

FCC Part 15.247

TEST REPORT

For

Iconnect

No.9, Aly. 58, Ln. 112, Ruiguang Rd., Neihu Dist., Taipei City, Taiwan.

FCC ID: 2AB8795312

Report Type: Original Report	Product Name: Outdoor AP/CPE		
Report Producer :	Coco Li	n	
Report Number :	<u>RXZ220</u>	419002RF01	
Report Date :	2022-06-	.15	
Reviewed By:	Andy Sh	ih Non2-1. Shih	
Prepared By:	Bay Area (Compliance Laboratories Corp.	
	(New Taip	ei Laboratory)	
,	70, Lane 10	69, Sec. 2, Datong Road, Xizhi Dist.,	
	New Taipe	i City 22183, Taiwan, R.O.C.	
,	Tel: +886 (2) 2647 6898		
	Fax: +886 (2) 2647 6895		
	www.bacl.o	com.tw	

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ220419002	RXZ220419002RF01	2022-06-15	Original Report	Coco Lin

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 2 of 68

TABLE OF CONTENTS

1	Ger	neral Information	.5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Product Description for Equipment under Test (EUT) Objective Related Submittal(s)/Grant(s) Test Methodology Statement Measurement Uncertainty Environmental Conditions. Test Facility	. 5 . 6 . 6 . 6 . 7 . 7 . 7
2	Sys	tem Test Configuration	. 8
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Description of Test Configuration Equipment Modifications EUT Exercise Software Test Mode Support Equipment List and Details External Cable List and Details Block Diagram of Test Setup Duty Cycle	. 8 . 8 . 9 . 9 . 9 . 9 . 9 . 11
3	Sun	nmary of Test Results	14
4	Tes	t Equipment List and Details	15
5	FC	C §15.247(i), § 1.1307(b)(3)(i) – RF Exposure	17
6	5.1 5.2 FC	Applicable Standard RF Exposure Evaluation Result C §15.203 – Antenna Requirements	17 18 19
7	6.1 6.2 FC	Applicable Standard Antenna List and Details C §15.207(a) – AC Line Conducted Emissions	19 19 20
	7.1 7.2 7.3 7.4 7.5 7.6	Applicable Standard EUT Setup EMI Test Receiver Setup Test Procedure Corrected Factor & Margin Calculation Test Results	20 20 21 21 21 21 22
8	FC	C §15.209, §15.205 , §15.247(d) – Spurious Emissions	24
	8.1 8.2 8.3 8.4 8.5 8.6	Applicable Standard EUT Setup EMI Test Receiver & Spectrum Analyzer Setup Test Procedure Corrected Factor & Margin Calculation Test Results	24 25 26 26 26 26 27
9	FC	C §15.247(a)(2) – 6 dB Emission Bandwidth	45
	9.1 9.2 9.3	Applicable Standard Test Procedure Test Results	45 45 46

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 3 of 68

10 FC	C §15.247(b)(3) – Maximum Peak Output Power	53
10.1	Applicable Standard	53
10.2	Test Procedure	
10.3	Test Results	
11 FC	C§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge	55
11.1	Applicable Standard	55
11.2	Test Procedure	
11.3	Test Results	
12 FC	C §15.247(e) – Power Spectral Density	61
12.1	Applicable Standard	61
12.2	Test Procedure	61
12.3	Test Results	

1 General Information

1.1 Product Description for Equipment under Test (EUT)

	ALFA NETWORK Inc		
Manufacturer	4F1, NO. 106, Rueiguang Rd., Neihu District,		
	Taipei City, Taiwan, R.O.C.		
Brand(Trade) Name	ALFA		
Product (Equipment)	Outdoor AP/CPE		
Main Model Name	Tube-2HQP		
	Tube-2HQ, Tube-2XXXXX, Tube-5XXXXX, Tube-25XXXX,		
Series Model Name	Tube-52XXXX, Tube-XXXXXXX, X:Any alphanumeric character		
	or blank		
	The major electrical and mechanical constructions of series models		
Madal Disarananay	are identical to the basic model, except market segmentation. The		
Model Discrepancy	model, Tube-2HQP is the testing sample, and the final test data are		
	shown on this test report.		
Frequency Range	IEEE 802.11b/g / IEEE 802.11n HT20 Mode: 2412 ~ 2462 MHz		
Trequency Range	IEEE 802.11n HT40 Mode: 2422 ~ 2452 MHz		
	IEEE 802.11b Mode: 24.60 dBm		
Conducted Peak Output Power	IEEE 802.11g Mode: 25.37 dBm		
Conducted I cak Output I ower	IEEE 802.11n HT20 Mode: 24.52 dBm		
	IEEE 802.11n HT40 Mode: 19.84 dBm		
	IEEE 802.11b Mode: DSSS		
Modulation Technique	IEEE 802.11g Mode: OFDM		
Wodulation reeninque	IEEE 802.11n HT20 Mode: OFDM		
	IEEE 802.11n HT40 Mode: OFDM		
	\square AC \square Adapter		
	☐ By AC Power Cord		
Power Operation	\square DC		
(Voltage Range)	Battery		
	DC Power Supply		
	External DC Adapter		
	Host System		
Received Date	Apr. 19, 2022		
Date of Test	Apr. 21, 2022 ~ Apr. 28, 2022		

*All measurement and test data in this report was gathered from production sample serial number: RXZ220419002-01 (Assigned by BACL, New Taipei Laboratory).

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 5 of 68

1.2 Objective

This report is prepared on behalf of *Iconnect* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

1.3 Related Submittal(s)/Grant(s)

N/A

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices KDB 558074 D01 15.247 Meas Guidance v05r02

1.5 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

1.6 Measurement Uncertainty

Parameter		Uncertainty
AC Mains		+/- 2.36 dB
RF output power, conducte	d	+/- 0.93 dB
Power Spectral Density, co	onducted	+/- 0.93 dB
Occupied Bandwidth		+/- 0.35 dB
Unwanted Emissions, conducted		+/- 1.69 dB
	30 MHz~1GHz	+/- 5.22 dB
Emissions, radiated	1 GHz~18 GHz	+/- 6.12 dB
	18 GHz~40 GHz	+/- 4.99 dB
Temperature		+/- 1.27 °C
Humidity		+/- 3 %

1.7 Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2022/4/28	25	47	1010	Aaron Pan
Radiation Spurious Emissions	2022/4/21-2022/4/25	21.3-24.2	61-77	1010	Andy Cheng
Conducted Spurious Emissions	2022/4/25	24.2	52	1010	Jim Chen
6 dB Emission Bandwidth	2022/4/25	24.2	52	1010	Jim Chen
Maximum Output Power	2022/4/25	24.2	52	1010	Jim Chen
100 kHz Bandwidth of Frequency Band Edge	2022/4/25	24.2	52	1010	Jim Chen
Power Spectral Density	2022/4/25	24.2	52	1010	Jim Chen

1.8 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

2 System Test Configuration

2.1 Description of Test Configuration

For WIFI mode, there are totally 11 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

For 802.11 b/g/n20 Modes were tested with channel 1, 6 and 11.

For 802.11n40 Mode were tested with channel 3, 6 and 9.

The system was configured for testing in engineering mode, which was provided by manufacturer.

2.2 Equipment Modifications

No modification was made to the EUT.

2.3 EUT Exercise Software

The test software was used "art2 ver 4 9 815"

Test Frequency		Low	Middle	High
Power Level Setting	802.11b Mode	19	20	20
	802.11g Mode	17	16.5	16
	802.11n HT20 Mode	16.5	16	16
	802.11n HT40 Mode	13	13	12

The EUT was configured for testing in an engineering mode which was provided by the manufacturer. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

802.11b: 1Mbps 802.11g: 6Mbps 802.11n HT20: MCS0 802.11n HT40: MCS0 Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

2.4 Test Mode

Full System (model: Tube-2HQP) for all test item.

2.5 Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
POE Adapter	ALFA	PSE-1000GU	2012-0000690

2.6 External Cable List and Details

Cable Description	Length (m)	From	То
Power Cable	1.5	POE Adapter	AC Source
RJ-45 Cable	1	EUT	POE Adapter

2.7 Block Diagram of Test Setup

See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:

Below 1GHz:

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Above 1GHz:

Conduction:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 10 of 68

2.8 Duty Cycle

The duty cycle as below:

Radio Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)
802.11b	12.22	12.26	100
802.11g	2.0	2.08	96
802.11n20	1.87	1.95	96
802.11n40	0.92	0.96	96

Please refer to the following plots.

B Mode

Date: 21.APR.2022 13:47:01

Ref Le	rum vel 4	0.00 dBr	m Offset 10.50 dB	RBW 10 MHz			
Att		45 d	18 👄 SWT 10 ms	VBW 10 MHz			
SGL							
1PK C	rw		1 1		00[1]		1 05 4
					02[1]		-80.00 u
30 dBm		-M1			M1[1]		21.82 dBr
Hyperperiods	hereded	allowly a	homenumperinderhalt	1 merchandelson many	wanter and and appenditions	subferminespoken production	Wenter as a state of the
20 dBm							
10 dBm							
0 dBm-	-						
-10 dBn	1-1-						
00 40-		4			Ψ	U	
-20 aBn							
-30 dBn	-						
-40 dBn	n-+-						
-50 dBn	1						
CF 2.4	12 GH	z		1001 pt	s		1.0 ms/
larker							
Type	Ref	Trc	X-value	Y-value	Function	Function R	esult
M1		1	1.73 ms	21.82 dBm			
D1	M1	1	2.0 ms	0.40 dB			
D2	M1	1	-80.0 µs	1.05 dB			

G Mode

Date: 21.APR.2022 13:38:20

N20 Mode

Date: 21.APR.2022 13:40:50

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 12 of 68

Ref Le Att SGL	vel 4	0.00 dBr 45 d	m Offset 10.50 dB B SWT 3 ms	 RBW 10 MHz VBW 10 MHz 			
1Pk Cl	lrw			NG 84			
30 dBm					D2[1]		0.95 df -42.00 µ 9.20 dBn
20 dBm	-						860.00 μ
elel-denir	worker we	when when	and cinemate Bart Statistic in	ala and and a set	uniter a support	ware weber that which a strate of the	when the stand
0 dBm-			-				
-10 dBn	n						
-20 dBn	n		- IN		41		N
-30 dBn	n					_	
-40 dBn	n						
-50 dBn	n						
CF 2.4	12 GH	z		1001 pt	s		<u></u> 300.0 µs/
larker							
Туре	Ref	Trc	X-value	Y-value	Function	Function	Result
M1	M1	1	860.0 µs	9.20 dBm 1 94 dB			
D2	M1	1	-42,0 us	0.95 dB			

N40 Mode

Date: 21.APR.2022 13:42:23

3 Summary of Test Results

FCC Rules	Description of Test	Results
§15.247(i), §1.1307(b)(3)(i)	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

4 Test Equipment List and Details

Description Manufacturer		Model	Serial Number	Calibration Date	Calibration Due Date
	AC	Line Conduction Roo	m (CON-A)	Dute	Due Dute
LISN	Rohde & Schwarz	ENV216	101612	2022/1/14	2023/1/13
EMI Test Receiver Rohde & Schwarz		ESW8	100947	2021/7/23	2022/7/22
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2021/7/29	2022/7/28
RF Cable	EMEC	EM-CB5D	1	2021/6/11	2022/6/10
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
		Radiated Room (96	66-A)	•	•
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/15542 _01	2022/2/14	2023/2/13
Horn Antenna	EMCO	SAS-571	1983	2021/5/6	2022/5/5
Horn Antenna	Horn Antenna ETS-Lindgren		62638	2021/8/11	2022/8/10
Preamplifier Sonoma		310N	130602	2021/6/8	2022/6/7
Preamplifier	Preamplifier A.H. system Inc.		466	2021/11/4	2022/11/3
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2021/12/27	2022/12/26
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2022/1/13	2023/1/12
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2021/11/9	2022/11/8
Micro flex Cable	Micro flex Cable UTIFLEX		225757-001	2022/1/24	2023/1/23
Coaxial Cable	COMMATE	PEWC	8Dr	2021/12/24	2022/12/23
Coaxial Cable UTIFLEX		UFB311A-Q-1440- 300300	220490-006	2022/1/24	2023/1/23
Coaxial Cable	Coaxial Cable JUNFLON		AUG-07-15- 044	2021/12/24	2022/12/23
Cable	EMC	EMC105-SM-SM- 10000	201003	2022/1/24	2023/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2022/1/24	2023/1/23

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 15 of 68

|--|

Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2022/1/18	2023/1/17
Software	Farad	EZ_EMC	BACL-03A1	N.C.R	N.C.R
		Conducted Roo	m		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2022/2/18	2023/2/17
Power Sensor	KEYSIGHT	U2021XA	MY54080018	2022/1/24	2023/1/23
Cable	UTIFLEX	UFA210A	9435	2021/10/5	2022/10/4
Attenuator	MINI-CIRCUITS	BW-S10W5+	1419	2022/2/11	2023/2/10

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements

5 FCC §15.247(i), § 1.1307(b)(3)(i) – RF Exposure

5.1 **Applicable Standard**

According to subpart 15.247(i) and subpart \$1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). *Pth* is given by:

5.2 **RF Exposure Evaluation Result**

Project info

Band	Freq	Tunp-up Power	Ant Gain	Distances	Duty	Tunp-up Power	ERP	ERP
	(MHz)	(dBm)	(dBi)	(mm)	(%)	(mW)	(dBm)	(mW)
WIFI 2.4G	2462	25.5	6	200	100%	354.81	29.35	860.99

Option A The available maximum time-averaged power is no more than 1 mW

Dand	Freq	Result
Dallu	(MHz)	Option A
WIFI 2.4G	2462	not exempt

Option B

The available maximum time-averaged power or effective radiated power (ERP), whichever is greater.

This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive).

Band	Freq (MHz)	Pth (mW)	x	ERP 20cm (mW)	Ratio	Result Option B
WIFI 2.4G	2462	3060.00	1.903	3060	0.28	exempt

Result: The device meets the exemption requirement.

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi.

6.2 Antenna List and Details

Manufacturer	Manufacturer Model		Antenna Gain	
ALFA	AOA-2405TF	Omni Antenna	6 dBi	

Result: Compliance

7 FCC §15.207(a) – AC Line Conducted Emissions

7.1 **Applicable Standard**

According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56 $^{\rm Note}$	56 to 46 ^{Note}		
0.5-5	56	46		
5-30	60	50		

Note: Decreases with the logarithm of the frequency.

7.2 **EUT Setup**

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 20 of 68 (New Taipei Laboratory)

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

7.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

7.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

7.5 Corrected Factor & Margin Calculation

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220419002RF01

7.6 Test Results

Test Mode: Transmitting

(Worst case is 802.11g mode, Low Channel)

Main: AC120 V, 60 Hz, Line

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.507	26.70	19.52	46.22	56.00	-9.78	QP
2	0.507	14.29	19.52	33.81	46.00	-12.19	Average
3	0.516	26.55	19.52	46.07	56.00	-9.93	QP
4	0.516	14.13	19.52	33.65	46.00	-12.35	Average
5	2.155	16.53	19.58	36.11	56.00	-19.89	QP
6	2.155	4.48	19.58	24.06	46.00	-21.94	Average
7	3.224	19.11	19.61	38.72	56.00	-17.28	QP
8	3.224	4.77	19.61	24.38	46.00	-21.62	Average
9	5.058	19.19	19.66	38.85	60.00	-21.15	QP
10	5.058	5.43	19.66	25.09	50.00	-24.91	Average
11	19.950	24.16	19.82	43.98	60.00	-16.02	QP
12	19.950	11.63	19.82	31.45	50.00	-18.55	Average

Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Main: AC120 V, 60 Hz, Neutral

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.489	22.83	19.52	42.35	56.19	-13.84	QP
2	0.489	10.02	19.52	29.54	46.19	-16.65	Average
3	0.513	26.95	19.52	46.47	56.00	-9.53	QP
4	0.513	14.46	19.52	33.98	46.00	-12.02	Average
5	2.650	18.14	19.59	37.73	56.00	-18.27	QP
6	2.650	4.95	19.59	24.54	46.00	-21.46	Average
7	3.276	18.38	19.61	37.99	56.00	-18.01	QP
8	3.276	3.32	19.61	22.93	46.00	-23.07	Average
9	5.139	19.05	19.67	38.72	60.00	-21.28	QP
10	5.139	5.21	19.67	24.88	50.00	-25.12	Average
11	19.740	22.80	19.89	42.69	60.00	-17.31	QP
12	19.740	10.14	19.89	30.03	50.00	-19.97	Average

Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 23 of 68

8 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4.5-5.15
0.495 - 0.505	16.69475 - 16.69525	960 - 1240	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 – 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 – 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 - 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 24 of 68

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220419002RF01

intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c).

8.2 EUT Setup

Below 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

8.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	/	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Note: T is minimum transmission duration

8.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

8.5 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Result - Limit

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220419002RF01

8.6 Test Results

Test Mode: Transmitting

(Pre-scan with three orthogonal axis, and worse case as Y axis.)

Horizontal (worst case is 802.11g mode, Low channel) 30MHz-1GHz:

18GHz-26.5GHz:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 27 of 68

Vertical (worst case is 802.11g mode, Low channel) 30MHz-1GHz:

1GHz-18GHz:

18GHz-26.5GHz:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 28 of 68

Below 1GHz

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
32.9100	35.59	-4.71	30.88	40.00	-9.12	100	1	peak
40.6700	39.82	-10.12	29.70	40.00	-10.30	100	323	peak
50.3700	43.38	-14.96	28.42	40.00	-11.58	100	150	peak
64.9200	46.99	-14.95	32.04	40.00	-7.96	100	359	peak
87.2300	46.43	-15.17	31.26	40.00	-8.74	100	360	peak
122.1500	35.00	-8.21	26.79	43.50	-16.71	100	75	peak

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
43.5800	43.70	-12.00	31.70	40.00	-8.30	100	334	peak
51.3400	47.64	-15.20	32.44	40.00	-7.56	100	338	peak
60.0700	45.78	-15.34	30.44	40.00	-9.56	100	331	peak
65.8900	44.92	-15.04	29.88	40.00	-10.12	100	324	peak
76.5600	46.49	-14.78	31.71	40.00	-8.29	100	357	peak
86.2600	47.65	-15.30	32.35	40.00	-7.65	100	208	peak

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Above 1GHz

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark				
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)					
	B Mode, Low channel											
2369.004	71.16	-9.92	61.24	74.00	-12.76	162	270	peak				
2369.004	57.60	-9.92	47.68	54.00	-6.32	162	270	AVG				
4824.000	58.75	-2.74	56.01	74.00	-17.99	190	56	peak				
4824.000	51.65	-2.74	48.91	54.00	-5.09	190	56	AVG				
7236.000	53.82	2.98	56.80	74.00	-17.20	149	96	peak				
7236.000	40.80	2.98	43.78	54.00	-10.22	149	96	AVG				
			B Mode, Mi	iddle channel								
4874.000	59.45	-2.70	56.75	74.00	-17.25	151	82	peak				
4874.000	52.14	-2.70	49.44	54.00	-4.56	151	82	AVG				
7311.000	54.07	3.16	57.23	74.00	-16.77	149	104	peak				
7311.000	41.55	3.16	44.71	54.00	-9.29	149	104	AVG				
			B Mode, H	ligh channel								
2488.912	70.43	-8.81	61.62	74.00	-12.38	157	269	peak				
2488.912	56.52	-8.81	47.71	54.00	-6.29	157	269	AVG				
4924.000	59.88	-2.54	57.34	74.00	-16.66	143	55	peak				
4924.000	52.96	-2.54	50.42	54.00	-3.58	143	55	AVG				
7386.000	54.23	3.27	57.50	74.00	-16.50	190	78	peak				
7386.000	41.72	3.27	44.99	54.00	-9.01	190	78	AVG				

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
			B Mode, L	ow channel		-	-	
2365.968	76.77	-9.94	66.83	74.00	-7.17	209	228	peak
2365.968	63.50	-9.94	53.56	54.00	-0.44	209	228	AVG
4824.000	62.29	-2.74	59.55	74.00	-14.45	170	49	peak
4824.000	53.92	-2.74	51.18	54.00	-2.82	170	49	AVG
7236.000	53.75	2.98	56.73	74.00	-17.27	156	131	peak
7236.000	41.17	2.98	44.15	54.00	-9.85	156	131	AVG
B Mode, Middle channel								
4874.000	61.73	-2.70	59.03	74.00	-14.97	171	60	peak
4874.000	52.29	-2.70	49.59	54.00	-4.41	171	60	AVG
7311.000	53.91	3.16	57.07	74.00	-16.93	149	83	peak
7311.000	41.92	3.16	45.08	54.00	-8.92	149	83	AVG
			B Mode, H	ligh channel				
2499.328	73.18	-8.68	64.50	74.00	-9.50	197	167	peak
2499.328	56.76	-8.68	48.08	54.00	-5.92	197	167	AVG
4924.000	63.20	-2.54	60.66	74.00	-13.34	208	35	peak
4924.000	55.57	-2.54	53.03	54.00	-0.97	208	35	AVG
7386.000	53.64	3.27	56.91	74.00	-17.09	159	267	peak
7386.000	40.73	3.27	44.00	54.00	-10.00	159	267	AVG

Vertical

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
			G Mode, L	low channel				
2366.448	70.77	-9.94	60.83	74.00	-13.17	196	73	peak
2366.448	57.56	-9.94	47.62	54.00	-6.38	196	73	AVG
4824.000	55.74	-2.74	53.00	74.00	-21.00	192	66	peak
4824.000	43.76	-2.74	41.02	54.00	-12.98	192	66	AVG
7236.000	51.66	2.98	54.64	74.00	-19.36	151	93	peak
7236.000	38.84	2.98	41.82	54.00	-12.18	151	93	AVG
G Mode, Middle channel								
4874.000	56.84	-2.70	54.14	74.00	-19.86	222	36	peak
4874.000	42.43	-2.70	39.73	54.00	-14.27	222	36	AVG
7311.000	51.98	3.16	55.14	74.00	-18.86	187	256	peak
7311.000	37.90	3.16	41.06	54.00	-12.94	187	256	AVG
			G Mode, H	ligh channel				
2489.728	70.28	-8.80	61.48	74.00	-12.52	158	269	peak
2489.728	57.39	-8.80	48.59	54.00	-5.41	158	269	AVG
4924.000	57.25	-2.54	54.71	74.00	-19.29	141	60	peak
4924.000	41.92	-2.54	39.38	54.00	-14.62	141	60	AVG
7386.000	52.70	3.27	55.97	74.00	-18.03	197	61	peak
7386.000	38.52	3.27	41.79	54.00	-12.21	197	61	AVG

Horizontal

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
			G Mode, L	low channel				
2390.000	77.98	-9.74	68.24	74.00	-5.76	208	256	peak
2390.000	63.47	-9.74	53.73	54.00	-0.27	208	256	AVG
4824.000	55.93	-2.74	53.19	74.00	-20.81	160	322	peak
4824.000	44.97	-2.74	42.23	54.00	-11.77	160	322	AVG
7236.000	48.90	2.98	51.88	74.00	-22.12	152	131	peak
7236.000	38.22	2.98	41.20	54.00	-12.80	152	131	AVG
G Mode, Middle channel								
4874.000	59.31	-2.70	56.61	74.00	-17.39	158	72	peak
4874.000	42.85	-2.70	40.15	54.00	-13.85	158	72	AVG
7311.000	52.48	3.16	55.64	74.00	-18.36	186	338	peak
7311.000	37.97	3.16	41.13	54.00	-12.87	186	338	AVG
			G Mode, H	ligh channel				
2483.500	78.37	-8.89	69.48	74.00	-4.52	168	186	peak
2483.500	62.10	-8.89	53.21	54.00	-0.79	168	186	AVG
4924.000	58.58	-2.54	56.04	74.00	-17.96	175	34	peak
4924.000	42.94	-2.54	40.40	54.00	-13.60	175	34	AVG
7386.000	52.34	3.27	55.61	74.00	-18.39	158	329	peak
7386.000	38.36	3.27	41.63	54.00	-12.37	158	329	AVG

Vertical

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
			N20 Mode,	Low channel					
2366.896	72.13	-9.93	62.20	74.00	-11.80	197	74	peak	
2366.896	58.46	-9.93	48.53	54.00	-5.47	197	74	AVG	
4824.000	56.72	-2.74	53.98	74.00	-20.02	211	43	peak	
4824.000	42.28	-2.74	39.54	54.00	-14.46	211	43	AVG	
7206.000	45.24	2.76	48.00	74.00	-26.00	165	203	peak	
7206.000	31.57	2.76	34.33	54.00	-19.67	165	203	AVG	
	N20 Mode, Middle channel								
4874.000	54.90	-2.70	52.20	74.00	-21.80	141	21	peak	
4874.000	40.27	-2.70	37.57	54.00	-16.43	141	21	AVG	
7311.000	48.27	3.16	51.43	74.00	-22.57	181	83	peak	
7311.000	33.26	3.16	36.42	54.00	-17.58	181	83	AVG	
			N20 Mode,	High channel					
2492.320	70.56	-8.77	61.79	74.00	-12.21	154	269	peak	
2492.320	57.40	-8.77	48.63	54.00	-5.37	154	269	AVG	
4924.000	54.80	-2.54	52.26	74.00	-21.74	132	31	peak	
4924.000	40.30	-2.54	37.76	54.00	-16.24	132	31	AVG	
7386.000	48.58	3.27	51.85	74.00	-22.15	184	45	peak	
7386.000	33.95	3.27	37.22	54.00	-16.78	184	45	AVG	

Horizontal

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
			N20 Mode,	Low channel				
2390.000	80.72	-9.74	70.98	74.00	-3.02	171	153	peak
2390.000	63.46	-9.74	53.72	54.00	-0.28	171	153	AVG
4824.000	61.55	-2.74	58.81	74.00	-15.19	127	3	peak
4824.000	45.02	-2.74	42.28	54.00	-11.72	127	3	AVG
7206.000	45.61	2.76	48.37	74.00	-25.63	168	300	peak
7206.000	31.50	2.76	34.26	54.00	-19.74	168	300	AVG
N20 Mode, Middle channel								
4874.000	63.03	-2.70	60.33	74.00	-13.67	148	357	peak
4874.000	45.06	-2.70	42.36	54.00	-11.64	148	357	AVG
7311.000	46.87	3.16	50.03	74.00	-23.97	161	273	peak
7311.000	32.06	3.16	35.22	54.00	-18.78	161	273	AVG
			N20 Mode,	High channel				
2483.500	78.77	-8.89	69.88	74.00	-4.12	149	186	peak
2483.500	61.77	-8.89	52.88	54.00	-1.12	149	186	AVG
4924.000	60.45	-2.54	57.91	74.00	-16.09	164	350	peak
4924.000	44.12	-2.54	41.58	54.00	-12.42	164	350	AVG
7386.000	46.81	3.27	50.08	74.00	-23.92	141	250	peak
7386.000	32.54	3.27	35.81	54.00	-18.19	141	250	AVG

Vertical

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
N40 Mode, Low channel								
2382.204	70.93	-9.81	61.12	74.00	-12.88	181	267	peak
2382.204	58.07	-9.81	48.26	54.00	-5.74	181	267	AVG
4844.000	53.59	-2.78	50.81	74.00	-23.19	211	45	peak
4844.000	40.35	-2.78	37.57	54.00	-16.43	211	45	AVG
7266.000	46.04	3.09	49.13	74.00	-24.87	162	120	peak
7266.000	32.19	3.09	35.28	54.00	-18.72	162	120	AVG
N40 Mode, Middle channel								
4874.000	53.58	-2.70	50.88	74.00	-23.12	143	80	peak
4874.000	39.31	-2.70	36.61	54.00	-17.39	143	80	AVG
7311.000	47.28	3.16	50.44	74.00	-23.56	211	30	peak
7311.000	33.29	3.16	36.45	54.00	-17.55	211	30	AVG
			N40 Mode,	High channel				
2488.848	70.88	-8.81	62.07	74.00	-11.93	176	82	peak
2488.848	58.03	-8.81	49.22	54.00	-4.78	176	82	AVG
4904.000	53.86	-2.59	51.27	74.00	-22.73	111	40	peak
4904.000	40.20	-2.59	37.61	54.00	-16.39	111	40	AVG
7356.000	46.02	3.25	49.27	74.00	-24.73	122	82	peak
7356.000	32.63	3.25	35.88	54.00	-18.12	122	82	AVG

Horizontal

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
N40 Mode, Low channel								
2390.000	76.28	-9.74	66.54	74.00	-7.46	156	202	peak
2390.000	63.20	-9.74	53.46	54.00	-0.54	156	202	AVG
4844.000	57.30	-2.78	54.52	74.00	-19.48	157	4	peak
4844.000	43.81	-2.78	41.03	54.00	-12.97	157	4	AVG
7266.000	46.10	3.09	49.19	74.00	-24.81	124	182	peak
7266.000	32.53	3.09	35.62	54.00	-18.38	124	182	AVG
N40 Mode, Middle channel								
4874.000	57.58	-2.70	54.88	74.00	-19.12	158	2	peak
4874.000	44.13	-2.70	41.43	54.00	-12.57	158	2	AVG
7311.000	45.64	3.16	48.80	74.00	-25.20	163	81	peak
7311.000	32.67	3.16	35.83	54.00	-18.17	163	81	AVG
			N40 Mode,	High channel				
2484.836	74.86	-8.87	65.99	74.00	-8.01	166	194	peak
2484.836	61.51	-8.87	52.64	54.00	-1.36	166	194	AVG
4904.000	57.20	-2.59	54.61	74.00	-19.39	159	357	peak
4904.000	43.94	-2.59	41.35	54.00	-12.65	159	357	AVG
7356.000	46.46	3.25	49.71	74.00	-24.29	157	255	peak
7356.000	32.44	3.25	35.69	54.00	-18.31	157	255	AVG

Vertical

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Conducted Spurious Emissions:

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result					
B Mode									
Low	2412	51.64	\geq 20	PASS					
Middle	2437	52.94	\geq 20	PASS					
High	2462	51.76	≥ 20	PASS					
	G Mode								
Low	2412	47.05	≥ 20	PASS					
Middle	2437	46.72	≥ 20	PASS					
High	2462	44.73	≥ 20	PASS					
N20 Mode									
Low	2412	46.41	≥ 20	PASS					
Middle	2437	45.65	≥ 20	PASS					
High	2462	45.00	≥ 20	PASS					
N40 Mode									
Low	2422	39.69	≥ 20	PASS					
Middle	2437	40.59	≥ 20	PASS					
High	2452	40.05	≥ 20	PASS					

B Mode Low Channel

Date: 25.APR.2022 18:01:37

Middle Channel

Date: 25.APR.2022 18:06:13

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 39 of 68

High Channel

Date: 25.APR.2022 18:11:45

G Mode

Date: 25.APR.2022 18:25:46

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 40 of 68

Middle Channel

Date: 25.APR.2022 18:29:33

High Channel

Date: 25.APR.2022 18:33:25

N20 Mode Low Channel

Date: 25.APR.2022 18:42:08

Middle Channel

Date: 25.APR.2022 18:45:32

High Channel

Date: 25.APR.2022 18:48:53

N40 Mode

Low Channel

Date: 25.APR.2022 18:58:06

Middle Channel

Date: 25.APR.2022 19:00:10

High Channel

Date: 25.APR.2022 19:02:22

9 FCC §15.247(a)(2) – 6 dB Emission Bandwidth

9.1 Applicable Standard

According to FCC §15.247(a)(2).

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

9.2 Test Procedure

The steps for the first option are as follows:

a) Set RBW = 100 kHz.

b) Set the VBW \geq [3 × RBW].

c) Detector = peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	Result				
B Mode								
Low	2412	10.08	> 500	PASS				
Middle	2437	10.08	> 500	PASS				
High	2462	10.08	> 500	PASS				
G Mode								
Low	2412	15.12	> 500	PASS				
Middle	2437	15.12	> 500	PASS				
High	2462	15.12	> 500	PASS				
N20 Mode								
Low	2412	15.12	> 500	PASS				
Middle	2437	15.12	> 500	PASS				
High	2462	15.12	> 500	PASS				
N40 Mode								
Low	2422	33.84	> 500	PASS				
Middle	2437	33.84	> 500	PASS				
High	2452	33.84	> 500	PASS				

9.3 Test Results

Please refer to the following plots

B Mode Low Channel

Date: 25.APR.2022 18:00:56

Middle Channel

Date: 25.APR.2022 18:05:49

High Channel

Date: 25.APR.2022 18:11:05

G Mode

Low Channel

Date: 25.APR.2022 18:25:06

Middle Channel

Date: 25.APR.2022 18:29:09

High Channel

Date: 25.APR.2022 18:32:44

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 49 of 68

N20 Mode Low Channel

Date: 25.APR.2022 18:41:27

Middle Channel

Date: 25.APR.2022 18:45:08

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 50 of 68

High Channel

Date: 25.APR.2022 18:48:12

N40 Mode

Low Channel

Date: 25.APR.2022 18:57:25

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 51 of 68

Middle Channel

Date: 25.APR.2022 18:59:45

High Channel

Date: 25.APR.2022 19:01:42

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 52 of 68

10 FCC §15.247(b)(3) – Maximum Peak Output Power

10.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

10.2 Test Procedure

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

10.3 Test Results

Conducted Peak Output Power

Channel	Frequency	Conducted Peak	a Output Power	Limit	Result				
	(MHz)	(dBm)	(W)	(W)	Kesut				
B Mode									
Low	2412	22.47	0.177	1	PASS				
Middle	2437	24.60	0.288	1	PASS				
High	2462	24.52	0.283	1	PASS				
	G Mode								
Low	2412	25.37	0.344	1	PASS				
Middle	2437	25.12	0.325	1	PASS				
High	2462	25.09	0.323	1	PASS				
	N20 Mode								
Low	2412	24.15	0.260	1	PASS				
Middle	2437	24.50	0.282	1	PASS				
High	2462	24.52	0.283	1	PASS				
N40 Mode									
Low	2422	19.70	0.093	1	PASS				
Middle	2437	19.84	0.096	1	PASS				
High	2452	18.50	0.071	1	PASS				

11 FCC§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

11.1 Applicable Standard

According to FCC §15.247(d).

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

5. Repeat above procedures until all measured frequencies were complete.

11.3 Test Results

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result					
B Mode									
Low	2412	46.82	≥ 20	PASS					
High	2462	48.50	≥ 20	PASS					
G Mode									
Low	2412	38.54	≥ 20	PASS					
High	2462	45.56	≥ 20	PASS					
N20 Mode									
Low	2412	40.15	≥ 20	PASS					
High	2462	46.46	≥ 20	PASS					
N40 Mode									
Low	2422	31.35	≥ 20	PASS					
High	2452	42.01	≥ 20	PASS					

Please refer to the following plots.

B Mode

Band Edge, Left Side

Date: 25.APR.2022 18:01:21

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 56 of 68

Date: 25.APR.2022 18:11:30

G Mode Band Edge, Left Side

Date: 25.APR.2022 18:25:31

Date: 25.APR.2022 18:33:09

N20 Mode

Band Edge, Left Side

Date: 25.APR.2022 18:41:52

Date: 25.APR.2022 18:48:37

N40 Mode

Band Edge, Left Side

Date: 25.APR.2022 18:57:50

Date: 25.APR.2022 19:02:07

12 FCC §15.247(e) – Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

12.2 Test Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat

12.3 Test Results

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)	Result				
B Mode								
Low	2412	-2.97	8	PASS				
Middle	2437	-1.92	8	PASS				
High	2462	-2.38	8	PASS				
G Mode								
Low	2412	-5.37	8	PASS				
Middle	2437	-5.65	8	PASS				
High	2462	-6.60	8	PASS				
N20 Mode								
Low	2412	-6.07	8	PASS				
Middle	2437	-6.67	8	PASS				
High	2462	-6.74	8	PASS				
N40 Mode								
Low	2422	-11.37	8	PASS				
Middle	2437	-11.41	8	PASS				
High	2452	-12.21	8	PASS				

Please refer to the following plots

B Mode Low Channel

Date: 25.APR.2022 18:01:05

Middle Channel

Date: 25.APR.2022 18:05:58

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 63 of 68

High Channel

Date: 25.APR.2022 18:11:14

G Mode Low Channel

Date: 25.APR.2022 18:25:15

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 64 of 68

Middle Channel

Date: 25.APR.2022 18:29:18

Date: 25.APR.2022 18:32:53

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 65 of 68

N20 Mode

Date: 25.APR.2022 18:41:37

Middle Channel

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 66 of 68

High Channel

Date: 25.APR.2022 18:48:21

N40 Mode

Low Channel

Date: 25.APR.2022 18:57:34

Middle Channel

Date: 25.APR.2022 18:59:54

High Channel

******* END OF REPORT *******

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 68 of 68