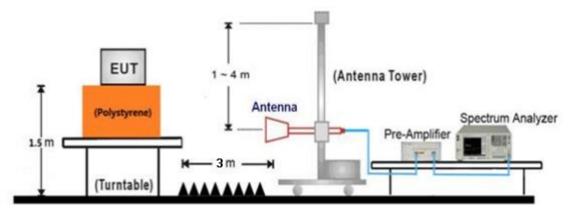

## 7.2 Radiated test setups

# 9kHz ~ 30MHz Test Setup:






# 30MHz ~ 1GHz Test Setup:




# 1GHz ~ 18GHz Test Setup:





# 18GHz ~ 25GHz Test Setup:



# 7.3 Conducted RF test setups





# 8 Systems test configuration

Auxiliary Equipment Used during Test:

| DESCRIPTION | MANUFACTURER | MODEL NO.(SHIELD) | S/N(LENGTH)     |
|-------------|--------------|-------------------|-----------------|
| Notebook    | Lenove       | E470              | PF-OU5TS7 17/09 |

Test software: adb.exe, which used to control the EUT in continues transmitting mode.

The system was configured to channel 0, 19, and 39 for the test.

Test Mode Applicability and Tested Channel Detail:

| Mode         | Tested<br>Channel | Data Rate<br>(Mbps) | Modulation | Power level setting |
|--------------|-------------------|---------------------|------------|---------------------|
|              | 0                 | 1                   | GFSK       | Default             |
| Bluetooth LE | 19                | 1                   | GFSK       | Default             |
|              | 39                | 1                   | GFSK       | Default             |



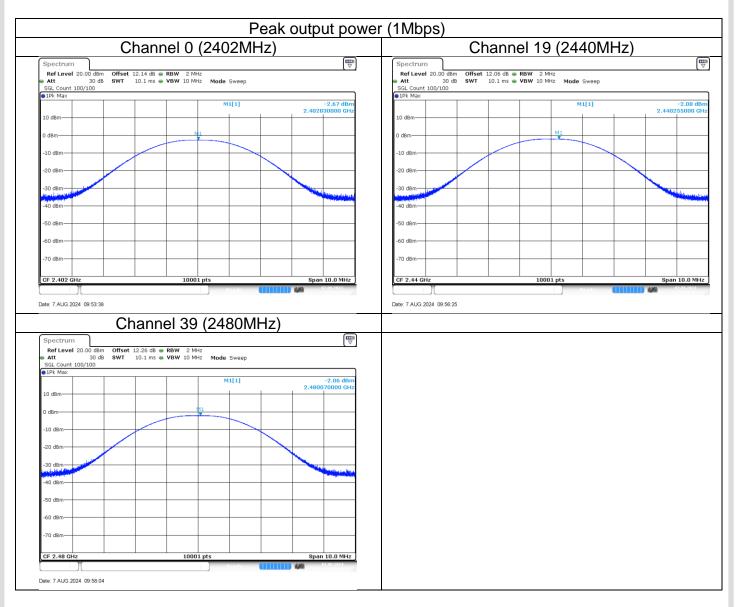
# 9 Technical Requirement

# 9.1 Conducted peak output power & EIRP

#### **Test Method**

- Use the following spectrum analyzer settings:
   RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
   Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

#### Limits


According to §15.247 (b) (3) & RSS-247 5.4(d), conducted peak output power limit as below:

|                             | Frequency Range | Limit | Limit |
|-----------------------------|-----------------|-------|-------|
|                             | MHz             | W     | dBm   |
| Conducted peak output power | 2400-2483.5     | ≤1    | ≤30   |
| e.i.r.p.                    | 2400-2483.5     | ≤4    | ≤36   |

Test result as below table

|                        | Conducted Peak |         |        |
|------------------------|----------------|---------|--------|
| Frequency              | Output Power   | E.I.R.P | Result |
| MHz                    | dBm            | dBm     |        |
| Low channel 2402MHz    | -2.67          | -0.71   | Pass   |
| Middle channel 2440MHz | -2.08          | -0.12   | Pass   |
| High channel 2480MHz   | -2.06          | -0.1    | Pass   |







# 9.2 6dB bandwidth and 99% Occupied Bandwidth

#### Test Method for 6 dB Bandwidth

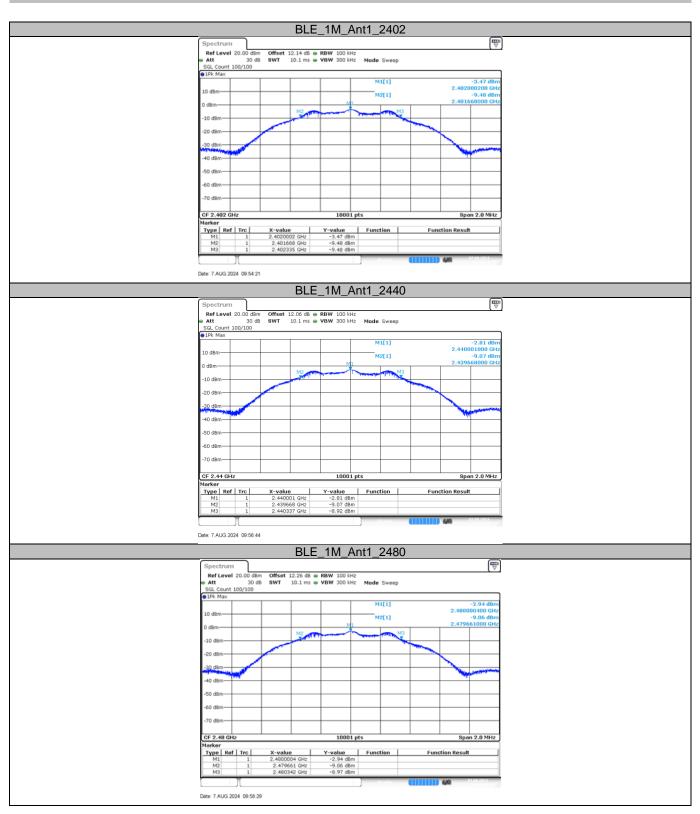
- 1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: RBW=100KHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Use the automatic bandwidth measurement capability of an instrument, use the X dB bandwidth mode with X set to 6 dB.
- 5. Allow the trace to stabilize, record the 6 dB Bandwidth value.

#### Test Method for 99 % Bandwidth

- Connect EUT test port to spectrum analyzer.
   Use the following spectrum analyzer settings:
   RBW=1% to 5% of the actual occupied, VBW≥3RBW, Sweep = auto,
   Detector function = peak, Trace = max hold
- 2. Use the occupied bandwidth measurement capability of test receiver.
- 3. Allow the trace to stabilize, record the occupied bandwidth value.

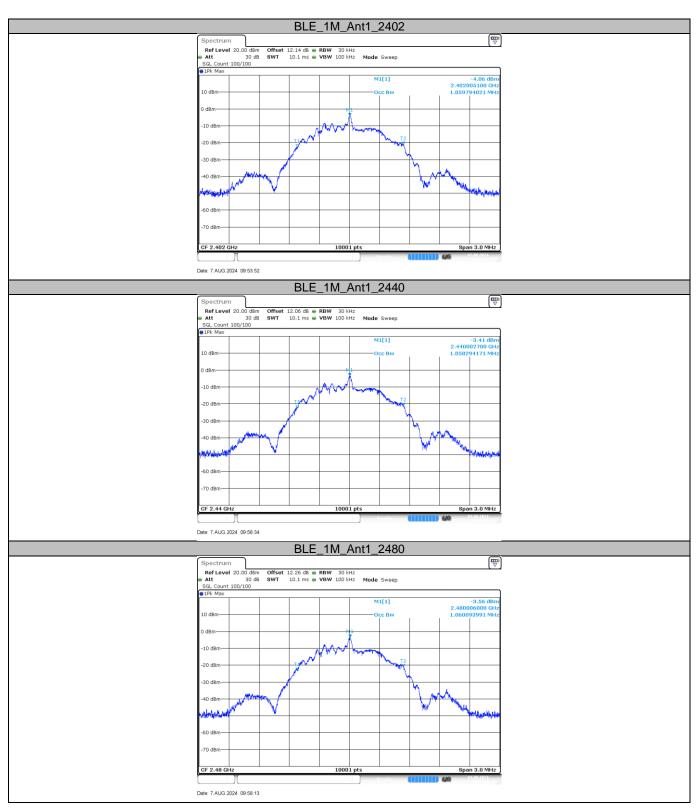
#### Limit

According to §15.247(a)(2), 6dB bandwidth limit as below:


| <br>6dB bandwidth Limit [kHz] | 99% bandwidth Limit [kHz] |
|-------------------------------|---------------------------|
| ≥500                          |                           |

#### Test result

| Frequency<br>MHz       | 6dB bandwidth<br>kHz | 99% Bandwidth<br>kHz | Result |
|------------------------|----------------------|----------------------|--------|
| Top channel 2402MHz    | 667                  | 1060                 | Pass   |
| Middle channel 2440MHz | 669                  | 1058                 | Pass   |
| Bottom channel 2480MHz | 681                  | 1060                 | Pass   |




## 6dB Bandwidth





# 99% Occupied Bandwidth





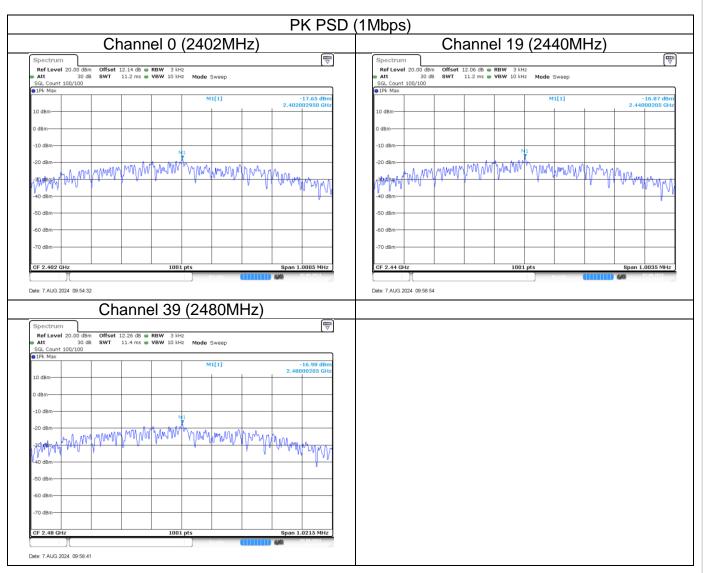
# 9.3 Power spectral density

#### **Test Method**

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings:
- 4. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 5. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 6. Repeat above procedures until other frequencies measured were completed.

#### Limit


## Limit [dBm/3KHz]

≤8

#### Test result

| Frequency              | Power spectral density | Result |
|------------------------|------------------------|--------|
| MHz                    | dBm/3kHz               |        |
| Top channel 2402MHz    | -17.65                 | Pass   |
| Middle channel 2440MHz | -16.87                 | Pass   |
| Bottom channel 2480MHz | -16.98                 | Pass   |







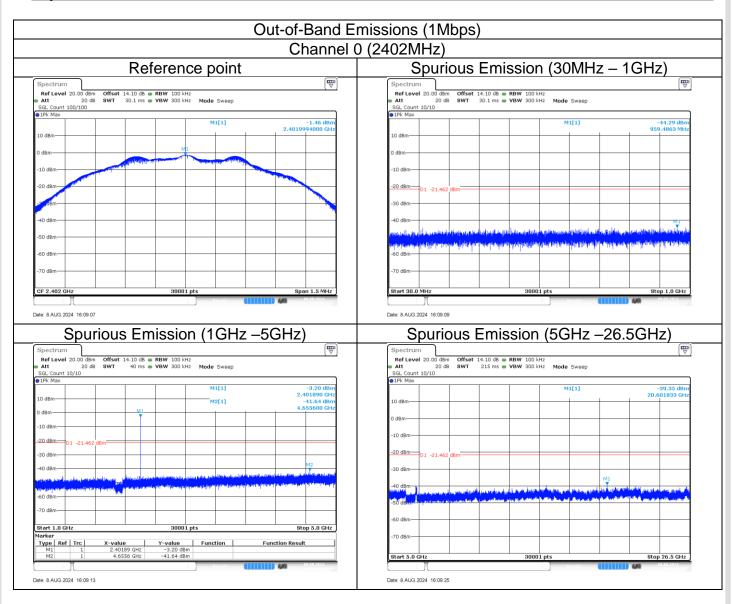
# 9.4 Spurious RF conducted emissions

#### **Test Method**

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings:

  Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10<sup>th</sup> harmonic. Typically, several plots are required to cover this entire span.

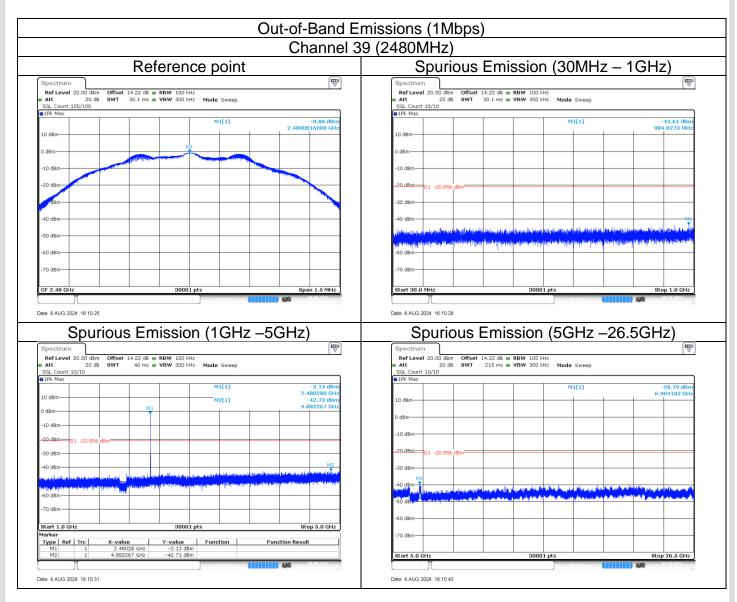
  RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 5. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 6. Repeat above procedures until all frequencies measured were complete.


#### Limit

According to §15.247(d), spurious RF conducted emissions limit as below:

| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |




## **Spurious RF conducted emissions**











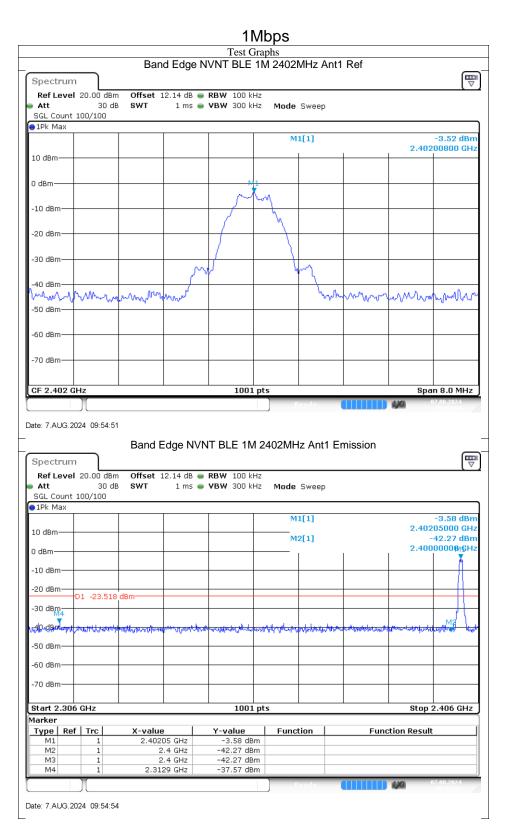


# 9.5 Band edge

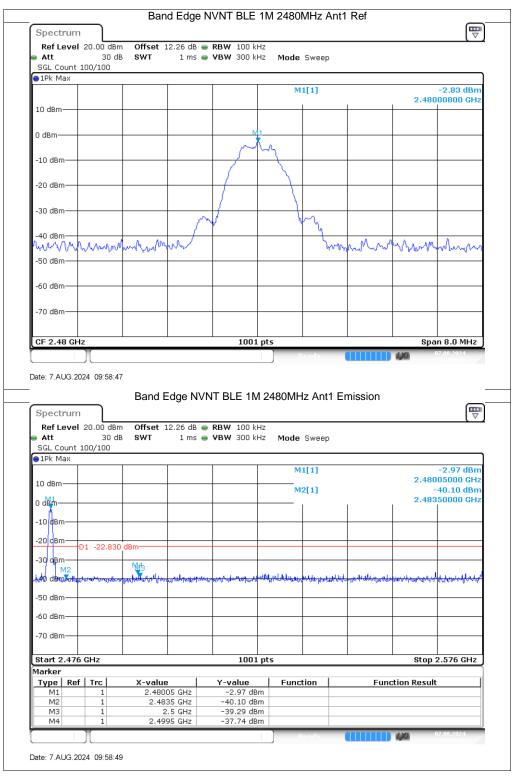
#### **Test Method**

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 5. The level displayed must comply with the limit specified in this Section.
- 6. Repeat above procedures until all frequencies measured were complete and submit all the plots.

#### Limit:


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3) and RSS-247 section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB.

According to §15.247(d), band edge limit as below:


| Frequency Range | Limit (dBc) |
|-----------------|-------------|
| MHz             |             |
| 30-25000        | -20         |



#### **Test result**









# 9.6 Spurious radiated emissions for transmitter

#### **Test Method**

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10
  - 1) Procedure for Unwanted Emissions Measurements Below 1000 MHz Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.
  - 2) For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1GHz

- a) RBW = 1MHz.
- b) VBW \  $[3 \times RBW]$ .
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction



factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission (AV) at frequency above 1GHz.

#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3) and RSS 247 section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in § 15.209(a) and RSS-Gen is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a) and RSS-Gen section 8.9, must also comply with the radiated emission limits specified in § 15.209(a) and RSS-Gen section 8.10.

| Frequency<br>MHz | Field Strength<br>μV/m | Field Strength<br>dBµV/m | Detector | Measurement distance meters |
|------------------|------------------------|--------------------------|----------|-----------------------------|
| 0.009-0.490      | 2400/F(kHz)            | 48.5-13.8                | AV       | 300                         |
| 0.490-1.705      | 24000/F(kHz)           | 33.8-23.0                | QP       | 30                          |
| 1.705-30         | 30                     | 29.5                     | QP       | 30                          |
| 30-88            | 100                    | 40                       | QP       | 3                           |
| 88-216           | 150                    | 43.5                     | QP       | 3                           |
| 216-960          | 200                    | 46                       | QP       | 3                           |
| 960-1000         | 500                    | 54                       | QP       | 3                           |
| Above 1000       | 500                    | 54                       | AV       | 3                           |
| Above 1000       | 5000                   | 74                       | PK       | 3                           |

Note 1: Limit  $3m(dB\mu V/m)=Limit 300m(dB\mu V/m)+40Log(300m/3m)$  (Below 30MHz) Note 2: Limit  $3m(dB\mu V/m)=Limit 30m(dB\mu V/m)+40Log(30m/3m)$  (Below 30MHz)

## **Spurious Radiated Emissions for Transmitter**

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Data of measurement within frequency range 9kHz-30MHz is the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.



# Above 1GHz Transmitting spurious emission test result as below:

# 1Mbps 2402MHz

| Frequency | Emission<br>Level | Polarization | Limit  | Detector | Margin | Result |
|-----------|-------------------|--------------|--------|----------|--------|--------|
| MHz       | dBuV/m            |              | dBμV/m |          | dΒμV/m |        |
| 2380.25   | 40.10             | Horizontal   | 74     | PK       | 33.90  | Pass   |
| 4803.53   | 44.44             | Horizontal   | 74     | PK       | 29.56  | Pass   |
| 9606.51   | 48.65             | Horizontal   | 74     | PK       | 25.35  | Pass   |
| 2384.82   | 40.55             | Veritical    | 74     | PK       | 33.45  | Pass   |
| 4804.00   | 48.66             | Veritical    | 74     | PK       | 25.34  | Pass   |
| 7204.61   | 46.91             | Veritical    | 74     | PK       | 27.09  | Pass   |
| 9608.24   | 49.16             | Veritical    | 74     | PK       | 24.84  | Pass   |

#### 2440MHz

| Frequency | Emission<br>Level | Polarization | Limit  | Detector | Margin | Result |
|-----------|-------------------|--------------|--------|----------|--------|--------|
| MHz       | dBuV/m            |              | dBμV/m |          | dBμV/m |        |
| 4879.58   | 44.66             | Horizontal   | 74     | PK       | 29.34  | Pass   |
| 7320.15   | 47.75             | Horizontal   | 74     | PK       | 26.25  | Pass   |
| 9760.60   | 49.21             | Horizontal   | 74     | PK       | 24.79  | Pass   |
| 4879.45   | 49.91             | Veritical    | 74     | PK       | 24.09  | Pass   |
| 7319.09   | 47.00             | Veritical    | 74     | PK       | 27.00  | Pass   |
| 9759.03   | 49.05             | Veritical    | 74     | PK       | 24.95  | Pass   |

## 2480MHz

| Frequency | Emission<br>Level | Polarization | Limit  | Detector | Margin | Result |
|-----------|-------------------|--------------|--------|----------|--------|--------|
| MHz       | dBuV/m            |              | dBμV/m |          | dΒμV/m |        |
| 2482.76   | 42.26             | Horizontal   | 74     | PK       | 31.74  | Pass   |
| 4960.66   | 45.06             | Horizontal   | 74     | PK       | 28.94  | Pass   |
| 7439.63   | 49.10             | Horizontal   | 74     | PK       | 24.90  | Pass   |
| 9919.47   | 49.27             | Horizontal   | 74     | PK       | 24.73  | Pass   |
| 2483.05   | 43.37             | Veritical    | 74     | PK       | 30.63  | Pass   |
| 4959.61   | 48.65             | Veritical    | 74     | PK       | 25.35  | Pass   |
| 7438.75   | 47.86             | Veritical    | 74     | PK       | 26.14  | Pass   |
| 9919.40   | 47.19             | Veritical    | 74     | PK       | 26.81  | Pass   |

## Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
- (3) Margin = limit Corrected Reading



### The worst case of Radiated Emission below 1GHz:

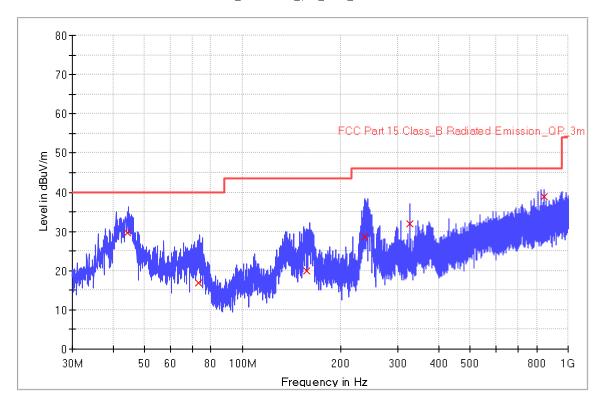
# 30-1000MHz Radiated Emission

## **EUT Information**

EUT Name: CCU

Lime-CCU23 Model:

Client: Neutron Holdings, Inc. Op Cond: Power on,TX\_2480MHz


Operator: Chengjie GUO Test Spec: FCC Part 15.247 Comment: Horizontal Sample No: SHA-843416-2

# Sweep Setup: RE\_VULB9168\_pre\_Cont\_30-1000 [EMI radiated] Hardware Setup: RE\_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

Subrange Step Size **Detectors Bandwidth Sweep Time Preamp** 30 MHz - 1 GHz 48.5 kHz PK+ 120 kHz 0.2 s 20 dB

RE\_VULB9168\_pre\_Cont\_30-1000





**Limit and Margin** 

|            | 5         |            |           |        |     |         |        |          |             |
|------------|-----------|------------|-----------|--------|-----|---------|--------|----------|-------------|
| Frequency  | QuasiPeak | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr.  | Margin - | Limit - QPK |
| (MHz)      | (dBuV/m)  | (ms)       | (kHz)     | (cm)   |     | (deg)   | (dB/m) | QPK      | (dBuV/m)    |
|            | ,         | , ,        | , ,       | , ,    |     |         | ,      | (dB)     |             |
| 44.200000  | 29.5      | 1000.0     | 120.000   | 135.0  | Н   | 150.0   | 20.4   | 10.5     | 40.0        |
| 73.320000  | 16.9      | 1000.0     | 120.000   | 124.0  | Н   | 193.0   | 18.0   | 23.1     | 40.0        |
| 157.600000 | 19.8      | 1000.0     | 120.000   | 155.0  | Н   | 158.0   | 21.1   | 23.7     | 43.5        |
| 237.080000 | 28.8      | 1000.0     | 120.000   | 165.0  | Н   | 169.0   | 19.5   | 17.2     | 46.0        |
| 326.400000 | 31.9      | 1000.0     | 120.000   | 150.0  | Н   | 154.0   | 22.7   | 14.1     | 46.0        |
| 844.800000 | 38.9      | 1000.0     | 120.000   | 176.0  | Н   | 135.0   | 32.7   | 7.1      | 46.0        |



# 30-1000MHz Radiated Emission

## **EUT Information**

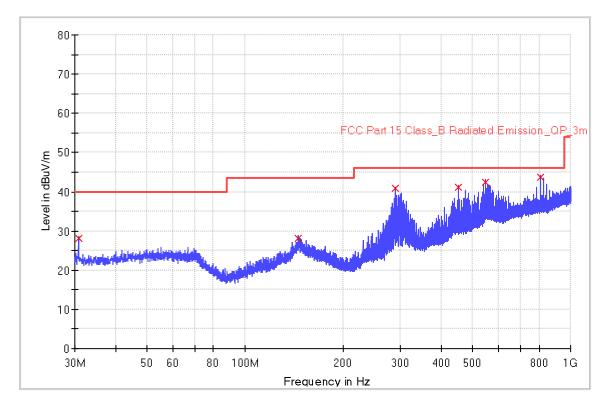
EUT Name: CCU

Model: Lime-CCU23

Client: Neutron Holdings, Inc.
Op Cond: Power on, TX\_2480MHz

Operator: Chengjie GUO
Test Spec: FCC Part 15.247

Comment: Vertical Sample No: SHA-843416-2


# Sweep Setup: RE\_VULB9168\_pre\_Cont\_30-1000 [EMI radiated]

Hardware Setup: RE\_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB

RE\_VULB9168\_pre\_Cont\_30-1000





**Limit and Margin** 

| Frequency  | QuasiPeak | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr.  | Margin - | Limit - QPK |
|------------|-----------|------------|-----------|--------|-----|---------|--------|----------|-------------|
| (MHz)      | (dBuV/m)  | (ms)       | (kHz)     | (cm)   |     | (deg)   | (dB/m) | QPK      | (dBuV/m)    |
|            | , ,       | , ,        | , ,       | , ,    |     |         | , ,    | (dB)     |             |
| 30.840000  | 28.0100   | 1000.0     | 120.000   | 200.0  | ٧   | 358.0   | 18.9   | 12.0     | 40.0        |
| 145.880000 | 28.2000   | 1000.0     | 120.000   | 200.0  | ٧   | 358.0   | 21.0   | 15.3     | 43.5        |
| 289.880000 | 40.9700   | 1000.0     | 120.000   | 200.0  | ٧   | 358.0   | 21.6   | 5.0      | 46.0        |
| 453.400000 | 41.1000   | 1000.0     | 120.000   | 200.0  | ٧   | 358.0   | 26.1   | 4.9      | 46.0        |
| 546.240000 | 42.5200   | 1000.0     | 120.000   | 200.0  | ٧   | 358.0   | 27.7   | 3.5      | 46.0        |
| 806.400000 | 43.8100   | 1000.0     | 120.000   | 200.0  | ٧   | 358.0   | 32.9   | 2.2      | 46.0        |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range:  $9kHz \sim 30MHz$ ,  $18GHz \sim 25GHz$ ), therefore no data appear in the report



# 10 Test Equipment List

#### List of Test Instruments Test Site1

|    | DESCRIPTION                                | MANUFACTURER      | MODEL<br>NO.   | SERIAL NO. | CAL. DATE | CAL. DUE<br>DATE |
|----|--------------------------------------------|-------------------|----------------|------------|-----------|------------------|
| С  | Signal spectrum analyzer                   | Agilent           | N9020B         | MY59050168 | 2024-2-19 | 2025-2-18        |
|    | EMI Test Receiver                          | Rohde & Schwarz   | ESR3           | 101906     | 2024-8-1  | 2025-7-31        |
|    | Signal Analyzer                            | Rohde & Schwarz   | FSV40          | 101091     | 2024-8-1  | 2025-7-31        |
| RE | Trilog Super<br>Broadband Test<br>Antenna  | Schwarzbeck       | VULB<br>9168   | 961        | 2021-9-23 | 2024-9-22        |
|    | Double-ridged<br>waveguide horn<br>antenna | Rohde & Schwarz   | HF907          | 102868     | 2024-4-14 | 2027-4-13        |
|    | Pre-amplifier                              | Shenzhen<br>HzEMC | HPA-<br>081843 | HYPA23026  | 2024-4-16 | 2025-4-15        |
|    | Loop antenna                               | Rohde & Schwarz   | HFH2-Z2        | 100443     | 2024-6-26 | 2025-6-25        |
|    | Double Ridged<br>Horn Antenna              | ETS-Lindgren      | 3116C          | 00246076   | 2023-7-7  | 2026-7-6         |
|    | 3m Semi-anechoic chamber                   | TDK               | 9X6X6          |            | 2025-4-15 | 2027-5-7         |

| Measurement Software Information |          |                 |           |  |  |  |
|----------------------------------|----------|-----------------|-----------|--|--|--|
| Test<br>Item                     | Software | Manufacturer    | Version   |  |  |  |
| С                                | MTS 8310 | MWRFtest        | 3.0.0.0   |  |  |  |
| RE                               | EMC 32   | Rohde & Schwarz | V10.50.40 |  |  |  |

## C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density\*
- Spurious RF conducted emissions
- Band edge



# 11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| Items                    | Extended Uncertainty                     |  |  |  |
|--------------------------|------------------------------------------|--|--|--|
| Radiated Disturbance     | 9kHz to 30MHz, 3.52dB                    |  |  |  |
|                          | 30MHz to 1GHz, 5.03dB (Horizontal)       |  |  |  |
|                          | 5.12dB (Vertical)                        |  |  |  |
|                          | 1GHz to 18GHz, 5.49dB                    |  |  |  |
|                          | 18GHz to 40GHz, 5.63dB                   |  |  |  |
| RF Conducted Measurement | Power related: 1.16dB                    |  |  |  |
|                          | Frequency related: 6.00×10 <sup>-8</sup> |  |  |  |

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3.



# 12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.



| 13 | <b>Photographs</b> | of EUT |
|----|--------------------|--------|
|    |                    |        |

| Refer to the < External Photos > & < Internal Photos >. |   |
|---------------------------------------------------------|---|
|                                                         |   |
| End of Test Report                                      | _ |