SAR EVALUATION REPORT For ## **LAVA International Limited** A-56, Sector 64, Noida 201301, U.P., India FCC ID: 2ARTXT101 Report Type: Product Type: Original Report Tablet **Report Number:** RSZ190107001-SA **Report Date:** 2019-01-29 Terry XiaHou Terry XiaHou **Reviewed By:** SAR Engineer Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn **Note**: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*". | Attestation of Test Results | | | | | | | |-----------------------------|-----------------|----------------------------------|--------------|--|--|--| | | EUT Description | Tablet | | | | | | | Tested Model | T101 | | | | | | EUT
Information | FCC ID | 2ARTXT101 | 2ARTXT101 | | | | | inioi muton | Serial Number | 19010700102 | | | | | | | Test Date | 2019/01/18 to 2019/01/19 | | | | | | МО | DE | Max. SAR Level(s) Reported(W/kg) | Limit (W/kg) | | | | | GSM 850 | 1g Body SAR | 0.74 | | | | | | PCS 1900 | 1g Body SAR | 0.61 | | | | | | LTE Band 5 | 1g Body SAR | 0.59 | 1.6 | | | | | LTE Band 41 | 1g Body SAR | 0.80 | 1.6 | | | | | Simultaneous | 1g Body SAR | 1.17 | | | | | | | 1g Body SAR | 1.17 (Hotspot) | | | | | Report No.: RSZ190107001-SA | | FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices | |--|--| | | IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques | | Applicable
Standards | IEC 62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) | | | KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D05 SAR for LTE Devices v02r05 | | No. of the state o | KDB 616217 D04 SAR for laptop and tablets v01r02
KDB 941225 D06 Hotspot Mode v02r01 | Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated. SAR Evaluation Report 2 of 49 # TABLE OF CONTENTS | OCUMENT REVISION HISTORY | 4 | |--|----| | EUT DESCRIPTION | 5 | | TECHNICAL SPECIFICATION. | 5 | | REFERENCE, STANDARDS, AND GUIDELINES | 6 | | SAR LIMITS | 7 | | FACILITIES | 8 | | DESCRIPTION OF TEST SYSTEM | 9 | | EQUIPMENT LIST AND CALIBRATION | 15 | | | | | SAR MEASUREMENT SYSTEM VERIFICATION | 16 | | LIQUID VERIFICATION | | | SYSTEM ACCURACY VERIFICATION | | | | | | | | | | | | SAR EVALUATION PROCEDURE | 24 | | CONDUCTED OUTPUT POWER MEASUREMENT | 25 | | PROVISION APPLICABLE | 25 | SAR MEASUREMENT RESULTS | 37 | | SAR TEST DATA | 37 | | SAR MEASUREMENT VARIABILITY | 41 | | SAR SIMULTANEOUS TRANSMISSION DESCRIPTION | 42 | | SAR PLOTS | 44 | | APPENDIX A MEASUREMENT UNCERTAINTY | 45 | | APPENDIX B EUT TEST POSITION PHOTOS | 47 | | APPENDIX C PROBE CALIBRATION CERTIFICATES | 48 | | APPENDIX D DIPOLE CALIBRATION CERTIFICATES | 49 | Report No.: RSZ190107001-SA ## **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | | |-----------------|-----------------|-------------------------|------------------|--| | 1.0 | RSZ190107001-SA | Original Report | 2019-01-29 | | Report No.: RSZ190107001-SA SAR Evaluation Report 4 of 49 ## **EUT DESCRIPTION** This report has been prepared on behalf of *LAVA International Limited* and their product *Tablet*, Model: *T101*, FCC ID: *2ARTXT101* or the EUT (Equipment under Test) as referred to in the rest of this report. Report No.: RSZ190107001-SA *All measurement and test data in this report was gathered from production sample serial number: 19010700102 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2019-01-07. ## **Technical Specification** | Device Type: | Portable | |-------------------------------------|--| | Exposure Category: | Population / Uncontrolled | | Antenna Type(s): | Internal Antenna | | DTM Type: | Class B | | Multi-slot Class: | GPRS(Class 12) | | Proximity sensor for SAR reduction: | None | | Body-Worn Accessories: | Headset | | Face-Head Accessories: | None | | Operation Mode : | GSM Voice, GPRS/EGPRS Data,
FDD-LTE, TDD-LTE, WLAN, Bluetooth | | Frequency Band: | GSM 850: 824-849 MHz(TX); 869-894 MHz(RX)
PCS 1900: 1850-1910 MHz(TX); 1930-1990 MHz(RX)
LTE Band 5: 824-849 MHz(TX); 869-894 MHz(RX)
LTE Band 41: 2555-2650 MHz(TX & RX)
WLAN: 2412 -2472 MHz
Bluetooth: 2402 MHz-2480 MHz | | Conducted RF Power: | GSM 850 : 32.38 dBm PCS 1900: 29.02 dBm LTE Band 5: 23.04 dBm LTE Band 41: 22.78 dBm WLAN: 9.31 dBm Bluetooth(BDR/EDR): 2.33 dBm BLE: 2.14 dBm | | Power Source: | 3.8 V _{DC} Rechargeable Battery | | Normal Operation: | Body Supported | SAR Evaluation Report 5 of 49 ## REFERENCE, STANDARDS, AND GUIDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. Report No.: RSZ190107001-SA This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. #### CE: The order requires routine SAR evaluation prior to equipment
authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. SAR Evaluation Report 6 of 49 ## **SAR Limits** #### **FCC Limit** Report No.: RSZ190107001-SA | | SAR (W/kg) | | | | | |--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | | | #### **CE Limit** | | SAR (W/kg) | | | | | |--|-----------------------|---------------------|--|--|--| | | (General Population / | (Occupational / | | | | | EXPOSURE LIMITS | Uncontrolled Exposure | Controlled Exposure | | | | | | Environment) | Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak
(averaged over any 10 g of
tissue) | 2.0 | 10 | | | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT. SAR Evaluation Report 7 of 49 ## **FACILITIES** The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China. Report No.: RSZ190107001-SA The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221. The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B. SAR Evaluation Report 8 of 49 ## **DESCRIPTION OF TEST SYSTEM** These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter: Report No.: RSZ190107001-SA ## **DASY6 System Description** The DASY6 system for performing compliance tests consists of the following items: SAR Evaluation Report 9 of 49 - A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running Win7 professional operating system and the DASY52 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### **DASY6 Measurement Server** The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board. Report No.: RSZ190107001-SA The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server. #### **Data Acquisition Electronics** The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. SAR Evaluation Report 10 of 49 #### **EX3DV4 E-Field Probes** | Frequency | 10 MHz to > 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | |------------------|---| | Directivity | ± 0.3 dB in TSL (rotation around probe axis)
± 0.5 dB in TSL (rotation normal to probe axis) | | Dynamic
Range | 10 μ W/g to > 100 mW/g
Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g) | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | #### **SAM Twin Phantom** The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms). When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY6 platform is used to mount the Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required. In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids: Report No.: RSZ190107001-SA Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation. DGBE-based liquids should be used with care. As DGBE is a
softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week). Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom. SAR Evaluation Report 11 of 49 #### **ELI Phantom** The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standard IEC 62209-2 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom can be used with the following tissue simulating liquids: - Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation. - DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week). - Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the ELI phantom. The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from St aubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchrony motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided Report No.: RSZ190107001-SA SAR Evaluation Report 12 of 49 ## Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7522 Calibrated: 2018/11/02 Report No.: RSZ190107001-SA | Calibration Frequency | Frequency Range(MHz) | | Conversion Factor | | | |-----------------------|----------------------|------|-------------------|------|------| | Point(MHz) | From | To | X | Y | Z | | 750 Head | 650 | 800 | 9.78 | 9.78 | 9.78 | | 750 Body | 650 | 800 | 9.8 | 9.8 | 9.8 | | 850 Head | 800 | 950 | 9.46 | 9.46 | 9.46 | | 850 Body | 800 | 950 | 9.54 | 9.54 | 9.54 | | 1750 Head | 1650 | 1810 | 8.2 | 8.2 | 8.2 | | 1750 Body | 1650 | 1810 | 7.88 | 7.88 | 7.88 | | 1900 Head | 1810 | 1920 | 7.91 | 7.91 | 7.91 | | 1900 Body | 1810 | 1920 | 7.48 | 7.48 | 7.48 | | 2000 Head | 1920 | 2100 | 7.78 | 7.78 | 7.78 | | 2000 Body | 1920 | 2100 | 7.36 | 7.36 | 7.36 | | 2300 Head | 2200 | 2399 | 7.35 | 7.35 | 7.35 | | 2300 Body | 2200 | 2399 | 7.27 | 7.27 | 7.27 | | 2450 Head | 2399 | 2500 | 6.97 | 6.97 | 6.97 | | 2450 Body | 2399 | 2500 | 7.05 | 7.05 | 7.05 | | 2600 Head | 2500 | 2700 | 6.79 | 6.79 | 6.79 | | 2600 Body | 2500 | 2700 | 6.95 | 6.95 | 6.95 | | 5250 Head | 5140 | 5360 | 5.05 | 5.05 | 5.05 | | 5250 Body | 5140 | 5360 | 4.77 | 4.77 | 4.77 | | 5600 Head | 5490 | 5700 | 4.48 | 4.48 | 4.48 | | 5600 Body | 5490 | 5700 | 4.27 | 4.27 | 4.27 | | 5800 Head | 5700 | 5910 | 4.76 | 4.76 | 4.76 | | 5800 Body | 5700 | 5910 | 4.31 | 4.31 | 4.31 | #### **Area Scans** Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments. Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging. SAR Evaluation Report 13 of 49 #### **Zoom Scan (Cube Scan Averaging)** The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm. Report No.: RSZ190107001-SA When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis. ### Tissue Dielectric Parameters for Head and Body Phantoms The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. ## Recommended Tissue Dielectric Parameters for Head and Body | Frequency | Head T | Γissue | Body Tissue | | | |-----------|--------|---------|-------------|---------|--| | (MHz) | εr | O'(S/m) | εr | O (S/m) | | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | | SAR Evaluation Report 14 of 49 ## **EQUIPMENT LIST AND CALIBRATION** ## **Equipments List & Calibration Information** | Equipment Model | | S/N | Calibration
Date | Calibration
Due Date | |--|----------------|-----------------------|---------------------|-------------------------| | DASY5 Test Software | DASY52 52.10.2 | N/A | NCR | NCR | | DASY6 Measurement Server | DASY6 6.0.31 | N/A | NCR | NCR | | Data Acquisition Electronics | DAE4 | 1562 | 2018/11/6 | 2019/11/6 | | E-Field Probe | EX3DV4 | 7522 | 2018/11/2 | 2019/11/2 | | Mounting Device | MD4HHTV5 | SD 000 H01 KA | NCR | NCR | | ELI Phantom | ELI V8.0 | 2092 | NCR | NCR | | Dipole, 835MHz | D835V2 | 445 | 2016/10/26 | 2019/10/26 | | Dipole,1900MHz | ALS-D-1900-S-2 | 210-00710 | 2017/09/20 | 2020/09/20 | | Dipole, 2600MHz | D2600V2 | 1073 | 2016/12/19 | 2019/12/19 | | Simulated Tissue Liquid Body | MBBL600-6000V6 | 180611-1 | Each | Time | | Network Analyzer | 8753D | 3410A08288 | 2018/04/25 | 2019/04/25 | | Dielectric Assessment Kit | DAK-3.5 | 1248 | NCR | NCR | | Anritsu Signal Generator | 68369B | 4114 | 2018/12/29 | 2019/12/29 | | Power Meter | E4419B | GB39511341 | 2018/06/23 | 2019/06/23 | | Power Amplifier | 5S1G4 | 71377 | NCR | NCR | | Directional Coupler | 4242-10 | 3307 | NCR | NCR | | Attenuator | 3dB | 5402 | NCR | NCR | | Attenuator | 10dB | AU 3842 | NCR | NCR | | R&S, universal Radio
Communication Tester | CMU200 | 115500 | 2018/06/23 | 2019/06/23 | | WIDEBAND RADIO
COMMUNICATION TESTER | CMW500 | 1201.002K50-146520-wh | 2018/04/24 | 2019/04/24 | | Wireless communication tester | 8960 | MY50266471 | 2018/04/25 | 2019/04/25 | Report No.: RSZ190107001-SA SAR Evaluation Report 15 of 49 ## SAR MEASUREMENT SYSTEM VERIFICATION ## **Liquid Verification** Report No.: RSZ190107001-SA Liquid Verification Setup Block Diagram ## **Liquid Verification Results** | Frequency Liquid Type | | Liquid
Parameter | | Target Value | | Delta
(%) | | Tolerance | |-----------------------|------------------------------|---------------------|----------|-------------------|----------|--------------------------|-------|-----------| | (MHz) | Liquid Type | ε _r | O' (S/m) | $\epsilon_{ m r}$ | O' (S/m) | $\Delta \epsilon_{ m r}$ | ΔO | (%) | | 824.2 | Simulated Tissue Liquid Body | 56.012 | 0.956 | 55.24 | 0.97 | 1.4 | -1.44 | ±5 | | 829 | Simulated Tissue Liquid Body | 56.308 | 0.958 | 55.22 | 0.97 | 1.97 | -1.24 | ±5 | | 835 | Simulated Tissue Liquid Body | 55.873 | 0.965 | 55.2 | 0.97 | 1.22 | -0.52 | ±5 | | 836.5 | Simulated Tissue Liquid Body | 55.626 | 0.97 | 55.2 | 0.97 | 0.77 | 0 | ±5 | | 836.6 | Simulated Tissue Liquid Body | 55.626 | 0.97 | 55.2 | 0.97 | 0.77 | 0 | ±5 | | 844 | Simulated Tissue Liquid Body | 55.202 | 0.989 | 55.18 | 0.99 | 0.04 | -0.1 | ±5 | | 848.8 | Simulated Tissue Liquid Body | 55.11 | 0.997 | 55.16 | 0.99 | -0.09 | 0.71 | ±5 | ^{*}Liquid Verification above was performed on 2019/01/18. | Frequency | Liquid Type | Liq
Paran | | Target | Value | Delta
(%) | | Tolerance | |-----------
------------------------------|--------------------------------|-------|-------------------|----------|--------------------------|-------|-----------| | (MHz) | Liquid Type | $\epsilon_{\rm r}$ O (S/m) | | $\epsilon_{ m r}$ | O' (S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ | (%) | | 1850.2 | Simulated Tissue Liquid Body | 54.354 | 1.471 | 53.3 | 1.52 | 1.98 | -3.22 | ±5 | | 1880 | Simulated Tissue Liquid Body | 54.024 | 1.493 | 53.3 | 1.52 | 1.36 | -1.78 | ±5 | | 1900 | Simulated Tissue Liquid Body | 54.362 | 1.514 | 53.3 | 1.52 | 1.99 | -0.39 | ±5 | | 1909.8 | Simulated Tissue Liquid Body | 54.036 | 1.517 | 53.3 | 1.52 | 1.38 | -0.2 | ±5 | ^{*}Liquid Verification above was performed on 2019/01/19. SAR Evaluation Report 16 of 49 Report No.: RSZ190107001-SA SAR Evaluation Report 17 of 49 ^{*}Liquid Verification above was performed on 2019/01/19. ## **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files. Report No.: RSZ190107001-SA The spacing distances in the **System Verification Setup Block Diagram** is given by the following: - a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$ - b) $s = 10 \text{ mm} \pm 0.2 \text{ mm for } 1000 \text{ MHz} < f \le 3000 \text{ MHz};$ - c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz $< f \le 6$ 000 MHz. ### **System Verification Setup Block Diagram** #### **System Accuracy Check Results** | Date | Frequency
Band
(MHz) | Liquid
Type | Input
Power
(mW) | S | asured
SAR
V/kg) | Normalized
to 1W
(W/kg) | Target
Value
(W/Kg) | Delta
(%) | Tolerance (%) | |------------|----------------------------|----------------|------------------------|----|------------------------|-------------------------------|---------------------------|--------------|---------------| | 2019/01/18 | 835 | Body | 100 | 1g | 0.945 | 9.45 | 9.60 | -1.563 | ±10 | | 2019/01/19 | 1900 | Body | 100 | 1g | 4.23 | 42.3 | 42.11 | 0.451 | ±10 | | 2019/01/19 | 2600 | Body | 100 | 1g | 5.37 | 53.7 | 54.7 | -1.828 | ±10 | ^{*}The SAR values above are normalized to 1 Watt forward power. SAR Evaluation Report 18 of 49 #### SAR SYSTEM VALIDATION DATA #### **System Performance 835 MHz Body** DUT: Dipole 835MHz; Type: D835V2; Serial: 445 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.965$ S/m; $\varepsilon_r = 55.873$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: EX3DV4 - SN7522; ConvF(9.54, 9.54, 9.54) @ 835 MHz; Calibrated: 11/2/2018 Report No.: RSZ190107001-SA • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 11/6/2018 Phantom: ELI V8.0 P1aP2a; Type: QD OVA 004 AA; Serial: 2092 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Body 835MHz Pin=100mW/Area Scan (101x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.04 W/kg Body 835MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.21 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 1.41 W/kg SAR(1 g) = 0.945 W/kg; SAR(10 g) = 0.621 W/kg Maximum value of SAR (measured) = 1.03 W/kg SAR Evaluation Report 19 of 49 #### System Performance 1900 MHz Body #### DUT: Dipole 1900MHz; Type: ALS-D-1900-S-2; Serial: 210-00710 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.362$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7522; ConvF(7.48, 7.48, 7.48) @ 1900 MHz; Calibrated: 11/2/2018 Report No.: RSZ190107001-SA - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1562; Calibrated: 11/6/2018 - Phantom: ELI V8.0 P1aP2a; Type: QD OVA 004 AA; Serial: 2092 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) **Body 1900MHz Pin=100mW/Area Scan (81x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.84 W/kg Body 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.61 V/m; Power Drift = 0.025 dB Peak SAR (extrapolated) = 7.84W/kg SAR(1 g) = 4.23 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 4.85 W/kg SAR Evaluation Report 20 of 49 #### System Performance 2600 MHz Body #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1073 Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.123$ S/m; $\varepsilon_r = 52.603$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY Configuration: • Probe: EX3DV4 - SN7522; ConvF(6.79, 6.79, 6.79) @ 2600 MHz; Calibrated: 11/2/2018 Report No.: RSZ190107001-SA • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 11/6/2018 Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) **Body 2600MHz Pin=100mW/Area Scan (81x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 6.55 W/kg Body 2600MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.42 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.37 W/kg; SAR(10 g) = 2.55 W/kg Maximum value of SAR (measured) = 6.36 W/kg SAR Evaluation Report 21 of 49 #### **EUT TEST STRATEGY AND METHODOLOGY** ### Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Report No.: RSZ190107001-SA Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. Figure 5 - Test positions for body-worn devices SAR Evaluation Report 22 of 49 ## Test positions for Body-supported device A typical example of a body supported device is a wireless enabled laptop device that among other orientations may be supported on the thighs of a sitting user. To represent this orientation, the device shall be positioned with its base against the flat phantom. Other orientations may be specified by the manufacturer in the user instructions. If the intended use is not specified, the device shall be tested directly against the flat phantom in all usable orientations. Report No.: RSZ190107001-SA The screen portion of the device shall be in an open position at a 90° angle as seen in Figure below (left side), or at an operating angle specified for intended use by the manufacturer in the operating instructions. Where a body supported device has an integral screen required for normal operation, then the screen-side will not need to be tested if it ordinarily remains 200 mm from the body. Where a screen mounted antenna is present, this position shall be repeated with the screen against the flat phantom as shown in Figure below (right side), if this is consistent with the intended use. Other devices that fall into this category include tablet type portable computers and credit card transaction authorisation terminals, point-of-sale and/or inventory terminals. Where these devices may be torso or limb-supported, the same principles for body-supported devices are applied. a) Portable computer with external antenna plug-in-radio-card (left side) or with internal antenna located in screen section (right side) #### **Test Distance for SAR Evaluation** For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm. SAR Evaluation Report 23 of 49 #### **SAR Evaluation Procedure** The evaluation was performed with the following procedure: Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. Report No.: RSZ190107001-SA - Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - Step
3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. SAR Evaluation Report 24 of 49 #### CONDUCTED OUTPUT POWER MEASUREMENT ### **Provision Applicable** The measured peak output power should be greater and within 5% than EMI measurement. #### **Test Procedure** The RF output of the transmitter was connected to the input of the EMI Test Receiver through Connector. Report No.: RSZ190107001-SA #### **GSM/LTE** ### **Radio Configuration** The power measurement was configured by the Wireless Communication Test Set. #### **GSM/GPRS/EGPRS** Function: Menu select > GSM Mobile Station > GSM 850/1900 Press Connection control to choose the different menus Press RESET > choose all the reset all settings Connection Press Signal Off to turn off the signal and change settings Network Support > GSM + GPRS or GSM + EGSM Main Service > Packet Data Service selection > Test Mode A – Auto Slot Config. off MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting - > Slot configuration > Uplink/Gamma - > 33 dBm for GPRS 850 - > 30 dBm for GPRS 1900 - > 27 dBm for EGPRS 850 - > 26 dBm for EGPRS 1900 BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel Frequency Offset > + 0 Hz Mode > BCCH and TCH BCCH Level > -85 dBm (May need to adjust if link is not stabe) BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel] Channel Type > Off P0 > 4 dB Slot Config > Unchanged (if already set under MS signal) TCH > choose desired test channel Hopping > Off Main Timeslot > 3 Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS) Bit Stream > 2E9-1 PSR Bit Stream AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input SAR Evaluation Report 25 of 49 Connection Press Signal on to turn on the signal and change settings The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1 Report No.: RSZ190107001-SA #### FDD-LTE For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1. Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3 | Modulation | Cha | nnel bandw | idth / Tra | ansmission | bandwidth (| N _{RB}) | MPR (dB) | |------------|-----|------------|------------|------------|-------------|-------------------|----------| | | 1.4 | 3.0 | 5 | 10 | 15 | 20 | | | | MHz | MHz | MHz | MHz | MHz | MHz | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | 16 QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | 16 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 2 | For UE Power Class 1 and 3 the specific requirements and identified sub clauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in sub clause 6.2.3. Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR) | Network
Signalling
value | Requirements
(subclause) | E-UTRA Band | Channel
bandwidth
(MHz) | Resources
Blocks (N _{RB}) | A-MPR (dB) | |--------------------------------|-------------------------------|--------------------------|-------------------------------|--|-----------------------------| | NS_01 | 6.6.2.1.1 | Table 5.5-1 | 1.4, 3, 5, 10,
15, 20 | Table 5.6-1 | N/A | | | | | 3 | >5 | ≤ 1 | | | | 2, 4,10, 23, 25, | 5 | >6 | ≤1 | | NS_03 | 6.6.2.2.1 | 2, 4, 10, 23, 23, 35, 36 | 10 | >6 | ≤ 1 | | | | 33, 30 | 15 | >8 | ≤ 1 | | | | | 20 | >10 | ≤ 1 | | NS_04 | 6.6.2.2.2 | 41 | 5 | >6 | ≤ 1 | | | | | 10, 15, 20 | | 6.2.4-4 | | NS_05 | 6.6.3.3.1 | 1 | 10,15,20 | ≥ 50 | ≤ 1 | | NS_06 | 6.6.2.2.3 | 12, 13, 14, 17 | 1.4, 3, 5, 10 | Table 5.6-1 | N/A | | NS_07 | 6.6.2.2.3
6.6.3.3.2 | 13 | 10 | Table | 6.2.4-2 | | NS_08 | 6.6.3.3.3 | 19 | 10, 15 | > 44 | ≤ 3 | | NS 09 | 6.6.3.3.4 | 21 | 10, 15 | > 40 | ≤ 1 | | | 0.0.3.3.4 | | | > 55 | ≤2 | | NS_10 | | 20 | 15, 20 | Table | 6.2.4-3 | | NS_11 | 6.6.2.2.1 | 23 | 1.4, 3, 5, 10,
15, 20 | | 6.2.4-5 | | NS_12 | 6.6.3.3.5 | 26 | 1.4, 3, 5 | Table | 6.2.4-6 | | NS_13 | 6.6.3.3.6 | 26 | 5 | | 6.2.4-7 | | NS_14 | 6.6.3.3.7 | 26 | 10, 15 | | 6.2.4-8 | | NS_15 | 6.6.3.3.8 | 26 | 1.4, 3, 5, 10,
15 | | 6.2.4-9
6.2.4-10 | | NS_16 | 6.6.3.3.9 | 27 | 3, 5, 10 | | Table 6.2.4-12,
6.2.4-13 | | NS_17 | 6.6.3.3.10 | 28 | 5, 10 | Table 5.6-1 | N/A | | NS_18 | 6.6.3.3.11 | 28 | 5 | ≥2 | ≤ 1 | | | | 20 | 10, 15, 20 | ≥ 1 | ≤ 4 | | NS_19 | 6.6.3.3.12 | 44 | 10, 15, 20 | Table | 6.2.4-14 | | NS_20 | 6.2.2
6.6.2.2.1
6.6.3.2 | 23 | 5, 10, 15, 20 | Table 6.2.4-15 | | | | | | | | | | NS_32 | - | - | - | - | - | SAR Evaluation Report 26 of 49 ## **Maximum Target Output Power** | | Max Target Po | ower(dBm) | | |-------------------|---------------|-----------|------| | M. J. D J | | Channel | | | Mode/Band | Low | Middle | High | | GSM 850 | 32.4 | 32.4 | 32.4 | | GPRS 1 TX Slot | 32.4 | 32.4 | 32.4 | | GPRS 2 TX Slot | 31.4 | 31.4 | 31.4 | | GPRS 3 TX Slot | 29.5 | 29.5 | 29.5 | | GPRS 4 TX Slot | 28.6 | 28.6 | 28.6 | | EGPRS 1 TX Slot | 28.0 | 28.0 | 28.0 | | EGPRS 2 TX Slot | 26.8 | 26.8 | 26.8 | | EGPRS 3 TX Slot | 25.7 | 25.7 | 25.7 | | EGPRS 4 TX Slot | 23.7 | 23.7 | 23.7 | | PCS 1900 | 29.1 | 29.1 | 29.1 | | GPRS 1 TX Slot | 28.8 | 28.8 | 28.8 | | GPRS 2 TX Slot | 27.8 | 27.8 | 27.8 | | GPRS 3 TX Slot | 26.2 | 26.2 | 26.2 | | GPRS 4 TX Slot | 25.2 | 25.2 | 25.2 | | EGPRS 1 TX Slot | 26.0 | 26.0 | 26.0 | | EGPRS 2 TX Slot | 24.8 | 24.8 | 24.8 | | EGPRS 3 TX Slot | 23.8 | 23.8 | 23.8 | | EGPRS 4 TX Slot | 22.6 | 22.6 | 22.6 | | LTE Band 5 | 23.1 | 23.1 | 23.1 | | LTE Band 41 | 22.8 | 22.8 | 22.8 | | WLAN | 9.5 | 9.5 | 9.5 | | Bluetooth BDR/EDR | 2.5 | 2.5 | 2.5 | | Bluetooth BLE | 2.5 | 2.5 | 2.5 | Report No.: RSZ190107001-SA SAR Evaluation Report 27 of 49 ## **Test Results:** #### **GSM:** | Band | Channel No. | Frequency
(MHz) | RF Output Power
(dBm) | |----------|-------------|--------------------|--------------------------| | | 128 | 824.2 | 32.38 | | GSM 850 | 190 | 836.6 | 32.33 | | | 251 | 848.8 | 31.86 | | | 512 | 1850.2 | 28.57 | | PCS 1900 | 661 | 1880 | 28.63 | | | 810 | 1909.8 | 29.02 | Report No.: RSZ190107001-SA ## **GPRS:** | Band | Channel | Frequency | | RF Output Po | ower (dBm) | | |----------|---------|-----------|--------|--------------|------------|---------| | Danu | No. | (MHz) | 1 slot | 2 slots | 3 slots | 4 slots | | | 128 | 824.2 | 31.91 | 31.10 | 29.41 | 28.10 | | GSM 850 | 190 | 836.6 | 32.38 | 31.25 | 29.16 | 28.50 | | | 251 | 848.8 | 31.25 | 31.35 | 29.18 | 28.19 | | | 512 | 1850.2 | 28.73 | 27.76 | 25.90 | 24.56 | | PCS 1900 | 661 | 1880 | 28.57 | 27.79 | 25.45 | 24.83 | | | 810 | 1909.8 | 28.11 | 27.33 | 26.15 | 25.05 | ## **EGPRS**: | Band | Channel | Frequency | | RF Output P | ower (dBm) | | |----------|---------|-----------|--------|-------------|------------|---------| | Danu | No. | (MHz) | 1 slot | 2 slots | 3 slots | 4 slots | | | 128 | 824.2 | 27.14 | 26.52 | 25.17 | 23.34 | | GSM 850 | 190 | 836.6 | 27.79 | 26.04 | 25.32 | 23.64 | | | 251 | 848.8 | 27.91 | 26.76 | 25.66 | 23.44 | | | 512 | 1850.2 | 25.68 | 24.61 | 22.99 | 22.22 | | PCS 1900 | 661 | 1880 | 25.99 | 24.05 | 23.18 | 22.56 | | | 810 | 1909.8 | 25.72 | 24.78 | 23.77 | 21.73 | For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal. | Number of Time slot | 1 | 2 | 3 | 4 | |--|-------|-------|----------|-------| | Duty Cycle | 1:8 | 1:4 | 1:2.66 | 1:2 | | Time based Ave. power compared to slotted Ave. power | -9 dB | -6 dB | -4.25 dB | -3 dB | | Crest Factor | 8 | 4 | 2.66 | 2 | SAR Evaluation Report 28 of 49 ### The time based average power for GPRS Report No.: RSZ190107001-SA | Dand | Channel | Frequency | Tim | e based avera | ge Power (dB | m) | |----------|---------|-----------|--------|---------------|--------------|---------| | Band | No. | (MHz) | 1 slot | 2 slot | 3 slots | 4 slots | | | 128 | 824.2 | 22.91 | 25.10 | 25.16 | 25.10 | | GSM 850 | 190 | 836.6 | 23.38 | 25.25 | 24.91 | 25.50 | | | 251 | 848.8 | 22.25 | 25.35 | 24.93 | 25.19 | | | 512 | 1850.2 | 19.73 | 21.76 | 21.65 | 21.56 | | PCS 1900 | 661 | 1880 | 19.57 | 21.79 | 21.20 | 21.83 | | | 810 | 1909.8 | 19.98 | 21.33 | 21.90 | 22.05 | #### The time based average power for EGPRS | Dand | Channel | Frequency | Tim | e based
avera | ge Power (dB | m) | |----------|---------|-----------|--------|---------------|--------------|---------| | Band | No. | (MHz) | 1 slot | 2 slot | 3 slots | 4 slots | | | 128 | 824.2 | 18.14 | 20.52 | 20.92 | 20.34 | | GSM 850 | 190 | 836.6 | 18.79 | 20.04 | 21.07 | 20.64 | | | 251 | 848.8 | 18.91 | 20.76 | 21.41 | 20.44 | | | 512 | 1850.2 | 16.68 | 18.61 | 18.74 | 19.22 | | PCS 1900 | 661 | 1880 | 16.99 | 18.05 | 18.93 | 19.56 | | | 810 | 1909.8 | 16.72 | 18.78 | 19.52 | 18.73 | #### Note: - 1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots. - 2. For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band). - 3. For GPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 3(850 MHz band) and 3(1900 MHz band). - 4. For EGPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 6(850 MHz band) and 5(1900 MHz band). SAR Evaluation Report 29 of 49 ## LTE Band 5: | | | | | | Ave | Tx Power (d) | Bm) | |-------------|------------------------|---|---------------------------------|---|--|--|---| | BW
(MHz) | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 824.7MHz | 836.5MHz | 848.3MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 22.07 | 22.26 | 22.09 | | | | RB Size=1, RB Offset=2 | 0 | 0 | 22.00 | 22.13 | 22.02 | | | | RB Size=1, RB Offset=5 | 0 | 0 | 22.15 | 22.33 | 22.08 | | | QPSK | RB Size=3, RB Offset=0 | 1 | 1 | 22.78 | 23.04 | 22.81 | | | | RB Size=3, RB Offset=1 | 1 | 1 | 22.71 | 22.99 | 22.70 | | | | RB Size=3, RB Offset=2 | 1 | 1 | 22.84 | 23.04 | 22.92 | | 1.4 | | RB Size=6, RB Offset=0 | 1 | 1 | 20.74 | 20.99 | 20.69 | | 1.4 | | RB Size=1, RB Offset=0 | 1 | 1 | 22.05 | 22.25 | 21.98 | | | | RB Size=1, RB Offset=2 | 1 | 1 | 22.06 | 22.18 | 21.92 | | | | RB Size=1, RB Offset=5 | 1 | 1 | 22.22 | 22.30 | 22.05 | | | 16QAM | RB Size=3, RB Offset=0 | 2 | 2 | 21.58 | 21.80 | 21.63 | | | | RB Size=3, RB Offset=1 | 2 | 2 | 21.46 | 21.68 | 21.59 | | | | RB Size=3, RB Offset=2 | 2 | 2 | 21.68 | 21.98 | 21.73 | | | | RB Size=6, RB Offset=0 | 2 | 2 | 21.23 | 21.53 | 21.26 | | | | | | | | | | | | | | | | Ave | Tx Power (d) | Bm) | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | BW
(MHz) | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
825.5MHz | Mid
Channel
836.5MHz | High
Channel
847.5MHz | | | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR 0 | MPR 0 | Low
Channel
825.5MHz
22.11 | Mid
Channel
836.5MHz
22.32 | High
Channel
847.5MHz
22.07 | | | Modulation | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 | 0
0 | 0
0 | Low
Channel
825.5MHz
22.11
21.90 | Mid
Channel
836.5MHz
22.32
22.14 | High
Channel
847.5MHz
22.07
22.05 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | 0
0
0 | 0
0
0 | Low
Channel
825.5MHz
22.11
21.90
22.10 | Mid Channel 836.5MHz 22.32 22.14 22.45 | High
Channel
847.5MHz
22.07
22.05
22.22 | | | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52 | Mid
Channel
836.5MHz
22.32
22.14
22.45
21.90
21.80 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 | 0
0
0
1
1
1 | 0
0
0
1
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 21.80 21.99 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35 | Mid
Channel
836.5MHz
22.32
22.14
22.45
21.90
21.80
21.99
21.62 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28 | | (MHz) | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35
22.01 | Mid
Channel
836.5MHz
22.32
22.14
22.45
21.90
21.80
21.99
21.62
22.27 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28
21.99 | | (MHz) | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=11, RB Offset=0 RB Size=11, RB Offset=0 RB Size=11, RB Offset=7 | MPR 0 0 1 1 1 1 1 1 1 | 0
0
0
1
1
1
1
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35
22.01
21.88 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 21.80 21.99 21.62 22.27 22.17 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28
21.99
21.92 | | (MHz) | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | MPR 0 0 1 1 1 1 1 1 1 1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35
22.01
21.88
22.17 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 21.80 21.99 21.62 22.27 22.17 22.36 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28
21.99
21.92
22.13 | | (MHz) | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35
22.01
21.88
22.17
21.64 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 21.80 21.99 21.62 22.27 22.17 22.36 21.99 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28
21.99
21.92
22.13
21.70 | | (MHz) | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 | MPR 0 0 1 1 1 1 1 1 2 2 | MPR 0 0 1 1 1 1 1 1 2 2 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35
22.01
21.88
22.17
21.64
21.52 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 21.80 21.99 21.62 22.27 22.17 22.36 21.99 21.84 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28
21.99
21.92
22.13
21.70
21.59 | | (MHz) | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
825.5MHz
22.11
21.90
22.10
21.70
21.52
21.73
21.35
22.01
21.88
22.17
21.64 | Mid Channel 836.5MHz 22.32 22.14 22.45 21.90 21.80 21.99 21.62 22.27 22.17 22.36 21.99 | High
Channel
847.5MHz
22.07
22.05
22.22
21.65
21.62
21.75
21.28
21.99
21.92
22.13
21.70 | Report No.: RSZ190107001-SA SAR Evaluation Report 30 of 49 | | | | | | Ave Tx Power (dBm) | | | |
-------------|------------------------|--|--|---|--|--|---|--| | BW
(MHz) | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Channel Chanr | | | | | | | | | 826.5MHz | 836.5MHz | 846.5MHz | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 22.11 | 22.39 | 22.18 | | | | QPSK | RB Size=1, RB Offset=12 | 0 | 0 | 22.07 | 22.31 | 22.08 | | | | | RB Size=1, RB Offset=24 | 0 | 0 | 22.28 | 22.39 | 22.27 | | | | | RB Size=12, RB Offset=0 | 1 | 1 | 21.64 | 21.97 | 21.61 | | | | | RB Size=12, RB Offset=6 | 1 | 1 | 21.60 | 21.87 | 21.54 | | | | | RB Size=12, RB Offset=11 | 1 | 1 | 21.77 | 21.99 | 21.66 | | | 5 | | RB Size=25, RB Offset=0 | 1 | 1 | 21.29 | 21.71 | 21.27 | | | 3 | | RB Size=1, RB Offset=0 | 1 | 1 | 22.27 | 22.37 | 22.24 | | | | | RB Size=1, RB Offset=12 | 1 | 1 | 22.17 | 22.32 | 22.10 | | | | | RB Size=1, RB Offset=24 | 1 | 1 | 22.38 | 22.41 | 22.34 | | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 21.59 | 21.94 | 21.27
22.24
22.10 | | | | | RB Size=12, RB Offset=6 | 2 | 2 | 21.56 | 21.82 | 21.53 | | | | | RB Size=12, RB Offset=11 | RB Offset=6 2 2 2 RB Offset=11 2 2 2 | 21.79 | 21.95 | 21.75 | | | | | | RB Size=25, RB Offset=0 | 2 | 2 | 21.29 | 21.61 | 21.30 | | | | | | | | | | | | | | | | | | Ave | Tx Power (d) | Bm) | | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | | BW
(MHz) | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
829MHz | Mid
Channel
836.5MHz | High
Channel
844MHz | | | | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR 0 | MPR 0 | Low
Channel
829MHz
22.16 | Mid
Channel
836.5MHz
22.38 | High
Channel
844MHz
22.18 | | | | Modulation | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0 | 0
0 | Low
Channel
829MHz
22.16
22.03 | Mid
Channel
836.5MHz
22.38
22.33 | High
Channel
844MHz
22.18
22.02 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 | 0
0
0 | 0
0
0 | Low
Channel
829MHz
22.16
22.03
22.24 | Mid
Channel
836.5MHz
22.38
22.33
22.53 | High
Channel
844MHz
22.18
22.02
22.28 | | | | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00 | High
Channel
844MHz
22.18
22.02
22.28
21.78 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81 | High Channel 846.5MHz 22.18 22.08 22.27 21.61 21.54 21.66 21.27 22.24 22.10 22.34 21.71 21.53 21.75 21.30 Bm) High Channel 844MHz 22.18 22.02 22.28 21.78 21.64 21.88 21.36 22.16 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 | 0
0
0
1
1
1 | 0
0
0
1
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88
21.36 | | | (MHz) | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26
22.14 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61
22.34 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88
21.36
22.16 | | | (MHz) | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0
0
1
1
1
1
1 | 0
0
0
1
1
1
1
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26
22.14
22.01 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61
22.34
22.19 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88
21.36
22.16
22.10 | | | (MHz) | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1
1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26
22.14
22.01
22.14 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61
22.34
22.19
22.34 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88
21.36
22.16
22.10
22.26 | | | (MHz) | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | MPR 0 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26
22.14
22.01
22.14
21.64 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61
22.34
22.19
22.34
21.97 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88
21.36
22.16
22.10
22.26
21.65 | | | (MHz) | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | MPR 0 0 1 1 1 1 1 1 2 2 | MPR 0 0 1 1 1 1 1 2 2 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26
22.14
22.01
22.14
21.64
21.49 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61
22.34
22.19
22.34
21.97
21.85 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.36
22.16
22.10
22.26
21.65
21.52 | | | (MHz) | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | MPR 0 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
829MHz
22.16
22.03
22.24
21.68
21.54
21.79
21.26
22.14
22.01
22.14
21.64 | Mid
Channel
836.5MHz
22.38
22.33
22.53
22.00
21.81
22.05
21.61
22.34
22.19
22.34
21.97 | High
Channel
844MHz
22.18
22.02
22.28
21.78
21.64
21.88
21.36
22.16
22.10
22.26
21.65 | | Report No.: RSZ190107001-SA SAR Evaluation Report 31 of 49 ## LTE Band 41: | | | | | | Ave Tx Power (dBm) | | | | |---------------|------------------------|---|--------------------------------------|---------------------------------
---|--|---|--| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | 2557.5MHz | 2602.5MHz | | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 22.29 | 22.22 | 22.08 | | | | | RB Size=1, RB Offset=12 | 0 | 0 | 21.32 | 21.31 | 21.26 | | | | | RB Size=1, RB Offset=24 | 0 | 0 | 21.40 | 21.35 | 21.23 | | | | QPSK | RB Size=12, RB Offset=0 | 1 | 1 | 22.53 | 22.51 | 22.40 | | | | | RB Size=12, RB Offset=6 | 1 | 1 | 22.41 | 22.34 | 22.24 | | | | | RB Size=12, RB Offset=11 | 1 | 1 | 22.13 | 22.19 | 22.01 | | | 5M | | RB Size=25, RB Offset=0 | 1 | 1 | 22.68 | 22.73 | 22.59 | | | SIVI | | RB Size=1, RB Offset=0 | 1 | 1 | 22.04 | 21.99 | 21.84 | | | | | RB Size=1, RB Offset=12 | 1 | 1 | 21.15 | 21.00 | 20.99 | | | | | RB Size=1, RB Offset=24 | 1 | 1 | 21.15 | 21.10 | 21.08 | | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 22.41 | 22.32 | 22.18 | | | | | RB Size=12, RB Offset=6 | 2 | 2 | 22.20 | 22.05 | 22.02 | | | | | RB Size=12, RB Offset=11 | 2 | 2 | 21.94 | 21.87 | 21.86 | | | | | RB Size=25, RB Offset=0 | 2 | 2 | 22.52 | 22.42 | 22.31 | | | | | | | | | _ | • | | | | | | | | | Tx Power (d) | . / | | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
2560MHz | Mid
Channel
2602.5MHz | High
Channel
2645MHz | | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR 0 | MPR 0 | Low
Channel
2560MHz
22.55 | Mid
Channel
2602.5MHz
22.43 | High
Channel
2645MHz
22.37 | | | BW | Modulation | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0 | 0
0 | Low
Channel
2560MHz
22.55
22.13 | Mid
Channel
2602.5MHz
22.43
22.13 | High
Channel
2645MHz
22.37
22.09 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 | 0
0
0 | 0
0
0 | Low
Channel
2560MHz
22.55
22.13
22.73 | Mid
Channel
2602.5MHz
22.43
22.13
22.71 | High
Channel
2645MHz
22.37
22.09
22.72 | | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38 | High
Channel
2645MHz
22.37
22.09
22.72
22.35 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76 | | | BW 10M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84
22.54 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76
22.42 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59
22.27 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84
22.54
22.16 | High Channel 2647.5MHz 22.08 21.26 21.23 22.40 22.24 22.01 22.59 21.84 20.99 21.08 22.18 22.02 21.86 22.31 cm) High Channel 2645MHz 22.37 22.09 22.72 22.35 22.27 21.76 22.42 22.08 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0
0
1
1
1
1
1 | MPR 0 0 1 1 1 1 1 1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59
22.27
21.93 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84
22.54
22.16
21.83 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76
22.42
22.08
21.83 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 | MPR 0 0 1 1 1 1 1 1 1 1 | MPR 0 0 1 1 1 1 1 1 1 1 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59
22.27
21.93
22.78 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84
22.54
22.16
21.83
22.77 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76
22.42
22.08
21.83
22.65 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59
22.27
21.93
22.78
22.25 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84
22.54
22.16
21.83
22.77
22.12 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76
22.42
22.08
21.83
22.65
22.05 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=25, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | MPR 0 0 1 1 1 1 1 1 2 2 | MPR 0 0 1 1 1 1 1 1 2 2 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59
22.27
21.93
22.78
22.25
22.12 | Mid Channel 2602.5MHz 22.43 22.13 22.71 22.38 22.37 21.84 22.54 22.16 21.83 22.77 22.12 22.06 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76
22.42
22.08
21.83
22.65
22.05
22.01 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
2560MHz
22.55
22.13
22.73
22.39
22.43
21.82
22.59
22.27
21.93
22.78
22.25 | Mid
Channel
2602.5MHz
22.43
22.13
22.71
22.38
22.37
21.84
22.54
22.16
21.83
22.77
22.12 | High
Channel
2645MHz
22.37
22.09
22.72
22.35
22.27
21.76
22.42
22.08
21.83
22.65
22.05 | | Report No.: RSZ190107001-SA SAR Evaluation Report 32 of 49 | | | | Target
MPR | | Ave Tx Power (dBm) | | | | |---------------|------------------------|---|---|---|--|--
---|--| | BW | Modulation | Resource Block Size&
Resource Block Offset | | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | 2562.5MHz | | | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 21.74 | | | | | | QPSK | RB Size=1, RB Offset=37 | 0 | 0 | 21.46 | | | | | | | RB Size=1, RB Offset=74 | 0 | 0 | 21.28 | | | | | | | RB Size=36, RB Offset=0 | 1 | 1 | 22.03 | | | | | | | RB Size=36, RB Offset=18 | 1 | 1 | 22.12 | 22.12 | | | | | | RB Size=36, RB Offset=37 | 1 | 1 | 21.60 | 21.58 | | | | 15M | | RB Size=75, RB Offset=0 | 1 | 1 | 22.14 | | | | | 13141 | | RB Size=1, RB Offset=0 | 1 | 1 | 21.56 | | | | | | | RB Size=1, RB Offset=37 | 1 | 1 | 21.26 | 21.21 | 21.08 | | | | | RB Size=1, RB Offset=74 | 1 | 1 | 21.15 | 21.02 | 21.04 | | | | 16QAM | RB Size=36, RB Offset=0 | 2 | 2 | 21.89 | 21.81 | 21.72 | | | | | RB Size=36, RB Offset=18 | 2 | 2 | 21.88 | 21.83 | 21.83 | | | | | RB Size=36, RB Offset=37 | 2 | 2 | 21.44 | 21.44 | 21.34 | | | | | RB Size=75, RB Offset=0 | 2 | 2 | 21.92 | 21.87 | 21.84 | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Tx Power (d) Mid Channel | Bm)
High
Channel | | | BW | Modulation | | | | Low | Mid | High | | | BW | Modulation | | | | Low
Channel | Mid
Channel | High
Channel | | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
2565MHz | Mid
Channel
2602.5MHz | High
Channel
2640MHz | | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR
0 | MPR 0 | Low
Channel
2565MHz
22.15 | Mid
Channel
2602.5MHz
22.12 | High
Channel
2640MHz
22.09 | | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0 | 0
0 | Low
Channel
2565MHz
22.15
22.12 | Mid
Channel
2602.5MHz
22.12
22.09 | High
Channel
2640MHz
22.09
21.97 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 | 0
0
0 | 0
0
0 | Low
Channel
2565MHz
22.15
22.12
22.38 | Mid
Channel
2602.5MHz
22.12
22.09
22.31 | High
Channel
2640MHz
22.09
21.97
22.22 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79 | High
Channel
2640MHz
22.09
21.97
22.22
21.71 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 | 0
0
0
1
1 | 0
0
0
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47 | High
Channel
2640MHz
22.09
21.97
22.22
21.71
21.36 | | | BW 20M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 | 0
0
0
1
1
1 | 0
0
0
1
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47
21.22 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47
21.24 | High
Channel
2640MHz
22.09
21.97
22.22
21.71
21.36
21.21 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47
21.22
21.31 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47
21.24
21.24 | Mid
Channel High
Channel 2602.5MHz 2642.5MHz 21.71 21.60 21.42 21.32 21.28 21.16 21.95 21.95 22.12 22.03 21.58 21.52 22.08 22.04 21.45 21.33 21.21 21.08 21.02 21.04 21.81 21.72 21.83 21.83 21.44 21.34 21.87 21.84 Ex Power (dBm) Channel 2602.5MHz 2640MHz 22.12 22.09 22.12 22.09 22.31 22.22 21.79 21.71 21.47 21.36 21.24 21.11 21.93 21.87 21.79 21.78 22.03 21.94 21.49 21.46 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47
21.22
21.31
21.97 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47
21.24
21.24
21.93
21.79 | High
Channel
2640MHz
22.09
21.97
22.22
21.71
21.36
21.21
21.11
21.87
21.78 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=50, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1 | 0
0
0
1
1
1
1
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47
21.22
21.31
21.97
21.83 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47
21.24
21.24
21.93
21.79
22.03 | High
Channel
2640MHz
22.09
21.97
22.22
21.71
21.36
21.21
21.11
21.87
21.78
21.94 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=50, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1
1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47
21.22
21.31
21.97
21.83
22.15 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47
21.24
21.24
21.93
21.79
22.03 | High
Channel
2640MHz
22.09
21.97
22.22
21.71
21.36
21.21
21.11
21.87
21.78
21.94 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=9 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 | 0
0
0
1
1
1
1
1
1
1
2 | Low
Channel
2565MHz
22.15
22.12
22.38
21.80
21.47
21.22
21.31
21.97
21.83
22.15
21.61 | Mid
Channel
2602.5MHz
22.12
22.09
22.31
21.79
21.47
21.24
21.24
21.93
21.79
22.03
21.49 | High
Channel
2640MHz
22.09
21.97
22.22
21.71
21.36
21.21
21.11
21.87
21.78
21.94
21.46 | | Report No.: RSZ190107001-SA #### Note: - 1. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR - for LTE Devices v02. 2. The CMW500 Wideband Radio Communication tester is used for LTE output power measurements and SAR testing. Closed loop power control is used to keep the radio transmitters the max output power during the test. SAR Evaluation Report 33 of 49 ## **WLAN 2.4G:** | Mode | Channel
frequency (MHz) | Data Rate | RF Output
Power(dBm) | |--------------|----------------------------|-----------|-------------------------| | | 2412 | | 9.02 | | 802.11b | 2442 | 1Mbps | 8.74 | | | 2472 | | 8.85 | | 802.11g | 2412 | | 9.12 | | | 2442 | 6Mbps | 9.31 | | | 2472 | | 8.68 | | | 2412 | | 8.87 | | 802.11n HT20 | 2442 | MCS0 | 8.80 | | | 2472 | | 8.96 | | | 2422 | | 8.44 | | 802.11n HT40 | 2442 | MCS0 | 8.72 | | | 2462 | | 8.36 | Report No.: RSZ190107001-SA #### **Bluetooth:** | Mode | Channel frequency
(MHz) | RF Output Power
(dBm) | |--------------------|----------------------------|--------------------------| | | 2402 | 0.45 | | DDD(CECV) | 2441 | 2.2 | | BDR(GFSK) | 2480 | 1.02 | | | 2432 | 2.33 | | | 2402 | -0.45 | | EDD(=/4 DODGV) | 2441 | 1.1 | | $EDR(\pi/4-DQPSK)$ | 2480 | -0.57 | | | 2444 | 1.39 | | | 2402 | -0.08 | | EDD(8 DDCV) | 2441 | 1.37 | | EDR(8-DPSK) | 2480 | 0.05 | | | 2435 | 1.65 | | | 2402 | 0.88 | | Bluetooth LE | 2440 | 2.14 | | | 2480 | 0.71 | SAR Evaluation Report 34 of 49 ## Standalone SAR test exclusion considerations Report No.: RSZ190107001-SA #### Antenna Distance To Edge | Antenna Distance To Edge(mm) | | | | | | | | | |------------------------------------|-----|-----|-----|-----|-----|--|--|--| | Antenna Back Left Right Top Bottom | | | | | | | | | | WWAN(GSM/LTE) | < 5 | 28 | 141 | < 5 | 151 | | | | | WLAN/BT Antenna | < 5 | 172 | 39 | < 5 | 151 | | | | #### Standalone SAR test exclusion considerations | Mode | Frequency (MHz) | P _{avg} (dBm) | P _{avg} (mW) | Distance (mm) | Calculated value | Threshold (1-g) | SAR Test
Exclusion |
-----------|-----------------|------------------------|-----------------------|---------------|------------------|-----------------|-----------------------| | WLAN | 2472 | 9.5 | 8.91 | 0 | 2.8 | 3 | YES | | Bluetooth | 2480 | 2.5 | 1.78 | 0 | 0.6 | 3 | YES | #### NOTE: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where 1. f(GHz) is the RF channel transmit frequency in GHz. SAR Evaluation Report 35 of 49 - 2. Power and distance are rounded to the nearest mW and mm before calculation. - 3. The result is rounded to one decimal place for comparison. - 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion. Report No.: RSZ190107001-SA #### **Standalone SAR estimation:** | Mode | Frequency (MHz) | Pavg (dBm) | Pavg
(mW) | Distance (mm) | Estimated 1-g
(W/kg) | |-----------|-----------------|------------|--------------|---------------|-------------------------| | WLAN Body | 2472 | 9.5 | 8.91 | 0 | 0.37 | | BT Body | 2480 | 2.5 | 1.78 | 0 | 0.07 | When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: [(max. power of channel, including tune-up tolerance , mW)/(min. test separation distance,mm)] $\cdot [\sqrt{f(GHz)/x}]$ W/kg for test separation distances ≤50 mm; where x = 7.5 for 1-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion. #### SAR test exclusion for the EUT edge considerations Result | Exclusion Result | | | | | | | | | |---------------------------------|------------|------------|------------|------------|------------|--|--|--| | Mode Back Left Right Top Bottom | | | | | | | | | | BT | Exclusion* | Exclusion* | Exclusion* | Exclusion* | Exclusion* | | | | | WLAN | Exclusion* | Exclusion* | Exclusion* | Exclusion* | Exclusion* | | | | | WWAN(GSM/LTE) | Required | Exclusion | Exclusion* | Required | Exclusion* | | | | #### Note: **Required:** The distance to Edge is less than 25mm, testing is required. **Exclusion*:** SAR test exclusion evaluation has been done above. **Exclusion:** The distance to Edge is more than 25 mm, testing is not required. SAR Evaluation Report 36 of 49 ### SAR MEASUREMENT RESULTS This page summarizes the results of the performed dosimetric evaluation. ### **SAR Test Data** ### **Environmental Conditions** | Temperature: | 21.3-22.6 ℃ | 21.8-23.4 ℃ | |--------------------|-------------|-------------| | Relative Humidity: | 53 % | 58 % | | ATM Pressure: | 101.6 kPa | 101.3 kPa | | Test Date: | 2019/01/18 | 2019/01/19 | Testing was performed by Huan Li and Gavin Guo. #### **GSM 850:** | EUT | Frequency | Test | Max.
Meas. | Max.
Rated | 1g SAR (W/kg) | | | | |----------------------|------------|------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) Mode | | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 824.2 | GSM | / | / | / | / | / | / | | Body Worn Back (0mm) | 836.6 | GSM | 32.33 | 32.4 | 1.016 | 0.582 | 0.59 | 1# | | (Ollini) | 848.8 | GSM | / | / | / | / | / | / | | | 824.2 | GPRS | / | / | / | / | / | / | | Body Back (0mm) | 836.6 | GPRS | 28.50 | 28.6 | 1.023 | 0.723 | 0.74 | 2# | | (0) | 848.8 | GPRS | / | / | / | / | / | / | | | 824.2 | GPRS | / | / | / | / | / | / | | Body Top
(0mm) | 836.6 | GPRS | 28.50 | 28.6 | 1.023 | 0.581 | 0.59 | 3# | | (*) | 848.8 | GPRS | / | / | / | / | / | / | Report No.: RSZ190107001-SA ## Note: - 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same GSM antenna while testing SAR. - 3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 4. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case. SAR Evaluation Report 37 of 49 ### **GSM 1900:** | EUT | Frequency | Test | Max.
Meas. | Max.
Rated | 1g SAR (W/kg) | | | | |----------------------|-----------|------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1850.2 | GSM | / | / | / | / | / | / | | Body Worn Back (0mm) | 1880 | GSM | 28.63 | 29.1 | 1.114 | 0.468 | 0.52 | 4# | | (omm) | 1909.8 | GSM | / | / | / | / | / | / | | | 1850.2 | GPRS | / | / | / | / | / | / | | Body Back (0mm) | 1880 | GPRS | 24.83 | 25.2 | 1.089 | 0.562 | 0.61 | 5# | | (viiiii) | 1909.8 | GPRS | / | / | / | / | / | / | | | 1850.2 | GPRS | / | / | / | / | / | / | | Body Top
(0mm) | 1880 | GPRS | 24.83 | 25.2 | 1.089 | 0.183 | 0.20 | 6# | | () | 1909.8 | GPRS | / | / | / | / | / | / | Report No.: RSZ190107001-SA #### Note: - 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same GSM antenna while testing SAR. - 3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 4. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case. SAR Evaluation Report 38 of 49 ## LTE Band 5: | EUT | Frequency Bandwidt | | Test | Max.
Meas. | Max.
Rated | 1g SAR (W/kg) | | | | |--------------------|--------------------|-------|-------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | Body Back
(0mm) | 829 | 10 | 1RB | / | / | / | / | / | / | | | 836.5 | 10 | 1RB | 22.53 | 23.10 | 1.140 | 0.519 | 0.59 | 7# | | | 844 | 10 | 1RB | / | / | / | / | / | / | | | 836.5 | 10 | 50%RB | 22.05 | 23.10 | 1.274 | 0.461 | 0.59 | 8# | | | 829 | 10 | 1RB | / | / | / | / | / | / | | Body Top | 836.5 | 10 | 1RB | 22.53 | 23.10 | 1.140 | 0.346 | 0.39 | 9# | | (0mm) | 844 | 10 | 1RB | / | / | / | / | / | / | | | 836.5 | 10 | 50%RB | 22.05 | 23.10 | 1.274 | 0.376 | 0.48 | 10# | Report No.: RSZ190107001-SA ## LTE Band 41: | EUT | Frequency Bandwidth | | Test | Max.
Meas. | Max.
Rated | 1g SAR (W/kg) | | | | |--------------------|---------------------|----|-------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | | Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | Body Back
(0mm) | 2565 | 20 | 1RB | / | / | / | / | / | / | | | 2602.5 | 20 | 1RB | 22.31 | 22.8 | 1.119 | 0.701 | 0.78 | 11# | | | 2640 | 20 | 1RB | / | / | / | / | / | / | | | 2602.5 | 20 | 50%RB | 21.79 | 22.8 | 1.262 | 0.632 | 0.80 | 12# | | | 2565 | 20 | 1RB | / | / | / | / | / | / | | Body Top | 2602.5 | 20 | 1RB | 22.31 | 22.8 | 1.119 | 0.248 | 0.28 | 13# | | (0mm) | 2640 | 20 | 1RB | / | / | / | / | / | / | | | 2602.5 | 20 | 50%RB | 21.79 | 22.8 | 1.262 | 0.202 | 0.25 | 14# | SAR Evaluation Report 39 of 49 #### Note: 1. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02. Report No.: RSZ190107001-SA - 2. KDB941225D05- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel. - 3. When the 1-g SAR is ≤ 0.8 W/kg, testing for other channels are optional. - 4. The procedures required for 1 RB allocation are applied to measure the SAR for QPSK with 50% RB allocation. - 5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. - 6. KDB941225D05-For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional. - 7. KDB941225D05- other channel bandwidths SAR test is required when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. - 8. KDB941225D05-SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR
for the QPSK configuration is > 1.45 W/kg - 9. KDB 648474 D04-When the peak SAR located in regions that probe is unable to access, a flat phantom is used for SAR measurement. SAR Evaluation Report 40 of 49 # **SAR Measurement Variability** In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results Report No.: RSZ190107001-SA - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. ### The Highest Measured SAR Configuration in Each Frequency Band #### Head | SAR probe | Frequency | Freq.(MHz) | EUT Docition | Meas. SA | Largest to
Smallest
SAR Ratio | | |-------------------|-----------|------------|--------------|----------|-------------------------------------|---| | calibration point | | | EUT Position | Original | | | | / | / | / | / | / | / | / | #### **Body** | SAR probe | Frequency | Freq.(MHz) | EUT Position | Meas. SA | AR (W/kg) | Largest to
Smallest | | |-------------------|-----------------|------------|--------------|----------|-----------|------------------------|--| | calibration point | Band Freq.(MHZ) | | EO1 Fosition | Original | Repeated | SAR Ratio | | | / | / | / | / | / | / | / | | #### Note: - 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20. - 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required. - 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.. SAR Evaluation Report 41 of 49 # SAR SIMULTANEOUS TRANSMISSION DESCRIPTION ## **Simultaneous Transmission:** | Description of Simultaneous Transmit Capabilities | | | | | | | |---|---------------|----------|--|--|--|--| | Transmitter Combination | Simultaneous? | Hotspot? | | | | | | WWAN(GSM /LTE) + Bluetooth | √ | × | | | | | | WWAN(GSM /LTE) + WLAN | √ | V | | | | | Report No.: RSZ190107001-SA # Simultaneous and Hotspot SAR test exclusion considerations: | Mode(SAR1+SAR2) | Position | Reported S | Reported SAR(W/kg) | | | | |---------------------------------|----------------|------------|--------------------|---------|--|--| | 1/10 (%11111 · %1111 <u>2</u>) | 2 00.000 | SAR1 | SAR2 | 1.6W/kg | | | | | Body Worn Back | 0.59 | 0.07 | 0.66 | | | | GSM 850+Bluetooth | Body Back | 0.74 | 0.07 | 0.81 | | | | | Body Top | 0.59 | 0.07 | 0.66 | | | | | Body Worn Back | 0.52 | 0.07 | 0.59 | | | | PCS1900 +Bluetooth | Body Back | 0.61 | 0.07 | 0.68 | | | | | Body Top | 0.20 | 0.07 | 0.27 | | | | LTE Band 5+Bluetooth | Body Back | 0.59 | 0.07 | 0.66 | | | | LTE Band 5+Bluetooth | Body Top | 0.48 | 0.07 | 0.55 | | | | LTE Band 41+Bluetooth | Body Back | 0.80 | 0.07 | 0.87 | | | | LIE Dang 41+Bruetooth | Body Top | 0.28 | 0.07 | 0.35 | | | SAR Evaluation Report 42 of 49 | Mode(SAR1+SAR2) | Position | Reported S | SAR(W/kg) | ΣSAR < 1.6W/kg | |-------------------|----------------|------------|-----------|----------------| | | | SAR1 | SAR2 | 1.0 W/Kg | | GSM 850+ WLAN | Body Worn Back | 0.59 | 0.37 | 0.96 | | GPRS 850 + WLAN | Body Back | 0.74 | 0.37 | 1.11 | | (Hotspot) | Body Top | 0.59 | 0.37 | 0.96 | | PCS1900 + WLAN | Body Worn Back | 0.52 | 0.37 | 0.89 | | GPRS 1900 + WLAN | Body Back | 0.61 | 0.37 | 0.98 | | (Hotspot) | Body Top | 0.20 | 0.37 | 0.57 | | LTE Band 5+ WLAN | Body Back | 0.59 | 0.37 | 0.96 | | (Hotspot) | Body Top | 0.48 | 0.37 | 0.85 | | LTE Band 41+ WLAN | Body Back | 0.80 | 0.37 | 1.17 | | (Hotspot) | Body Top | 0.28 | 0.37 | 0.65 | Report No.: RSZ190107001-SA #### Note: - 1. Hotspot mode SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge; for the data modes, wireless technologies and frequency bands supporting hotspot mode. - 2. Hotspot Mode is not feasible during voice calls. ## **Conclusion:** Sum of SAR: Σ SAR \leq 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is **not** required. SAR Evaluation Report 43 of 49 | Bay Area Compliance Laboratories Corp. (Shenzhen) | Report No.: RSZ190107001-SA | |---|-----------------------------| | SAR Plots | | | Please Refer to the Attachment. | SAR Evaluation Report 44 of 49 # APPENDIX A MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test Report No.: RSZ190107001-SA | Source of uncertainty | Tolerance/
uncertainty
± % | Probability
distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | | |--|----------------------------------|-----------------------------|------------|-------------|--------------|---------------------------------------|--|--|--| | Measurement system | | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | RF ambient conditions—reflections | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | | | Probe positioner mech. Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | | | Test sample | related | _ | | | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | | | Device holder uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | | | Phantom and | l set-up | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | | | | Liquid conductivity target) | 5.0 | R | √3 | 0.64 | 0.43 | 1.8 | 1.2 | | | | Liquid conductivity meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | | Liquid permittivity target) | 5.0 | R | √3 | 0.6 | 0.49 | 1.7 | 1.4 | | | | Liquid permittivity meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.0 | | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.3 | 23.9 | | | SAR Evaluation Report 45 of 49 # Measurement uncertainty evaluation for IEC62209-2 SAR test Report No.: RSZ190107001-SA | Source of uncertainty | Tolerance/
uncertainty
± % | Probability
distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | |--|----------------------------------|-----------------------------|------------|-------------|--------------|---------------------------------------|--| | Measurement system | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | Modulation Response | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Probe positioner mech. Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | Probe positioning with respect to phantom shell | 6.7 | R | $\sqrt{3}$ | 1 | 1 | 3.9 | 3.9 | | Post-processing | 2.0 | R | √3
| 1 | 1 | 1.2 | 1.2 | | | | Test sample | related | ı | 1 | • | | | Device holder Uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | Power scaling | 4.5 | R | √3 | 1 | 1 | 2.6 | 2.6 | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | Phantom and set-up | | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | Algorithm for correcting SAR for deviations in permittivity and conductivity | 1.9 | N | 1 | 1 | 0.84 | 1.1 | 0.9 | | Liquid conductivity (meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | Liquid permittivity (meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | Temp. unc Conductivity | 1.7 | R | √3 | 0.78 | 0.71 | 0.8 | 0.7 | | Temp. unc Permittivity | 0.3 | R | √3 | 0.23 | 0.26 | 0.0 | 0.0 | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.1 | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.5 | 24.2 | SAR Evaluation Report 46 of 49 SAR Evaluation Report 47 of 49 SAR Evaluation Report 48 of 49 # APPENDIX D DIPOLE CALIBRATION CERTIFICATES Please Refer to the Attachment. ***** END OF REPORT ***** Report No.: RSZ190107001-SA SAR Evaluation Report 49 of 49