TEST REPORT

1000			Dt&C Co., Ltd.
Φ	Dt&C		n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 : 031-321-2664, Fax : 031-321-1664
1. Report No	: DRRFCC2306-00	049	
2. Customer			
• Name ·	BLUEBIRD INC.	1	
	: 3F, 115, Irwon-ro, (Capanam-au Seou	South Korea
			louin Kolea
	port : FCC Original G		
	ame / Model Name :	RFID Handheld Sca	anner / RFR901
FCC ID: S	S4RFR901		
5. FCC Reg	ulation(s) : CFR 47 Pa	art 2 subpart 2.1093	3
Test Meth	od Used : IEEE 1528	-2013, IEC/IEEE 62	2209-1528
	FCC SAR	KDB Publications (I	Details in test report)
6. Date of To	est : 2023.03.07 ~ 202	23.03.10	
7. Location	of Test : 🛛 Permane	nt Testing Lab	On Site Testing
8. Testing E	nvironment : Refer to	appended test repo	ort.
9. Test Resu	It : Refer to attached	test report.	
The results sl	nown in this test report r	efer only to the samp	le(s) tested unless otherwise stated.
This test repo	rt is not related to KOL/	AS accreditation.	
	Tested by	uni	Reviewed by
Affirmation	Name : YeJin Seo	CARCE IN AND IN	Name : HakMin Kim (Signature)

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Tested by	Reviewed by
DRRFCC2306-0049	Jun. 07, 2023	Initial issue	YeJin Seo	HakMin Kim

Table of Contents

1. DESCRIPTION OF DEVICE	4
1.1 General Information	
1.2 Power Reduction for SAR	
1.3 Nominal and Maximum Output Power Specifications 1.4 Simultaneous Transmission Capabilities	
1.5 SAR Test Configurations and Exclusions	
1.6 Guidance Applied	6
1.7 Device Serial Numbers 1.8 FCC & ISED MRA test lab designation no. : KR0034	
2. INTROCUCTION	
3. DOSIMETRIC ASSESSMENT	
3.1 Measurement Procedure	
4. RF EXPOSURE LIMITS	
5. FCC MEASUREMENT PROCEDURES	11
5.1 Measured and Reported SAR	
5.2 Procedures Used to Establish RF Signal for SAR	
5.3 SAR Testing with 802.11 Transmitters 5.3.1 General Device Setup	
5.3.2 U-NII and U-NII-2A	
5.3.3 U-NII-2C and U-NII-3	
5.3.4 Initial Test Position Procedure	
5.3.5 2.4 GHz SAR Test Requirements	
5.3.6 OFDM Transmission Mode and SAR Test Channel Selection	
5.3.7 Initial Test Configuration Procedure	
5.3.8 Subsequent Test Configuration Procedures	
5.3.9 MIMO SAR Considerations	
5.4 Generic device	
5.5 Extremity Exposure Configurations 5.6 Handheld RFID/Barcode Scanners (Oct 2020 TCB Workshop Notes)	
6. RF CONDUCTED POWERS	
6.1 WLAN Nominal and Maximum Output Power Spec and Conducted Powers	
6.2 Bluetooth Conducted Powers	
6.3 RFID Nominal and Maximum Output Power Spec and Conducted Powers	
7.1 Tissue Verification	21
7.2 Test System Verification	
8. SAR TEST RESULTS	
8.1 Standalone Extremity SAR Results	
8.2 SAR Test Notes 9. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	
9.1 Introduction	
9.2 Simultaneous Transmission Procedures	
9.3 Simultaneous Transmission Capabilities	
9.4 Head SAR Simultaneous Transmission Analysis 9.5 Simultaneous Transmission Conclusion	
9.5 Simulateous transmission Conclusion 10. SAR MEASUREMENT VARIABILITY	
10.1 Measurement Variability	
10.2 Measurement Uncertainty	
11. EQUIPMENT LIST	
12. MEASUREMENT UNCERTAINTIES	
13. CONCLUSION	
APPENDIX A. – Probe Calibration Data APPENDIX B. – Dipole Calibration Data	
APPENDIX B. – Dipole Calibration Data APPENDIX C. – SAR Tissue Specifications	
APPENDIX C. – SAR TISSUE Specifications	
APPENDIX D. – SAR STSTEM VALIDATION	

1. DESCRIPTION OF DEVICE

1.1 General Information

EUT type	RFID Handheld Scanner					
FCC ID	SS4RFR901					
Equipment model name	RFR901					
Equipment add	N/A					
model name						
Equipment serial no.	Identical prototype					
Firmware Version	1.0					
Identification Number	1.0					
FCC & ISED MRA	KR0034					
Designation No. ISED#	5740A					
Mode(s) of Operation						
(Mobile Computer)	2.4 GHz W-LAN (802.11b/g/n-HT20), 5 GHz W-LAN (802.11a/n-HT20/n-HT40/ac-VHT20/ac-VHT40/ac-VHT80), Bluetooth					
Mode(s) of Operation (RFID/USN Wireless Device)	RFID (900 MHz)					
	Band	Mode	Operating Modes	Bandwidth	Frequency	
	2.4 GHz W-LAN	802.11b/g/n	Voice/Data	HT20	2 412 MHz ~ 2 462 MHz	
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 180 MHz ~ 5 240 MHz	
	5.2 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 190 MHz ~ 5 230 MHz	
		802.11ac	Voice/Data	VHT80	5 210 MHz	
TX Frequency Range (Mobile Computer)	5.3 GHz W-LAN	802.11a/n/ac	Voice/Data	HT20/VHT20	5 260 MHz ~ 5 320 MHz	
		802.11n/ac	Voice/Data	HT40/VHT40	5 270 MHz ~ 5 310 MHz	
		802.11ac	Voice/Data	VHT80	5 290 MHz	
	5.6 GHz W-LAN	802.11a/n/ac	Voice/Data	HT20/VHT20	5 500 MHz ~ 5 720 MHz	
		802.11n/ac	Voice/Data	HT40/VHT40	5 510 MHz ~ 5 710 MHz	
		802.11ac	Voice/Data	VHT80	5 530 MHz ~ 5 690 MHz	
	5.8 GHz W-LAN	802.11a/n/ac	Voice/Data	HT20/VHT20	5 745 MHz ~ 5 825 MHz	
		802.11n/ac	Voice/Data	HT40/VHT40	5 755 MHz ~ 5 795 MHz	
TX Frequency Range (RFID/USN Wireless Device)		802.11ac	Voice/Data	VHT80	5 775 MHz	
	Bluetooth	-	Data	-	2 402 MHz ~ 2 480 MHz	
	RFID (900 MHz)	-	Data		902.75 MHz~ 927.25 MHz	
RX Frequency Range	2.4 GHz W-LAN	802.11b/g/n	Voice/Data	HT20	2 412 MHz ~ 2 462 MHz	
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 180 MHz ~ 5 240 MHz	
	5.2 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 190 MHz ~ 5 230 MHz	
		802.11ac	Voice/Data	VHT80	5 210 MHz	
	5.3 GHz W-LAN	802.11a/n/ac	Voice/Data	HT20/VHT20	5 260 MHz ~ 5 320 MHz	
		802.11n/ac	Voice/Data	HT40/VHT40	5 270 MHz ~ 5 310 MHz	
	Ī	802.11ac	Voice/Data	VHT80	5 290 MHz	
	5.6 GHz W-LAN	802.11a/n/ac	Voice/Data	HT20/VHT20	5 500 MHz ~ 5 720 MHz	
		802.11n/ac	Voice/Data	HT40/VHT40	5 510 MHz ~ 5 710 MHz	
		802.11ac	Voice/Data	VHT80	5 530 MHz ~ 5 690 MHz	
	5.8 GHz W-LAN	802.11a/n/ac	Voice/Data	HT20/VHT20	5 745 MHz ~ 5 825 MHz	
		802.11n/ac	Voice/Data	HT40/VHT40	5 755 MHz ~ 5 795 MHz	
		802.11ac	Voice/Data	VHT80	5 775 MHz	
	Bluetooth	-	Data	-	2 402 MHz ~ 2 480 MHz	
RX Frequency Range (RFID/USN Wireless Device)	RFID (900 MHz)	-	Data	-	902.75 MHz~ 927.25 MHz	

Equipment Class Band Inspire DTS(SISO) 2.4 GHz W-LAN 6.10 DTS(MMO) 2.4 GHz W-LAN <0.10 U-NII-1(SISO) 5.2 GHz W-LAN <0.10 U-NII-20(SISO) 5.2 GHz W-LAN <0.10 U-NII-20(SISO) 5.3 GHz W-LAN <0.10 U-NII-22(SISO) 5.3 GHz W-LAN <0.10 U-NII-22(SISO) 5.3 GHz W-LAN <0.10 U-NII-22(SISO) 5.6 GHz W-LAN <0.10 U-NII-22(SISO) 5.6 GHz W-LAN <0.10 U-NII-22(SISO) 5.8 GHz W-LAN <0.10 U-NII-22(SISO) 5.8 GHz W-LAN <0.10 U-NII-32(SISO) 5.8 GHz W-LAN <0.10 DUT Type Equipment Class Bluetooth LE <0.10 Mes DUT Type Escore Band 0.05 SR (W/Rg) 0.06 FCC Equipment Class Band 0.06 0.06 <th></th> <th></th> <th colspan="6">Reported SAR</th>			Reported SAR					
Extremity Extremity DTS(SISO) 2.4 GHz W-LAN < 0.10 DTS(SISO) 2.4 GHz W-LAN < 0.10 U-NII-1(SISO) 5.2 GHz W-LAN < 0.10 U-NII-1(SISO) 5.2 GHz W-LAN < 0.10 U-NII-1(SISO) 5.3 GHz W-LAN < 0.10 U-NII-2A(SISO) 5.3 GHz W-LAN < 0.10 U-NII-23(SISO) 5.6 GHz W-LAN < 0.10 U-NII-23(SISO) 5.6 GHz W-LAN < 0.10 U-NII-23(SISO) 5.6 GHz W-LAN < 0.10 U-NII-3(SISO) 5.8 GHz W-LAN < 0.10 DSS Bluetooth < 0.10 DSS Bluetooth LE < 0.10 Nea DTS Bluetooth LE < 0.10 Nea Mount 1 type DSS RFID (900 MHz) 0.71 Mount 2 type DSS RFID (900 MHz) 0.71 Mount 2 type DSS RFI			Band					
DTS(SISO) 2.4 GHz W-LAN < 0.10	Cla	ass	Danu					
DTS(MIMO) 2.4 GHz W-LAN < 0.10	DTS(SISO)	2.4 GHz W-LAN					
U-NII-1(MIMO) 5.2 GHz W-LAN < 0.10	DTS(MIMO) 2.4 GHz W-LAN <0.10							
U-NII-2A(SISO) 5.3 GHz W-LAN < 0.10								
U-NII-2A(MIMO) 5.3 GHz W-LAN <0.10								
U-NII-2C(SISO) 5.6 GHz W-LAN < 0.10	U-NII-2/	A(SISO)	5.3 GHz W-LAN	< 0.10				
U-NII-2C(MIMO) 5.6 GHz W-LAN < 0.10	U-NII-2A	A(MIMO)	5.3 GHz W-LAN	-				
U-NII-3(SISO) 5.8 GHz W-LAN < 0.10	U-NII-20	C(SISO)	5.6 GHz W-LAN	< 0.10				
U-NII-3(MIMO) 5.8 GHz W-LAN < 0.10	U-NII-20	C(MIMO)	5.6 GHz W-LAN	< 0.10				
DSS Bluetooth < 0.10 Note DUT Type Equipment Class Bluetooth LE < 0.10	U-NII-3	S(SISO)	5.8 GHz W-LAN	< 0.10				
DTS Bluetooth LE < 0.10 Note DUT Type Equipment Class Band Reported SAR Mount 1 type DSS RFID (900 MHz) 0.72 Mount 2 type DSS RFID (900 MHz) 0.71 Simultaneous SAR per KDB 690783 D01v01r03 0.06 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Digital Transmison System(DTS) Unlicensed National Information Infrastructure (UNII) 0.06 Date(s) of Tests 2023.03.07 - 2023.03.10 0.06 Note Bluetooth / Bluetooth LE SAR was estimated Antenna Type Internal Antenna Functions VoIP is supported.	U-NII-3	(MIMO)	5.8 GHz W-LAN					
DUT Type Equipment Class Reported SAR Mount 1 type DSS RFID (900 MHz) 10 g SAR (W/kg) Mount 2 type DSS RFID (900 MHz) 0.72 Mount 2 type DSS RFID (900 MHz) 0.71 Simultaneous SAR per KDB 690783 D01v01r03 0.06 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Digital Transmison System(DTS) 0.06 Date(s) of Tests 2023.03.07 ~ 2023.03.10 0.06 Note Bluetooth / Bluetooth LE SAR was estimated 4 Antenna Type Internal Antenna Functions VoIP is supported. Functions • The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from the	DS	SS	Bluetooth	< 0.10 ^{Note}				
DUT Type Equipment Class Band 10 g SAR (W/kg) Mount 1 type DSS RFID (900 MHz) Extremity Mount 2 type DSS RFID (900 MHz) 0.72 Mount 2 type DSS RFID (900 MHz) 0.71 Simultaneous SAR per KDB 690783 D01v01r03 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) Date(s) of Tests 2023.03.07 ~ 2023.03.10 0 Note Bluetooth / Bluetooth LE SAR was estimated Antenna Type Internal Antenna Functions • VoIP is supported.	D	ΓS	Bluetooth LE	< 0.10 ^{Note}				
Dot Type Class Band 10 g SAR (W/kg) Mount 1 type DSS RFID (900 MHz) Extremity Mount 2 type DSS RFID (900 MHz) 0.72 Mount 2 type DSS RFID (900 MHz) 0.71 Simultaneous SAR per KDB 690783 D01v01r03 0.06 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Unlicensed National Information Infrastructure (UNII) 0.06 Date(s) of Tests 2023.03.07 ~ 2023.03.10 0.06 Note Bluetooth / Bluetooth LE SAR was estimated 4 Antenna Type Internal Antenna Functions VoIP is supported. Functions VoIP is supported. • The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from the scanner of the scanner only transmits when user presses the scanning button and big separation distance from the scanner of the scanner only transmits when user presses the scanning button and big separation distance from the scanner of the scanner only transmits when user presses the scanning button and big separation distance from the scanner of the scanner only transmits when user presses the scanning button and big separation distance from the scanner of the scanner only transmits when user presses the scanning button and big separation distance from the scanner only transmits when user presses the scanning	Enderson			Reported SAR				
Mount 1 type DSS RFID (900 MHz) 0.72 Mount 2 type DSS RFID (900 MHz) 0.71 Simultaneous SAR per KDB 690783 D01v01r03 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) 0.06 Date(s) of Tests 2023.03.07 ~ 2023.03.10 0 Note Bluetooth / Bluetooth LE SAR was estimated 4 Antenna Type Internal Antenna 4 Functions VoIP is supported. •			Band	10 g SAR (W/kg)				
Mount 2 type DSS RFID (900 MHz) 0.71 Simultaneous SAR per KDB 690783 D01v01r03 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) 0.06 Date(s) of Tests 2023.03.07 ~ 2023.03.10 0.06 Note Bluetooth / Bluetooth LE SAR was estimated Antenna Type Internal Antenna Functions VoIP is supported. The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from the				Extremity				
Simultaneous SAR per KDB 690783 D01v01r03 0.06 FCC Equipment Class Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) 0.06 Date(s) of Tests 2023.03.07 - 2023.03.10 0.06 Note Bluetooth / Bluetooth LE SAR was estimated 0.06 Antenna Type Internal Antenna 0.06 Functions VoIP is supported. 0.06			RFID (900 MHz)	0.72				
Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) Date(s) of Tests 2023.03.07 ~ 2023.03.10 Note Bluetooth / Bluetooth LE SAR was estimated Antenna Type Internal Antenna Functions VolP is supported. The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from th	Mount 2 type	DSS	RFID (900 MHz)	0.71				
PCC Equipment Class Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) Date(s) of Tests 2023.03.07 ~ 2023.03.10 Note Bluetooth / Bluetooth LE SAR was estimated Antenna Type Internal Antenna Functions VoIP is supported. The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from th			us SAR per KDB 690783 D01v01r03	0.06				
Date(s) of Tests 2023.03.07 ~ 2023.03.10 Note Bluetooth / Bluetooth LE SAR was estimated Antenna Type Internal Antenna Functions VoIP is supported. The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from the	Class Digital Transmission System(DTS)		Digital Transmission System(DTS)					
Antenna Type Internal Antenna Functions • VolP is supported. • The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from the	Date(s) of Tests 2023.03.07 ~ 2023.03.10							
Functions VolP is supported. • The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from the second								
The Body SAR is not applicable because the RFID reader only transmits when user presses the scanning button and big separation distance from th								
human body in normal usage condition.								
When evolve the OAD activities DEID and any test one performed 0 sides (Tax, Detters, Erect, Dass, Disk) and Left) for evolve the evolve time	Wher Since Top, f Information		, ,					
			- This of a data go at the product, for the percentice of a do (rop, betching road, ragin and being road of a data and					
			 Since the RFID antenna has high directionality, the test was performed by applying TCB Workshop Notes. Top. Front. Rear. Right and Left sides are not twoically touched by Extremity on Extremity SAR for RFID readers with PDA wade not performed for 					
			 Top, Front, Rear, Right and Left sides are not typically touched by Extremity, so Extremity SAR for RFID readers with PDA wade not performed for these positions. 					
Because distance between PDA and user's hand is 25 mm, Extremity SAR for RFID readers with PDA of Bottom and Pistol grip sides tested the rear			these positions. Recause distance between PDA and user's hand is 25 mm. Extremity SAP for PEID readers with PDA of Bettern and Dicted are sides tested the rear of					
PDA with separation distance 25 mm without deformation of device. Please refer to '(SS4RFR901)_Test photo(SAR)' and 'TCB inquiry_(Mar 3, 2023				· · · · · · · · · · · · · · · · · · ·				
 This model has two types (Mount 1 type, Mount 2 type). 								
 This report was tested with EF550 only W-LAN at the request of the applicant. 								
 The operational description contains additional information. 								

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

The Nominal and Maximum Output Power Specifications are in section 6 of this test report.

1.4 Simultaneous Transmission Capabilities

The Simultaneous Transmission Capabilities are in section 9 of this test report.

1.5 SAR Test Configurations and Exclusions

(A) WIFI & BT for Extremity SAR configuration

Per FCC KDB 447498 D01v06, the 10 g SAR exclusion threshold for distances < 50 mm is defined by the following equation:

 $\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Table 1.1SAR e	xclusion	threshold for	distances <	< 50 mm

Mode	Equation	Result	SAR exclusion threshold	Required SAR
Bluetooth (Mobile Computer)	[(3.85/25)* √2.480]	0.2	7.5	X
Bluetooth LE (Mobile Computer)	[(5.04/25)* 2.480]	0.3	7.5	X

Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

1.6 Guidance Applied

- IEEE 1528-2013
- IEC/IEEE 62209-1528
- FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR)
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 648474 D04v01r03 (Handset SAR)
- FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants)
- FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz)
- FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)
- October 2016 TCB Workshop Notes (Bluetooth Duty Factor)
- April 2019 TCB Workshop Notes (Tissue Simulating Liquids)
- October 2020 TCB Workshop Notes (Handheld RFID/Barcode Scanners)

1.7 Device Serial Numbers

The serial numbers used for each test are indicated alongside the results in Section 8.

DUT Type	Serial Number
RFID/USN Wireless Device (Mount 1 Type)	FCC #1
RFID/USN Wireless Device (Mount 2 Type)	FCC #2
Mobile Computer (EF550)	FCC #3

1.8 FCC & ISED MRA test lab designation no. : KR0034

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3.1) and IEEE1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

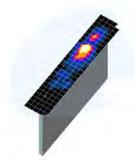


Figure 3.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1 g or 10 g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5 %, the SAR test and drift measurements were repeated.

			\leq 3 GHz	>3 GHz
Maximum distance fro (geometric center of pr		measurement point ors) to phantom surface	$5 \mathrm{mm} \pm 1 \mathrm{mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$
Maximum probe angle surface normal at the r			30°±1°	20°±1°
			$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \text{GHz}; \leq 12 \ \text{mm} \\ 4-6 \ \text{GHz}; \leq 10 \ \text{mm} \end{array}$
Maximum area scan sp	patial reso	lution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	tion, is smaller than the solution must be \leq the nsion of the test device with
Maximum zoom scan	spatial res	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
uniform grid: $\Delta z_{Zoom}(n)$ Maximum zoom scan spatial resolution, normal to phantom surface graded grid		≤ 5 mm	$\begin{array}{c} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$	
		1 st two points closest	≤4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
	grid Δz _{Zoom} (n>1): between subsequent points		\leq 1.5· Δz_{Zoom} (n-1) mm	
Minimum zoom scan volume x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Table 3.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

4. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	HUMAN EXPC	SURE LIMITS
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0

Table 4.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

5. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

5.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

5.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5 %, the SAR test and drift measurements were repeated.

5.3 SAR Testing with 802.11 Transmitters

The normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details.

5.3.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the in the transmission, a maximum transmission duty factor of 92-96 % is typically achievable in most test mode configurations. A minimum transmission duty factor of 85 % is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100 % transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Dt&C

5.3.2 U-NII and U-NII-2A

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

5.3.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When Terminal Doppler Weather Rader (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurements and probe calibration frequency points requirements.

5.3.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured.

5.3.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

5.3.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 80211n or 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

5.3.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured.

5.3.8 Subsequent Test Configuration Procedures

For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is \leq 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required.

5.3.9 MIMO SAR Considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation.

5.4 Generic device

The SAR evaluation shall be performed for all surfaces of the DUT that are accessible during intended use, as indicated in Figure 7.1. The separation distance in testing shall correspond to the intended use distance as specified in the user instructions provided by the manufacturer. If the intended use is not specified, all surfaces of the DUT shall be tested directly against the flat phantom.

The surface of the generic device (or the surface of the carry accessory holding the DUT) pointing towards the flat phantom shall be parallel to the surface of the phantom.

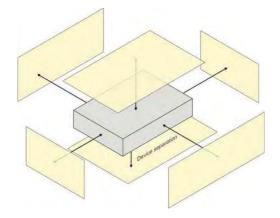


Figure 7.1 Test positions for a generic device

This device was tested with continuous modulated transmission and below duty cycle.

- Duty Cycle = On time / (On time + OFF time) = 192.3 ms / 291.7 ms = 65.9 %

Channel	Frequency(MHz)	Duty Cycle [%]	Crest Factor
1	902.75	65.9	1.517
26	915.75	65.9	1.517
50	927.25	65.9	1.517

5.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

5.6 Handheld RFID/Barcode Scanners (Oct 2020 TCB Workshop Notes)

Guidance update: If the RFID antenna is highly directional you may apply the following testing guidance.

- Provide a directivity of the antenna.
- Provide a conservative minimum distance between the back of the RFID antenna and the fingers during normal operation.
- Measure the 10 g Extremity SAR from the front of the RFID antenna at that antenna-to-finger distance and use that SAR value in place of the back side SAR data.
- * Example: Back side of RFID antenna is 25 mm away from user's finger during normal operation.
- Test front surface at 25 mm away from flat phantom and use that SAR data in place of back side SAR data - In the test setup section of the SAR report clearly explain the test setup and the fact the front side SAR was used in place of the back side SAR data.

6. RF CONDUCTED POWERS

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06

6.1 WLAN Nominal and Maximum Output Power Spec and Conducted Powers

Band					Modulated A	/erage[dBm]		
(GHz)	Mode	Ch	Ant		An	t.2	MIMO(CDD/SDM)	
(6112)			Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	12.00	11.50	14.00	13.50		-
	802.11b	6	13.00	12.50	13.00	12.50		-
2.4	2.4	11	12.00	11.50	13.50	13.00		-
	802.11g	1-11	10.00	9.50	12.00	11.50	14.12	13.62
	802.11n	1-11	9.00	8.50	10.00	9.50	12.54	12.04
			Table 6.1.1 Nomir	nal and Maximum Out	put Power Spec			
Mode	Freq.	Channel	Ī		IEEE 802.11 (2.4 GHz) (Conducted Power[dBm]		
wode	(MHz)	Channel	Ant.1		Ant.2	MIMO(CDD)		MIMO(SDM)
	2 412	1	11.92		13.58	-		-
802.11b	2 437	6	12.41		12.90	-		-
	2 462	11	11.81		12.95	-		-
	2 412	1	9.85		11.50	13.76		-
802.11g	2 437	6	9.73		11.10	13.48		
	2 462	11	9.71		11.45	13.68		-
802.11n	2 412	1	8.42		9.44	11.97		12.12
	2 437	6	8.82		9.74	12.31		12.06
(HT-20)	2 437							

	Free					Modulated A	verage[dBm]		
Mode	Freq. (MHz)	Channel	Ant	.1	Ant		MIMO(CDD)	MIMO(SDM)
	(WITZ)		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	-
	5 180	36	12.00	11.50	10.00	9.50	14.12	13.62	-
	5 200	40	12.00	11.50	9.00	8.50	13.76	13.26	
	5 220	44	12.00	11.50	9.00	8.50	13.76	13.26	-
	5 240	48	12.00	11.50	9.00	8.50	13.76	13.26	-
	5 260	52	12.00	11.50	8.00	7.50	13.46	12.96	-
	5 280	56	12.00	11.50	8.00	7.50	13.46	12.96	-
000 11	5 300	60	12.00	11.50	7.00	6.50	13.19	12.69	
802.11a (6 Mbps)	5 320	64	12.00	11.50	7.00	6.50	13.19	12.69	
(o wuppa)	5 500	100	12.60	12.10	8.50	8.00	14.03	13.53	-
	5 580	116	12.60	12.10	7.00	6.50	13.66	13.16	-
	5 660	132	12.60	12.10	6.50	6.00	13.55	13.05	-
	5 720	144	12.60	12.10	6.00	5.50	13.46	12.96	
	5 745	149	12.60	12.10	5.00	4.50	13.30	12.80	-
	5 785	157	12.60	12.10	5.00	4.50	13.30	12.80	-
	5 825	165	12.60	12.10	6.50	6.00	13.55	13.05	-
			Table 6.1.3	Nominal and Ma	ximum Output Pow	er Spec			
Mode	Freq.	Channel			IEEE	802.11a (5 GHz)	Conducted Power[d	Bm]	
wode	(MHz)	Channel	Ant	.1	Ant	.2	MIMO(CDD)	MIMO(SDM)
	5 180	36	11.3	72	9.4	9	13.7	6	-
	5 200	40	11.1	15	8.5	8	13.0	6	-
	5 220	44	11.2	28	8.3	7	13.0)7	-
	5 240	48	11.0)9	8.1	1	12.8	6	
	5 260	52	11.1	13	7.2	4	12.6	2	
	5 280	56	11.1	12	7.3	5	12.6	64	-
	5 300	60	11.2	23	6.8	7	12.5	i9	-
802.11a	5 320	64	11.8	31	6.9	2	13.0	13	-
(6 Mbps)	5 500	100	11.4	41	7.6	1	12.9	2	-
	5 580	116	12.3	36	6.6		13.3		-
	5 660	132	11.5	70	5.4	1	12.1	4	-
	5 720	144	11.5	73	5.1	7	12.6	60	-
	5 745	149	11.1	18	3.5	4	11.8	37	-
	5 785	157	10.6	68			12.1	1	-
	5 825	165			3.59 5.60		12.11 13.12		

Table 6.1.4 IEEE 802.11a Average RF Power

	Free		Modulated Average[dBm]								
Mode	Freq. (MHz)	Channel	Ant	.1	Ant.2		MIMO(CDD)		MIMO(SDM)		
	(14112)		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	
	5 180	36	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
	5 200	40	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
	5 220	44	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
	5 240	48	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
	5 260	52	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
	5 280	56	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.69	
802.11n	5 300	60	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.69	
(HT-20)	5 320	64	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.69	
(MCS0)	5 500	100	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
	5 580	116	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.69	
	5 660	132	12.00	11.50	6.50	6.00	13.08	12.58	13.08	12.58	
	5 720	144	12.00	11.50	5.50	5.00	12.88	12.38	12.88	12.38	
	5 745	149	12.00	11.50	4.00	3.50	12.64	12.14	12.64	12.14	
	5 785	157	12.00	11.50	4.00	3.50	12.64	12.14	12.64	12.14	
	5 825	165	12.00	11.50	6.00	5.50	12.97	12.47	12.97	12.47	

	Freq.	Ol and the		IEEE 802.11n HT20 (5 GHz) Conducted Power[dBm]						
Mode	(MHz)	Channel	Ant.1	Ant.2	MIMO(CDD)	MIMO(SDM)				
	5 180	36	11.51	7.92	13.09	12.98				
	5 200	40	11.45	7.79	13.00	12.87				
	5 220	44	11.43	7.55	12.92	12.82				
	5 240	48	11.19	7.10	12.62	12.82				
	5 260	52	10.71	7.10	12.28	12.24				
	5 280	56	11.31	6.73	12.61	12.44				
802.11n	5 300	60	11.27	6.45	12.51	12.37				
(HT-20)	5 320	64	11.19	6.67	12.50	12.38				
(MCS0)	5 500	100	10.92	6.33	12.22	12.25				
	5 580	116	11.09	6.61	12.41	12.34				
	5 660	132	11.44	6.06	12.55	12.50				
	5 720	144	11.95	5.28	12.80	12.78				
	5 745	149	10.68	3.24	11.40	11.50				
	5 785	157	10.60	3.64	11.40	12.01				
	5 825	165	10.94	5.05	11.94	12.33				

Table 6.1.6 IEEE 802.11n HT20 Average RF Power

Modulated Average[dBm]

Mode	(MHz)	Channel	Ant Maximum	Nominal	Ant. Maximum	Nominal	MIMO(Maximum	Nominal	MIMO Maximum	Nom
	5 180	36 40	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.
	5 200 5 220	40	12.00 12.00	11.50 11.50	8.00 8.00	7.50 7.50	13.46 13.46	12.96 12.96	13.46 13.46	12. 12.
	5 240	48	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.
	5 260	52	12.00	11.50	7.50	7.00	13.32	12.82	13.32	12.
802 1122	5 280 5 300	56 60	12.00 12.00	11.50 11.50	7.00 7.00	6.50 6.50	13.19 13.19	12.69 12.69	13.19 13.19	<u>12.</u> 12.
802.11ac (VHT-20)	5 320	64	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.
(MCS0)	5 500	100	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.
	5 580	116	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.
	5 660 5 720	132 144	12.00 12.00	11.50 11.50	6.50 5.50	6.00 5.00	13.08 12.88	12.58 12.38	13.08 12.88	<u>12</u> . 12.
	5 745	144	12.00	11.50	4.00	3.50	12.64	12.14	12.64	12.
	5 785	157	12.00	11.50	4.00	3.50	12.64	12.14	12.64	12.
	5 825	165	12.00	11.50 Nominal and Ma	6.00 ximum Output Pow	5.50 er Spec	12.97	12.47	12.97	12.
			Table 0.1.7			er opec				
Mode	Freq. (MHz)	Channel	Ant	1	IEEE 802 Ant		GHz) Conducted Pov MIMO		МІМС	D(SDM)
	5 180	36	11.2		7.8			.89		2.89
	5 200	40	11.3	30	7.7	7	12	.89	12	2.71
	5 220	44	11.		7.4			.76		2.81
	5 240 5 260	48 52	11.3		6.9 7.1			.69 .54		2.55 2.48
	5 280	52	10.9		6.6		12			2.48
802.11ac	5 300	60	11.0	01	6.4	5	12	.31	1:	2.28
(VHT-20)	5 320	64	11.0		6.5		12			2.42
(MCS0)	5 500 5 580	100 116	11.3		7.6			.90 .78		2.84
	5 660	132	11.5		5.6			.56		2.80
	5 720	144	11.8	88	5.2	7	12	.74	1:	2.63
	5 745	149	11.0		3.4			.72		1.71
	5 785 5 825	157 165	11.3		3.4			.88		1.84 2.14
					VHT20 Average RF		. 12.	· · · · · · · · · · · · · · · · · · ·	. 14	
						Modulated	Average[dBm]			
Mode	Freq. (MHz)	Channel	Ant		Ant.	2	MIMO(MIMO	
	5 190	38	Maximum 12.00	Nominal 11.50	Maximum 8.50	Nominal 8.00	Maximum 13.60	Nominal 13.10	Maximum 13.60	Nom 13.
	5 190	38 46	12.00	11.50	8.50	7.50	13.60	13.10	13.60	13.
	5 270	54	12.00	11.50	7.50	7.00	13.32	12.82	13.32	12.
802.11n	5 310	62	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.
(HT-40)	5 510	102	12.50	12.00	8.00	7.50	13.82	13.32	13.82	13.
(MCS0)	5 550 5 670	110 134	12.50 12.50	12.00 12.00	7.00 6.00	6.50 5.50	13.58 13.38	13.08 12.88	13.58 13.38	13. 12.
	5 710	142	12.50	12.00	5.50	5.00	13.29	12.00	13.29	12.
	5 755	151	12.50	12.00	5.00	4.50	13.21	12.71	13.21	12.
	5 795	159	12.50	12.00	6.00 ximum Output Pow	5.50 er Spec	13.38	12.88	13.38	12.
			14010 0.1.9							
Mode	Freq. (MHz)	Channel		nt 1			Hz) Conducted Pow		MINA	
	(MHz) 5 190	38		nt.1		Ant.2 8.32		0(CDD) 3.21		D(SDM) 3.12
	5 230	46	11.50 11.27			7.78		2.88		2.84
	5 270	54	11	1.21	7.47 12.74		2.74	1:	2.73	
802.11n	5 310	62		1.69		6.94		2.94		2.90
(HT-40)	5 510	102		1.89		7.18		3.15	13.09 13.30 12.41	
(MCS0)	5 550 5 670	110 134		2.25 1.51		6.73 5.79		3.32 2.54		
	5 710	142	1	1.95		5.42	1	2.82	1:	2.75
	5 755	151		1.28		4.69		2.14		2.07
	5 795	159		1.51 .10 IEEE 802.11n	HT40 Average RF F	5.50 Power	1	2.48	1:	2.35
Mode	Freq.	Channel	Ant	.1	Ant.		Average[dBm] MIMO(CDD)	MIMO	(SDM)
	(MHz)		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nom
	5 190	38	12.00	11.50	8.50	8.00	13.60	13.10	13.60	13.
	5 230	46 54	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.
	5 270 5 310	54 62	12.00 12.00	11.50 11.50	7.50 7.00	7.00 6.50	13.32 13.19	12.82 12.69	13.32 13.19	12. 12.
802.11ac (VHT-40)	5 510	102	12.50	12.00	8.00	7.50	13.82	13.32	13.82	13.
(MCS0)	5 550	110	12.50	12.00	7.00	6.50	13.58	13.08	13.58	13.
/	5 670	134	12.50	12.00	6.00	5.50	13.38	12.88	13.38	12.
	5 710 5 755	142 151	12.50 12.50	12.00 12.00	5.50 5.00	5.00 4.50	13.29 13.21	12.79 12.71	13.29 13.21	12. 12.
	5 795	159	12.50	12.00	6.00	5.50	13.38	12.88	13.38	12.
			Table 6.1.11	Nominal and Ma	ximum Output Pow	ver Spec				
Madi	Freq.	01			IEEE 802.	11ac VHT40 (5 G	Hz) Conducted Pov	ver[dBm]		
Mode	(MHz)	Channel	Ant		Ant	t.2	MIMO	(CDD)	MIMO	
	5 190	38	11.0		8.1		12.		12	
	5 230	46	11.		7.7		12.		12	
	E 070	54	11.:	29 47	7.4		12.	.78 .74	12.	
	5 270 5 310	62						38	13.	
802.11ac	5 310	62 102		06	7.5	00				
(VHT-40)	5 310 5 510 5 550	102 110	12.	34	7.5	0	13.	39	13.	40
	5 310 5 510 5 550 5 670	102 110 134	12. 12. 11.	34 67	6.7 5.7	70 71	13. 12.	39 65	13. 12.	40 63
(VHT-40)	5 310 5 510 5 550	102 110	12.	34 67 26	6.7	70 71 34	13.	39 65 06	13.	40 63 04

Report No.: DRRFCC2306-0049

13.03

	Free		Modulated Average[dBm]								
	Freq. (MHz)	Channel	Ant.1		Ant.2		MIMO(0	CDD)	MIMO(SDM)		
	(14112)		Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	
	5 210	42	12.00	11.50	8.00	7.50	13.46	12.96	13.46	12.96	
802.11ac	5 290	58	12.00	11.50	7.00	6.50	13.19	12.69	13.19	12.69	
(VHT-80)	5 530	106	12.50	12.00	7.00	6.50	13.58	13.08	13.58	13.08	
(MCS0)	5 690	138	12.50	12.00	6.00	5.50	13.38	12.88	13.38	12.88	
	5 775	155	12.50	12.00	5.50	5.00	13.29	12.79	13.29	12.79	
			Table 6.1.13	Nominal and Ma	ximum Output Pow	ver Spec					

Mode	Freq.	Channel	IEEE 802.11ac VHT80 (5 GHz) Conducted Power[dBm]							
Mode (MHz)	Chaimei	Ant.1	Ant.2	MIMO(CDD)	MIMO(SDM)					
	5 210	42	11.77	7.54	13.16	13.08				
802.11ac	5 290	58	11.71	6.64	12.89	13.01				
(VHT-80)	5 530	106	12.27	6.78	13.35	13.27				
(MCS0)	5 690	138	12 32	5 51	13.14	12.86				

ole 6.1.14 IEEE 802.11ac VHT80 Average RF Powe

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, duo to an even number of channels, both channels were measured.
- Output Power and SAR is not required for 802.11 a, g, n HT20/HT40, ac VHT20/VHT40/VHT80 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is < 1.2 W/kg.</p>
- The underlined data rate and channel above were tested for SAR.

The average output powers of this device were tested by below configuration.

Figure 6.1 Power Measurement Setup

U Dt&C

6.2 Bluetooth Conducted Powers

- Mobile Computer (EF550)

	Burst Modulated Average[dBm]							
Bluetooth	Maximum	7.00						
1 Mbps	Nominal	6.50						
Bluetooth	Maximum	4.00						
2 Mbps	Nominal	3.50						
Bluetooth	Maximum	4.00						
3 Mbps	Nominal	3.50						
Bluetooth	Maximum	7.70						
LE	Nominal	7.20						

Table 6.2.1 Nominal and Maximum Output Power Spec (Burst)

	Frame Modulated Average[dBm]								
Bluetooth	Maximum	5.85							
1 Mbps	Nominal	5.35							
Bluetooth	Maximum	2.85							
2 Mbps	Nominal	2.35							
Bluetooth	Maximum	2.85							
3 Mbps	Nominal	2.35							
Bluetooth	Maximum	7.02							
(LE / 1 Mbps)	Nominal	6.52							
Bluetooth	Maximum	5.31							
(LE / 2 Mbps)	Nominal	4.81							

Table 6.2.2 Nominal and Maximum Output Power Spec (Frame)

Channel	Frequency	Burst AVG Output Power (1 Mbps)	Frame AVG Output Power (1 Mbps)	Burst AVG Output Power (2 Mbps)	Frame AVG Output Power (2 Mbps)	Burst AVG Output Power (3 Mbps)	Frame AVG Output Power (3 Mbps)
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2 402	6.25	5.10	3.14	1.99	3.13	1.98
Mid	2 441	5.85	4.70	2.61	1.46	2.60	1.45
High	2 480	6.16	5.01	3.11	1.96	3.10	1.95

Table 6.2.3 Bluetooth Burst and Frame Average RF Power

Channel	Frequency	Burst AVG Output Power (LE / 1 Mbps)	Frame AVG Output Power (LE / 1 Mbps)	Burst AVG Output Power (LE / 2 Mbps)	Frame AVG Output Power (LE / 2 Mbps)
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2 402	7.69	7.01	7.62	5.23
Mid	2 440	6.90	6.22	6.83	4.44
High	2 480	7.71	7.03	6.15	3.76

Table 6.2.4 Bluetooth LE Burst and Frame Average RF Power

• Bluetooth Conducted Powers procedures

- 1. Bluetooth (BDR, EDR)
 - 1) Enter DUT mode in EUT and operate it.
 - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
 - 2) Instruments and EUT were connected like Figure 6.2.1(A).
 - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester.
 - 4) Power levels were measured by a Power Meter.
- 2. Bluetooth (LE)
 - 1) Enter LE mode in EUT and operate it.
 - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
 - 2) Instruments and EUT were connected like Figure 6.2.1(B).
 - 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT.
 - 4) Power levels were measured by a Power Meter.

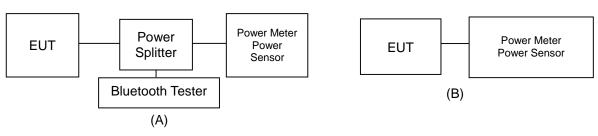


Figure 6.2.1 Average Power Measurement Setup

6.3 RFID Nominal and Maximum Output Power Spec and Conducted Powers

- RFID/USN Wireless Device (Mount 1 type)

Band	Frequency	Frame Modulated Average[dBm]			
Danu	[MHz]	Maximum	Nominal		
RFID	902.75 ~ 927.25 MHz	25.50	25.00		
Table 6.2.4 DEI	D Naminal and Maximum Qui	mut Dewer Cree (Freme)			

Table 6.3.1 RFID Nominal and Maximum Output Power Spec (Frame)

Band	Freq.	Channel	RFID Frame AVG Conducted Power
Band	(MHz)	Glainer	(dBm)
	902.75	1	25.40
RFID	915.75	26	25.28
	927.25	50	25.38

Table 6.3.2 RFID Frame Average RF Power

- RFID/USN Wireless Device (Mount 2 type)

Band	Frequency	Frame Modulated Average[dBm]					
Dana	[MHz]	Maximum	Nominal				
RFID	902.75 ~ 927.25 MHz	25.50	25.00				

Table 6.3.3 RFID Nominal and Maximum Output Power Spec (Frame)

Band	Freq.	Channel	RFID Frame AVG Conducted Power
Band	(MHz)	Glainer	(dBm)
	902.75	1	25.46
RFID	915.75	26	25.42
	927.25	50	25.32

Table 6.3.4 RFID Frame Average RF Power

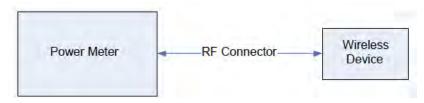


Figure 6.3.1 Power Measurement Setup

7. SYSTEM VERIFICATION

7.1 Tissue Verification

					MEASURED TISSUE PAR	RAMETERS				
Date(s)	Tissue Type	Ambient Temp.[*C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]
				2 412.0	39.265	1.766	38.130	1.805	-2.89	2.21
11	2 450	22.0	00.4	2 437.0	39.222	1.788	38.034	1.836	-3.03	2.68
Mar. 10. 2023	Head	22.0	22.1	2 450.0	39.200	1.800	38.002	1.851	-3.06	2.83
				2 462.0	39.184	1.813	37.971	1.863	-3.10	2.76
				5 180.0	36.020	4.639	36.147	4.698	0.35	1.27
Mar. 08, 2023	5 200	20.5	20.3	5 200.0	36.000	4.660	36.121	4.728	0.34	1.46
Mar. 08. 2023	Head	20.5	20.3	5 220.0	35.980	4.680	36.078	4.742	0.27	1.32
				5 240.0	35.960	4.700	36.010	4.751	0.14	1.09
	5 300	20.5		5 260.0	35.940	4.720	35.949	4.776	0.03	1.19
Mar. 08, 2023			20.3	5 280.0	35.920	4.740	35.917	4.813	-0.01	1.54
Widi. 00. 2023	Head			5 300.0	35.900	4.760	35.892	4.851	-0.02	1.91
				5 320.0	35.880	4.780	35.868	4.878	-0.03	2.05
				5 500.0	35.650	4.965	34.567	4.980	-3.04	0.30
	5 600			5 580.0	35.530	5.049	34.387	5.078	-3.22	0.57
Mar. 09. 2023	Head	20.7	21.0	5 600.0	35.500	5.070	34.354	5.105	-3.23	0.69
	rieau			5 660.0	35.440	5.130	34.239	5.177	-3.39	0.92
				5 720.0	35.380	5.190	34.111	5.252	-3.59	1.19
				5 745.0	35.355	5.215	34.717	5.314	-1.80	1.90
11	5 800	00.0	00.5	5 785.0	35.315	5.255	34.632	5.365	-1.93	2.09
Mar. 10. 2023	Head	20.8	20.5	5 800.0	35.300	5.270	34.607	5.387	-1.96	2.22
				5 825.0	35.275	5.296	34.568	5.416	-2.00	2.27

	MEASURED TISSUE PARAMETERS																					
Date(s)	Tissue Ambient Type Temp.[°C]		Liquid Temp.[*C]	Measured Target Frequency Dielectric [MHz] Constant, εr		Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]												
	900 Head			900.00	41.500	0.970	42.703	0.988	2.90	1.86												
Mar. 07. 2023		01.5	21.3	902.75	41.496	0.971	42.671	0.991	2.83	2.06												
Mar. 07. 2023		21.5		21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	915.75	41.473	0.976	42.507	1.002	2.49	2.66
				927.25	41.451	0.981	42.353	1.012	2.18	3.16												

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

The network analyzer and probe system was configured and calibrated.
 The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight mode.

angle 3) The c 4) The c Misra mplex admittance with respect to the probe aperture was measured mplex relative permittivity , for example from the below equation (Pournaropoulos and

 $Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]} \int_a^b \int_a^b \int_0^x \cos\phi' \frac{\exp\left[-j\alpha r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$

 $[\ln(b/\alpha)]^2 \; J_\alpha \; J_\alpha \; \underbrace{ \int_{a} \sigma^{-p^-(p^-)} \int_{a} d\phi' d\rho' d\rho' }_{F} \;$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 - 2\rho \rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

7.2 Test System Verification

t&C

Prior to assessment, the system is verified to the ±10 % of the specifications at using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 7.2.1 System Verification Results (10 g)

				SYSTEM I	DIPOLE VERIF	ICATION TARG	ET & MEASU	JRED				
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{10 g} (W/kg)	Measured SAR _{10 g} (W/kg)	1 W Normalized SAR _{10 g} (W/kg)	Deviation [%]
E	900	D900V2, SN: 1d175	Mar. 07. 2023	Head	21.5	21.3	3327	250	6.98	1.69	6.76	-3.15
E	2 450	D2450V2, SN: 920	Mar. 10. 2023	Head	22.0	22.1	3327	100	24.7	2.49	24.90	0.81
С	5 200	D5GHzV2, SN:1103	Mar. 08. 2023	Head	20.5	20.3	3930	100	22.8	2.14	21.40	-6.14
С	5 300	D5GHzV2, SN:1103	Mar. 08. 2023	Head	20.5	20.3	3930	100	23.8	2.35	23.50	-1.26
С	5 500	D5GHzV2, SN:1103	Mar. 09. 2023	Head	20.7	21.0	3930	100	24.5	2.42	24.20	-1.22
С	5 600	D5GHzV2, SN:1103	Mar. 09. 2023	Head	20.7	21.0	3930	100	23.9	2.51	25.10	5.02
С	5 800	D5GHzV2, SN:1103	Mar. 10. 2023	Head	20.8	20.5	3930	100	22.9	2.42	24.20	5.68

Note1 : System Verification was measured with input 250 mW, 100 mW and normalized to 1 W. Note2 : Full system validation status and results can be found in Appendix D.

Figure 7.1 Dipole Verification Test Setup Diagram & Photo

8. SAR TEST RESULTS

8.1 Standalone Extremity SAR Results

		MEASUREMENT RESULTS														
	FREQUEN	ICY Ch	Allowed Conducted Allowed Power (dBm) [dBm]		Power	Drift Power [dB]	Phantom Position	Device Serial Number	Peak SAR of Area Scan	Data Rate [Mbps]	Duty Cycle	10 g SAR (W/kg)	Scaling Factor	Scaling Factor (Duty Cycle)	10 g Scaled SAR (W/kg)	Plots #
f	2 437.0	6	802.11b (Ant.1)	13.00	12.41	-0.190	25 mm [Rear]	FCC #3	0.012	1	99.3	0.010	1.146	1.007	0.012	A1
ſ	2 412.0	1	802.11b (Ant.2)	14.00	13.58	-0.110	25 mm [Rear]	FCC #3	0.006	1	99.3	0.005	1.102	1.007	0.006	A2
ſ	2 412.0	1	802.11g (MIMO)	14.12	13.76	0.000	25 mm [Rear]	FCC #3	0.008	6	98.1	0.005	1.086	1.019	0.006	A3
I					C95.1-1992– SAFETY LIN Spatial Peak sure/General Population					Extrer 4.0 W/kg averaged over	(mŴ/g)					

	Adjusted SAR results for OFDM SAR														
FREQUE	NCY			Maximum	10 g	FREQUENCY			Maximum	Ratio of OFDM	10 g	-			
MHz	Ch	Mode/ Antenna	Service	Allowed Power [dBm]	Scaled SAR (W/kg)	[MHz]	Mode	Service	Allowed Power [dBm	to DSSS	Adjusted SAR (W/kg)	Determine OFDM SAR			
2 437.0	6	802.11b (Ant.1)	DSSS	13.00	0.012	2 462.0	802.11g	OFDM	10.00	0.501	0.006	х			
2 437.0	6	802.11b (Ant.1)	DSSS	13.00	0.012	2 462.0	802.11n	OFDM	9.00	0.398	0.005	X			
2 412.0	1	802.11b (Ant.2)	DSSS	14.00	0.006	2 462.0	802.11g	OFDM	12.00	0.631	0.004	х			
2 412.0	1	802.11b (Ant.2)	DSSS	14.00	0.006	2 462.0	802.11n	OFDM	10.00	0.398	0.002	X			
2 412.0	1	802.11g (MIMO)	OFDM	14.12	0.006	2 462.0	802.11n	OFDM	12.54	0.695	0.004	х			
	-	ANSI / IEEE C95.1-19 Spatial	Peak				-		Extremity 4.0 W/kg (mW/						

Uncontrolled Exposure/General Population Exposure 4.0 Wrkg (m/wg) averaged over 10 gram Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

	Table 8.1.2 UNII Extremity SAR														
	MEASUREMENT RESULTS														
FREQUE	Ch	Mode	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	Peak SAR of Area Scan	Data Rate [Mbps]	Duty Cycle	10 g SAR (W/kg)	Scaling Factor	Scaling Factor (Duty Cycle)	10 g Scaled SAR (W/kg)	Plots #
5 320.0	64	802.11a (Ant.1)	12.00	11.81	-0.040	25 mm [Rear]	FCC #3	0.004	6	98.2	0.003	1.045	1.018	0.003	A4
5 180.0	36	802.11a (Ant.2)	10.00	9.49	-0.100	25 mm [Rear]	FCC #3	0.017	6	98.2	0.013	1.125	1.018	0.015	A5
5 180.0	36	802.11a (MIMO)	14.12	13.76	-0.140	FCC #3	0.021	6	98.2	0.015	1.086	1.018	0.017	A6	
5 580.0	116	802.11a (Ant.1)	12.60	12.36	0.190	25 mm [Rear]	FCC #3	0.006	6	98.2	0.003	1.057	1.018	0.003	A7
5 500.0	100	802.11a (Ant.2)	8.50	7.61	-0.180	25 mm [Rear]	FCC #3	0.013	6	98.2	0.010	1.227	1.018	0.012	A8
5 500.0	100	802.11a (MIMO)	14.03	12.92	-0.120	25 mm [Rear]	FCC #3	0.020	6	98.2	0.028	1.291	1.018	0.037	A9
5 825.0	165	802.11a (Ant.1)	12.60	12.28	0.140	25 mm [Rear]	FCC #3	0.005	6	98.2	0.017	1.076	1.018	0.019	A10
5 825.0	165	802.11a (Ant.2)	6.50	5.60	0.190	25 mm [Rear]	FCC #3	0.011	6	98.2	0.020	1.230	1.018	0.025	A11
5 825.0	165	802.11a (MIMO)	13.55	13.12	-0.050	25 mm [Rear]	FCC #3	0.012	6	98.2	0.021	1.104	1.018	0.024	A12
	-			E C95.1-1992– SAFETY L Spatial Peak osure/General Populatio				-		4.0 W/k	emity g (mW/g) over 10 gram	-		-	

	Adjusted SAR results for UNII-1 and UNII-2A SAR														
FREQU	JENCY	Mode/ Antenna	Service	Maximum Allowed	10 g Scaled	FREQUENCY	Mode	Service	Maximum Allowed	Adjusted	10 g Adjusted	SAR for the band with lower			
MHz	Ch	mode/ Antenna	Service	Power [dBm]	SAR (W/kg)	[MHz]	Wode	Service	Power [dBm]	Factor	SAR (W/kg)	maximum output power			
5 320.0	64	802.11a (Ant.1)	OFDM	12.00	0.003	5 240.0	802.11a	OFDM	12.00	1.000	0.003	X			
5 180.0	36	802.11a (Ant.2)	OFDM	10.00	0.015	5 280.0	802.11a	OFDM	8.00	0.631	0.009	X			
5 180.0	36	802.11a (MIMO)	OFDM	14.12	0.017	5 280.0	802.11a	OFDM	13.46	0.859	0.015	X			
	- U	ANSI / IEEE C95.1- Spati Incontrolled Exposure/G	ial Peak		-		_		Extremity 4.0 W/kg (mW/g averaged over 10 g		-				

Uncontrolled Exposure/General Population Exposure
Uncontrolled Exposure/General Population Exposure
averaged over 10
Note: U-NII-1 and U-NII-2A Bands: When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lo The highest reported SAR for the tested configuration or maximum output power in that test configuration.

Table 10.3 RFID Extremity SAR

						MEASUREMENT RESULTS						
FREQUE	ENCY Ch	Mode	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	10 g SAR (W/kg)	Scaling Factor	10 g Scaled SAR (W/kg)	Plots #	
						A (77)	E00 ***					
915.75	26	RFID	25.50	25.28	0.050	0 mm [Top]	FCC #1	0.084	1.052	0.088		
915.75	26	RFID	25.50	25.28	0.090	0 mm [Bottom]	FCC #1	0.036	1.052	0.038		
915.75	26	RFID	25.50	25.28	0.150	10 mm [Front]	FCC #1	0.453	1.052	0.477		
915.75	26	RFID	25.50	25.28	0.000	0 mm [Rear]	FCC #1	0.026	1.052	0.027		
915.75	26	RFID	25.50	25.28	-0.060	0 mm [Right]	FCC #1	0.683	1.052	0.719	A13	
915.75	26	RFID	25.50	25.28	-0.030	0 mm [Left]	FCC #1	0.613	1.052	0.645		
915.75	26	RFID	25.50	25.42	-0.110	0 mm [Top]	FCC #2	0.087	1.019	0.089		
915.75	26	RFID	25.50	25.42	0.080	0 mm [Bottom]	FCC #2	0.017	1.019	0.017		
915.75	26	RFID	25.50	25.42	-0.010	10 mm [Front]	FCC #2	0.447	1.019	0.455		
915.75	26	RFID	25.50	25.42	0.050	0 mm [Rear]	FCC #2	0.025	1.019	0.025		
915.75	26	RFID	25.50	25.42	0.120	0 mm [Right]	FCC #2	0.699	1.019	0.712	A14	
915.75	26	RFID	25.50	25.42	-0.050	0 mm [Left]	FCC #2 0.606 1.019 0.618					
		Un	ANSI / IEEE C95.1-1 Spatia controlled Exposure/Get	Peak	osure		Extremity 4.0 W/kg (mW/g) averaged over 10 gram					

8.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. SAR measurements were performed using the DASY5 automated system. The procedure for spatial peak SAR evaluation has been implemented according to the IEEE 1528 standard. During a maximum search, global and local maxima searches are automatically performed in 2-D after each area scan measurement. The algorithm will find the global maximum and all local maxima within 2 dB of the global maxima for all SAR distributions. All local maxima within 2 dB of the global maximum were searched and passed for the Zoom Scan measurement.

WLAN Notes:

- The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg.
- 4. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance.
- 6. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by making a SAR measurement with both antennas transmitting simultaneously.

Bluetooth Notes:

- 1. Bluetooth SAR was measured with the device connected to a call with hopping disabled with DH5 operation and Tx test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100 % transmission duty factor to determine compliance. Refer to section 9.5 for the time-domain plot and calculation for the duty factor of the device.
- 2. Head and hotspot Bluetooth SAR were evaluated for BT tethering applications.

9. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

9.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

9.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the sum 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positon in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

Mode	Frequency	Maximum Allowed Power				Separation Distance (Extremity)	Estimated SAR (Extremity)
	[MHz]	[dBm]	[mW]	[mm]	[W/kg]		
Bluetooth (Mobile Computer)	2 441	5.85	3.85	25	0.013		
Bluetooth LE (Mobile Computer)	2 440	7.02	5.04	25	0.017		

Table 10.2.1 Estimated SAR (Extremity)

9.3 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06.

	Table 9.3.1 Simultaneous SAR Cases									
No.	Capable Transmit Configuration (EF550 + RFR901)	Extremity SAR	Note							
1	Wi-Fi 2.4 GHz + RFID	Yes								
2	Wi-Fi 5 GHz + RFID	Yes								
3	Bluetooth 2.4 GHz + RFID	Yes								
EF55	0 Note(s):									
	1. Wi-Fi 2.4 GHz and Wi-Fi 5 GHz are not transmitted simultaneously.									
	2. Bluetooth 2.4 GHz and Wi-Fi (2.4 GHz/5 GHz) are not transmitted si	nultaneously.								

Dt&C

9.4 Extremity SAR Simultaneous Transmission Analysis

Table 9.4.1 Simultaneous Transmission Scenario : 2.4 GHz W-LAN + RFID (Extremity)

Exposure	Mode		Configuration	2.4 GHz W-LAN SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)
Condition			configuration	1	3	1+2+3
	Mount 1 type	2.4 GHz W-LAN Ant.1	Bottom and Rear	0.012	0.027	0.039
		2.4 GHz W-LAN Ant.2	Bottom and Rear	0.006	0.027	0.033
Extremity		2.4 GHz W-LAN Ant.MIMO	Bottom and Rear	0.006	0.027	0.033
SAR	Mount 2 type	2.4 GHz W-LAN Ant.1	Bottom and Rear	0.012	0.025	0.037
		2.4 GHz W-LAN Ant.2	Bottom and Rear	0.006	0.025	0.031
		2.4 GHz W-LAN Ant.MIMO	Bottom and Rear	0.006	0.025	0.031

Table 9.4.2 Simultaneous Transmission Scenario : 5.2 GHz W-LAN + RFID (Extremit)

Exposure	Mode		Configuration	5.2 GHz W-LAN SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)
Condition			Configuration	1	3	1+2+3
	Mount 1 type	5.2 GHz W-LAN Ant.2	Bottom and Rear	0.015	0.027	0.042
Extremity		5.2 GHz W-LAN Ant.MIMO	Bottom and Rear	0.017	0.027	0.044
SAR	Mariatotana	5.2 GHz W-LAN Ant.2	Bottom and Rear	0.015	0.025	0.040
	Mount 2 type	5.2 GHz W-LAN Ant.MIMO	Bottom and Rear	0.017	0.025	0.042

Table 9.4.3 Simultaneous Transmission Scenario : 5.3 GHz W-LAN + RFID (Extremity)

Exposure		Mode	Configuration	5.3 GHz W-LAN SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)
Condition		Mode	Configuration	1	3	1+2+3
Extremity	Mount 1 type	5.3 GHz W-LAN Ant.1	Bottom and Rear	0.003	0.027	0.030
SAR	Mount 2 type	5.3 GHz W-LAN Ant.1	Bottom and Rear	0.003	0.025	0.028

Table 9.4.4 Simultaneous Transmission Scenario : 5.6 GHz W-LAN + RFID (Extremit)

Exposure	Mode		Configuration	5.6 GHz W-LAN SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)
Condition			Configuration	1	3	1+2+3
		5.6 GHz W-LAN Ant.1	Bottom and Rear	0.003	0.027	0.030
	Mount 1 type	5.6 GHz W-LAN Ant.2	Bottom and Rear	0.012	0.027	0.039
Extremity		5.6 GHz W-LAN Ant.MIMO	Bottom and Rear	0.037	0.027	0.064
SAR	Mount 2 type	5.6 GHz W-LAN Ant.1	Bottom and Rear	0.003	0.025	0.028
		5.6 GHz W-LAN Ant.2	Bottom and Rear	0.012	0.025	0.037
		5.6 GHz W-LAN Ant.MIMO	Bottom and Rear	0.037	0.025	0.062

Table 9.4.5 Simultaneous Transmission Scenario : 5.8 GHz W-LAN + RFID (Extremit)

Exposure	Mode		Configuration	5.8 GHz W-LAN SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)
Condition			Configuration	1	3	1+2+3
	Mount 1 type	5.8 GHz W-LAN Ant.1	Bottom and Rear	0.019	0.027	0.046
		5.8 GHz W-LAN Ant.2	Bottom and Rear	0.025	0.027	0.052
Extremity		5.8 GHz W-LAN Ant.MIMO	Bottom and Rear	0.024	0.027	0.051
SAR	Mount 2 type	5.8 GHz W-LAN Ant.1	Bottom and Rear	0.019	0.025	0.044
		5.8 GHz W-LAN Ant.2	Bottom and Rear	0.025	0.025	0.050
		5.8 GHz W-LAN Ant.MIMO	Bottom and Rear	0.024	0.025	0.049

Table 9.4.6 Simultaneous Transmission Scenario : Bluetooth + RFID (Extremity)

Exposure	Mode		Configuration	Bluetooth SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)
Condition			configuration	1	3	1+2+3
Extremity SAR	Mount 1 type	Bluetooth	Bottom and Rear	0.013	0.027	0.040
	Mount 2 type	Bluetooth	Bottom and Rear	0.013	0.025	0.038

Table 9.4.7 Simultaneous Transmission Scenario : Bluetooth LE + RFID (Extremity)								
Exposure Condition	Mode	Configuration	Bluetooth LE SAR (W/kg)	RFID SAR (W/kg)	ΣSAR (W/kg)			
Condition		-	1	3	1+2+3			
Extremity	Bluetooth LE	Bottom and Rear	0.017	0.027	0.044			
SAR	Bluetooth LE	Bottom and Rear	0.017	0.025	0.042			

9.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

10. SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10 % from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5. The same procedures should be adapted for measurements according to extremity exposure limits by applying a factor of 2.5 for extremity exposure to the corresponding SAR thresholds.

10.2 Measurement Uncertainty

The measured SAR was < 1.5 W/kg for 1g and < 3.75 W/kg for 10 g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

11. EQUIPMENT LIST

	Туре	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
	Robot	SPEAG	TX60L	N/A	N/A	F15/50NHA1/A/01
	Robot	SPEAG	TX90XL	N/A	N/A	F13/5P9GA1/A/01
3	Robot Controller	SPEAG	CS8C	N/A	N/A	F12/5LP5A1/C/01
3	Robot Controller	SPEAG	CS8C	N/A	N/A	F13/5P9GA1/C/01
3	Joystick	SPEAG	N/A	N/A	N/A	D21142605A
i	Joystick	SPEAG	N/A	N/A	N/A	S-12450905
1	Intel Core i7-8 700K 3.70 GHz Window 10 Pro	N/A	N/A	N/A	N/A	N/A
3	Intel Core i7-3 770 3.40 GHz Window 7 Professional	N/A	N/A	N/A	N/A	N/A N/A
3	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
3	Probe Alignment Unit LB	N/A N/A	N/A N/A	N/A N/A	N/A	SE UKS 030 AA
3	Device Holder	SPEAG	SD000H01KA	N/A	N/A	N/A
<u> </u>	Device Holder	SPEAG	SD000H01KA SD000H01HA	N/A N/A	N/A N/A	N/A N/A
	Twin SAM Phantom	SPEAG	QD000P40CD	N/A	N/A	1895
×	Twin SAM Phantom Twin SAM Phantom	SPEAG	QD000P40CD QD000P40CD	N/A N/A	N/A N/A	1895
XX	Data Acquisition Electronics	SPEAG SPEAG	DAE4V1	2022-09-21	2023-09-21	1453
	Data Acquisition Electronics		DAE4V1	2022-03-24	2023-03-24	1394
X	Dosimetric E-Field Probe	SPEAG	ES3DV3	2023-01-22	2024-01-22	3327
X	Dosimetric E-Field Probe	SPEAG	EX3DV4	2022-07-25	2023-07-25	3930
X	900 MHz System Validation Dipole	SPEAG	D900V2	2022-05-30	2024-05-30	1d175
X	2 450 MHz SAR Validation Dipole	SPEAG	D2450V2	2022-08-18	2024-08-18	920
X	5 GHz SAR Validation Dipole	SPEAG	D5GHzV2	2023-01-25	2025-01-25	1103
X	Network Analyzer	Agilent	E5071C	2022-06-24	2023-06-24	MY46106970
X	Signal Generator	Agilent	E4438C	2022-06-24	2023-06-24	US41461520
3	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2022-06-24	2023-06-24	1005
X	Power Meter	HP	EPM-442A	2022-12-16	2023-12-16	GB37170267
X	Power Meter	Anritsu	ML2488B	2022-12-16	2023-12-16	0846003
X	Power Sensor	Anritsu	MA2472D	2022-12-16	2023-12-16	0845419
X	Power Sensor	HP	8481A	2022-12-16	2023-12-16	2702A65976
X	Power Sensor	HP	8481A	2022-12-16	2023-12-16	2702A61707
X	Dual Directional Coupler	Agilent	778D-012	2022-12-16	2023-12-16	50228
X	Directional Coupler	HP	772D	2022-06-24	2023-06-24	2889A01064
×	Low Pass Filter 1.5 GHz	MICROLAB	LA-15N	2022-06-24	2023-06-24	2
\times	Low Pass Filter 3.0 GHz	MICROLAB	LA-30N	2022-06-24	2023-06-24	2
K	Low Pass Filter 6.0 GHz	MICROLAB	LA-60N	2022-12-16	2023-12-16	03942
X	Attenuators(10 dB)	WEINSCHEL	23-10-34	2022-12-16	2023-12-16	BP4387
X	Attenuators	Saluki	3.5TS2-3dB-26.5G	2022-06-24	2023-06-24	21090703
X	Dielectric Probe kit	SPEAG	DAKS-3.5	2022-07-25	2023-07-25	1046
X	Dicioune i robe Nit	SF LAG	R140	2022-07-26	2023-07-26	0101213
X	Power Splitter	Anritsu	K241B	2022-12-16	2023-12-16	1301183
×	Bluetooth Tester	TESCOM	TC-3000C	2022-12-16	2023-12-16	3000C000678

1. The Field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DI&C before each test. The brain and muscle simulating material are calibrated by DI&C using the dielectric probe system and network analyzer to determine the conductivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period. 2. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. signal generator) to determine the losses of the measurement path. The power meter dfset was then adjusted to compensate for the measurement system losses. This level diffect is is stored within the power meter before measurements are made. This calibration procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

12. MEASUREMENT UNCERTAINTIES

900 ~ 2 450 MHz Head (S/N: 3327)

	Uncertainty	Probability	.	(Ci)	(Ci)	Standard	Standard	Ci x U _i	Ci x U _i	vi 2 or
Error Description	value %	Distribution	Divisor	1 g	10 g	1 g (%)	10 g (%)	1 g	10 g	Veff
Measurement System		•								
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	6.0	6.0	∞
Axial isotropy	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	×
Hemispherical isotropy	9.6	Rectangular	√3	1	1	5.5	5.5	5.5	5.5	×
Boundary Effects	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Probe Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	×
Probe modulation response	2.4	Rectangular	√3	1	1	1.4	1.4	1.4	1.4	×
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	0.14	0.14	×
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	1.0	1.0	×
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	∞
Probe Positioner	0.4	Rectangular	√3	1	1	0.23	0.23	0.23	0.23	∞
Probe Positioning	2.9	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	∞
Spatial x-y-Resolution	3.0	Rectangular	√3	1	1	5.8	5.8	5.8	5.8	∞
Fast SAR z-Approximation	3.0	Rectangular	√3	1	1	4.0	4.0	4.0	4.0	
Test Sample Related		•	_	•	•	<u>.</u>				
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	2.9	2.9	∞
SAR Scaling	2.0	Rectangular	√3	1	1	1.2	1.2	1.2	1.2	∞
Physical Parameters			.	•	•	•			-1	
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	4.4	4.4	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	1.2	0.5	∞
Liquid conductivity (Meas.)	3.8	Normal	1	0.78	0.71	3.0	2.7	2.3	1.9	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	1.0	0.7	∞
Liquid permittivity (Meas.)	3.7	Normal	1	0.23	0.26	0.85	1.0	0.20	0.25	10
Temp. unc Conductivity	1.8	Rectangular	√3	0.78	0.71	0.81	0.74	0.63	0.52	∞
Temp. unc Permittivity	1.9	Rectangular	√3	0.23	0.26	0.25	0.29	0.06	0.07	∞
Combined Standard Uncertainty						13	13			330
Expanded Uncertainty (k=2)			1			26	26			

 $U(1 g) = k \times u_c$ $= 2 \times 13 \%$

= 26 % (The confidence level is about 95 % k = 2)

 $U(10 g) = k \times u_c$ $= 2 \times 13 \%$

= 26 % (The confidence level is about 95 % k = 2)

Note. Refer to "DTNC-UP-TS06-2023"

5 200 ~ 5 800 MHz Head (S/N: 3930)

Emer Description	Uncertainty	Probability	Divisor	(Ci)	(Ci)	Standard	Standard	Ci x U _i	Ci x U _i	vi 2 or
Error Description	value %	Distribution	Divisor	1 g	10 g	1 g (%)	10 g (%)	1 g	10 g	Veff
Measurement System		•	•			•	•	•		•
Probe calibration	6.0	Normal	1	1	1	6.6	6.6	6.6	6.6	∞
Axial isotropy	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	×
Hemispherical isotropy	9.6	Rectangular	√3	1	1	5.5	5.5	5.5	5.5	×
Boundary Effects	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Probe Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	∞
Probe modulation response	2.4	Rectangular	√3	1	1	1.4	1.4	1.4	1.4	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	0.14	0.14	∞
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	1.0	1.0	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	∞
Probe Positioner	0.4	Rectangular	√3	1	1	0.23	0.23	0.23	0.23	∞
Probe Positioning	2.9	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	∞
Spatial x-y-Resolution	3.0	Rectangular	√3	1	1	5.8	5.8	5.8	5.8	∞
Fast SAR z-Approximation	3.0	Rectangular	√3	1	1	4.0	4.0	4.0	4.0	
Test Sample Related		.	±	.	•				-1	
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	2.9	2.9	×
SAR Scaling	2.0	Rectangular	√3	1	1	1.2	1.2	1.2	1.2	×
Physical Parameters		<u> </u>		•	•					. .
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	4.4	4.4	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	1.2	0.5	∞
Liquid conductivity (Meas.)	4.2	Normal	1	0.78	0.71	3.1	2.8	2.4	2.0	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	1.0	0.7	∞
Liquid permittivity (Meas.)	4.0	Normal	1	0.23	0.26	0.94	1.1	0.22	0.28	10
Temp. unc Conductivity	2.1	Rectangular	√3	0.78	0.71	0.95	0.86	0.74	0.61	∞
Temp. unc Permittivity	2.1	Rectangular	√3	0.23	0.26	0.28	0.32	0.07	0.08	∞
Combined Standard Uncertainty						14	13			330
Expanded Uncertainty (k=2)						28	26			

 $U(1 g) = k \times u_c$

= 2 x 14 %

= 28 % (The confidence level is about 95 % k = 2) $II(10 \text{ g}) = k \times U_{2}$

$$U(10 g) = k x u_c$$

 $= 2 \times 13 \%$

= 26 % (The confidence level is about 95 % k = 2)

Note. Refer to "DTNC-UP-TS05-2022"

13. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

14. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.

[3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.

[4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.

[5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005.

[21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.

[22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009

[23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07

[24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02

[25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04

[26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04

[27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01-D02

[28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02

[29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009

[30] Anexo à Resolução No. 533, de 10 de September de 2009.

[31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.

APPENDIX A. – Probe Calibration Data

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates				
Client DT&C (Dym	nstec)	Certificate No E	S-3327_Jan23	
CALIBRATION C	CERTIFICATE			
Object	ES3DV3 - SN:3	327		
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes			
Calibration date	on date January 22, 2023			
The measurements and the	uncertainties with confident onducted in the closed labor	national standards, which realize the physical to probability are given on the following pages atory facility: environment temperature (22±3 n)	and are part of the certificate.	
The measurements and the All calibrations have been or Calibration Equipment used	uncertainties with confidence onducted in the closed labor (M&TE critical for calibration	e probability are given on the following pages atory facility: environment temperature (22±3 n)	and are part of the certificate.) °C and humidity < 70%.	
The measurements and the All calibrations have been or Calibration Equipment used Primary Standards	uncertainties with confidence onducted in the closed labor (M&TE critical for calibration	e probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration	
The measurements and the All calibrations have been or Calibration Equipment used Primary Standards Power meter NRP	uncertainties with confidence anducted in the closed labor (M&TE critical for calibration ID SN: 104778	ce probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23	
Ine measurements and the NI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91	Uncertainties with confidence anducted in the closed labor (M&TE critical for calibration ID SN: 104778 SN: 103244	xe probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23	
Ine measurements and the NI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 ICP DAK-3.5 (weighted)	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 103244	Probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK3.5-1249_Oct22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23	
Ine measurements and the MI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 ICP DAK-3.5 (weighted) ICP DAK-12	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23	
Ine measurements and the All calibrations have been or Calibration Equipment used trimary Standards ower meter NRP ower sensor NRP-291 OCP DAK-3.5 (weighted) OCP DAK-12 leference 20 dB Attenuator	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 10244 SN: 1249 SN: 1016 SN: CC2552 (20x)	22 probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Apr-23	
Ine measurements and the All calibrations have been or Calibration Equipment used Trimary Standards ower meter NRP ower sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 telerence 20 dB Attenuator AE4	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23	
Ine measurements and the NI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-291 ICP DAK-3.5 (weighted) ICP DAK-12 eference 20 dB Attenuator AE4 elerence Probe ES3DV2	ID ID ID ID ID ID ID ID ID ID ID ID ID I	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (OP-DAK12-1016_Oct22) 20-Oct-22 (OP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 10-Oct-22 (No. 217-03527)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Apr-23 Oct-23	
Ine measurements and the NI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 ICP DAK-3.5 (weighted) ICP DAK-12 eference 20 dB Attenuator AE4 elerence Probe ES3DV2 econdary Standards	ID ID SN: 104778 SN: 104778 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 3013 ID	22 probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. DAE4-660_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Apr-23 Oct-23	
Ine measurements and the NI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 ICP DAK-3.5 (weighted) ICP DAK-12 eference 20 dB Attenuator AE4 eference Probe ES3DV2 econdary Standards ower meter E4419B	Uncertainties with confidence anducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	xe probability are given on the following pages atory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (No. DAE4-660_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24	
Ine measurements and the MI calibrations have been or Calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 ICP DAK-3.5 (weighted) ICP DAK-12 eference 20 dB Attenuator AE4 elerence Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: 1249 SN: 2600 SN: 3013 ID SN: GB41293874 SN: MY41498087	22 probability are given on the following pages alory facility: environment temperature (22±3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (No. DAE4-660_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check	
Ine measurements and the MI calibrations have been or Calibration Equipment used inimary Standards ower meter NRP ower sensor NRP-Z91 CP DAK-3.5 (weighted) CP DAK-12 eference 20 dB Attenuator AE4 eference Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A	uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (OCP-DAK12-1016_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24	
Ine measurements and the All calibrations have been or Calibration Equipment used Inimary Standards ower meter NRP Ower sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-3.5 (weighted) DCP DAK-12 Leference 20 dB Attenuator AE4 eference Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A Ower sensor E4412A F generator HP 8648C	uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1016 SN: 202552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700	22 probability are given on the following pages atory facility: environment temperature (22 ± 3 h) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24	
he measurements and the MI calibrations have been co Calibration Equipment used rimary Standards ower meter NRP Ower sensor NRP-Z91 CP DAK-3.5 (weighted) CP DAK-12 elerence 20 dB Attenuator AE4 eference Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A Egenerator HP 8648C	uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (OCP-DAK12-1016_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24	
Ine measurements and the MI calibrations have been or Calibration Equipment used inimary Standards ower meter NRP ower sensor NRP-Z91 ICP DAK-3.5 (weighted) ICP DAK-12 elerence 20 dB Attenuator AE4 elerence Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A F generator HP 8648C	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642L01700 SN: US3642L01700 SN: US3642L01700	22 probability are given on the following pages atory facility: environment temperature (22 ± 3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. DAE4-660_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24	
Ine measurements and the All calibrations have been or Calibration Equipment used Inimary Standards ower meter NRP Ower sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-3.5 (weighted) DCP DAK-12 Leference 20 dB Attenuator AE4 eference Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A Ower sensor E4412A F generator HP 8648C	uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1016 SN: 202552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700	22 probability are given on the following pages atory facility: environment temperature (22 ± 3 h) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 10-Oct-22 (No. 217-03527) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24	
Ine measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Recondary Standards Tower meter E4419B Tower sensor E4412A Dower sensor E4412A Fegenerator HP 8648C Retwork Analyzer E8358A	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642L01700 SN: US3642L01700 SN: US3642L01700	22 probability are given on the following pages atory facility: environment temperature (22 ± 3 n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. DAE4-660_Oct22) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24	
The measurements and the All calibrations have been co	Uncertainties with confidence onducted in the closed labor (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 04-Apr-22 (No. 217-03527) 10-Oct-22 (OCP-DAK12-1016_Oct22) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-22) 07-Mar-14 (in house check Jun-22)	and are part of the certificate.)*C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-23 Oct-23 Oct-23 Oct-23 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24	

Certificate No: ES-3327_Jan23

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- C s
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, G, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization <i>9</i>	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization
 θ = 0 (*I* ≤ 900 MHz in TEM-cell; *I* > 1800 MHz: R22 waveguide). NORMx,y,z
 are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see
 below ConvF).
- NORM(f)x, y,z = NORMx, y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the Information gained by determining the NORMx (no uncertainty required).

Certificate No: ES-3327_Jan23

Page 2 of 9

January 22, 2023

Parameters of Probe: ES3DV3 - SN:3327

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	1.05	1.13	1.03	±10.1%
DCP (mV) B	105.0	102.0	104.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	183.1	±2.5%	±4.7%
		Y	0.00	0.00	1.00		196.0		1000
÷		Z	0.00	0.00	1.00		182.9		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Linearization parameter uncertainty for maximum specified field strength: ^E Uncertainty is determined using the max. deviation from linear response applying reotangular distribution and is expressed for the square of the field value.

Certificate No: ES-3327_Jan23

Page 3 of 9

January 22, 2023

Parameters of Probe: ES3DV3 - SN:3327

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-35.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	-4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES-3327_Jan23

Page 4 of 9

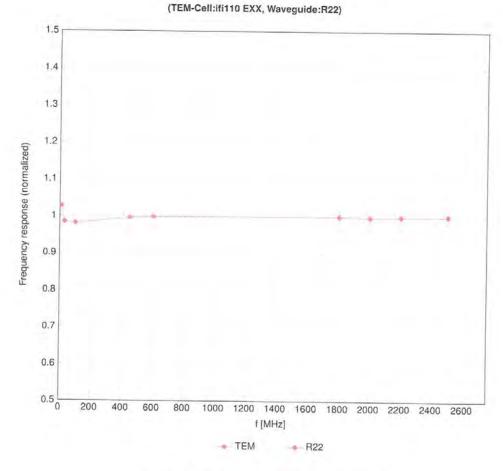
January 22, 2023

Parameters of Probe: ES3DV3 - SN:3327

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	6.90	6.36	6.41	0.40	1.27	±12.0%
835	41.5	0.90	6.90	6.20	6.26	0.40	1.27	±12.0%
900	41.5	0.97	6.73	6.29	6.19	0.40	1.27	±12.0%
1750	40.1	1,37	6.17	5.66	5.64	0.40	1.27	±12.0%
1900	40.0	1.40	5.91	5.42	5.43	0.40	1.27	±12.0%
2450	39.2	1.80	5.43	4.96	5.03	0.40	1.27	±12.0%
2600	39.0	1.96	5.10	4.67	4.73	0.40	1.27	±12.0%

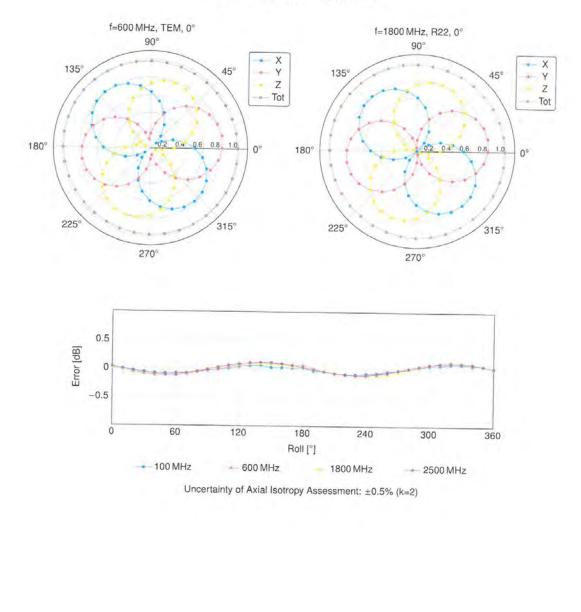
C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±10 MHz. The probes are calibrated using tissue simulating liquids (TSL) that deviate for *s* and *σ* by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.


G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES-3327_Jan23

Page 5 of 9

January 22, 2023

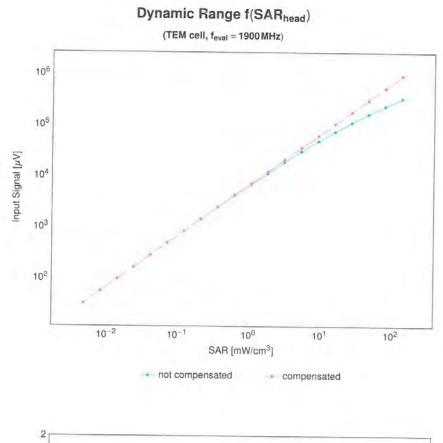

Frequency Response of E-Field

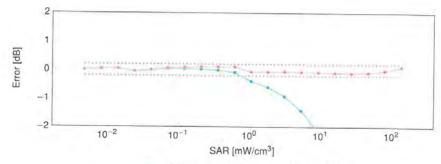
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Certificate No: ES-3327_Jan23

Page 6 of 9

January 22, 2023

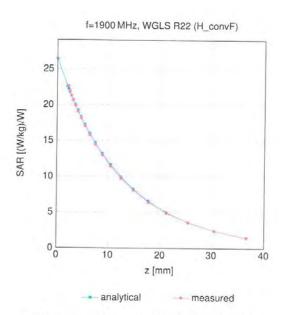

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: ES-3327_Jan23

Page 7 of 9

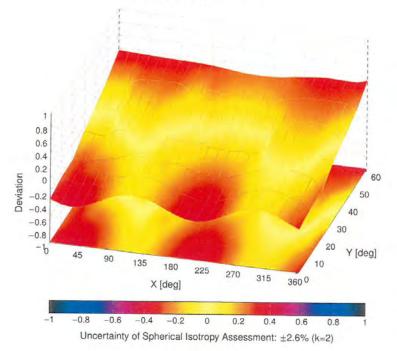
January 22, 2023

not compensated --- compensated



Certificate No: ES-3327_Jan23

Page 8 of 9


January 22, 2023

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , θ), f = 900 MHz

Certificate No: ES-3327_Jan23

Page 9 of 9

		ies to the EA	Servizio svizzero di taratui
ent DT&C (Dyms	stec)	Certificate No E	EX-3930_Jul22
CALIBRATION C	ERTIFICATE		
Object	EX3DV4 - SN:393	30	
Calibration procedure(s)	QA CAL-25.v7	A CAL-12.v9, QA CAL-14.v6, Q dure for dosimetric E-field probe	
Calibration date	July 25, 2022		
All calibrations have been co	uncertainties with confidence	probability are given on the following pages	s and are part of the certificate.
The measurements and the All calibrations have been co Calibration Equipment used	uncertainties with confidence anducted in the closed laborati (M&TE critical for calibration)	probability are given on the following pages ory facility: environment temperature (22±	s and are part of the certificate. 3)℃ and humidity < 70%.
The measurements and the investment of the second s	uncertainties with confidence	probability are given on the following pages ory facility: environment temperature (22±: Cal Date (Certificate No.)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration
he measurements and the all calibrations have been co calibration Equipment used rimary Standards ower meter NRP	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration)	probability are given on the following pages ory facility: environment temperature (22±	s and are part of the certificate 3)℃ and humidity < 70%.
he measurements and the all calibrations have been co calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 CP DAK-3.5 (weighted)	uncertainties with confidence anducted in the closed laborati (M&TE critical for calibration) ID SN: 104778	probability are given on the following pages ory facility: environment temperature (22± Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	s and are part of the certificate 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23
The measurements and the investment of the inves	uncertainties with confidence anducted in the closed laborati (M&TE critical for calibration) ID SN: 104778 SN: 104244 SN: 103244 SN: 103244 SN: 1016	probability are given on the following pages ory facility: environment temperature (22± Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22
The measurements and the investment of the inves	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x)	probability are given on the following pages ory facility: environment temperature (22±) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527)	s and are part of the certificate 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23
The measurements and the investment of the measurements and the investment of the measurement of the measure	uncertainties with confidence anducted in the closed laborati (M&TE critical for calibration) ID SN: 104778 SN: 104244 SN: 103244 SN: 103244 SN: 1016	probability are given on the following pages ory facility: environment temperature (22± Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22
The measurements and the initial calibrations have been control calibration Equipment used in the initial calibration Equipment used in the calibration Equipment used in the calibration of the calibratio	ID ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK13-5-1249_Oct21) 20-Oct-21 (OCP-DAK15-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Dec-22
he measurements and the initial calibrations have been contracted by a calibration Equipment used in the initial calibration Equipment used in the initial calibration Equipment used in the initial calibration of the initial calibration o	ID ID SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 3013 ID	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Dec-22 Scheduled Check
he measurements and the initial calibrations have been control calibration Equipment used in the initial calibration Equipment used in the initial calibration Equipment used in the initial calibration of the in	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	probability are given on the following pages ory facility: environment temperature (22±) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Dec-22 Scheduled Check In house check: Jun-24
The measurements and the investments and the investment of the inv	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087	probability are given on the following pages ory facility: environment temperature (22±) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24
The measurements and the investment of the measurements and the investment of the measurement of the measure	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	probability are given on the following pages ory facility: environment temperature (22±3) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24
he measurements and the i all calibrations have been co calibration Equipment used rimary Standards ower meter NRP ower sensor NRP-Z91 CP DAK-3.5 (weighted) CP DAK-12 eference 20 dB Attenuator AE4 eference Probe ES3DV2 econdary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A power sensor E4412A F generator HP 8648C	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	probability are given on the following pages ory facility: environment temperature (22±) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24
The measurements and the investment of the measurements and the investment of the measurement of the measure	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: MY41498087 SN: 000110210 SN: US3642U01700	probability are given on the following pages ory facility: environment temperature (22±: Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK13-51249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
The measurements and the All calibrations have been co	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK13-5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. DAE4-660_Oct21) O6-Apr-16 (in house) 06-Apr-16 (in house check Jun-22) 03-Aug-99 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24
The measurements and the investment of the measurements and the investment of the measurement of the measure	uncertainties with confidence anducted in the closed laboration (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	probability are given on the following pages ory facility: environment temperature (22±3) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 27-Dec-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-20) Function	s and are part of the certificate. 3) °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	protation around probe axis
Polarization 8	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for *f* ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for *f* > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3930_Jul22

Page 2 of 9

July 25, 2022

Parameters of Probe: EX3DV4 - SN:3930

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm (µV/(V/m)2) A	0.38	0.35	0.44	±10.1%
DCP (mV) B	106.6	105.2	104.1	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	165.8	±2.7%	±4.7%
		Y	0.00	0.00	1.00		162.5		1.11
		Z	0.00	0.00	1.00		150.1		1.00

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).
 ^B Linearization parameter uncertainty for maximum specified field strength.
 ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3930_Jul22

Page 3 of 9

July 25, 2022

Parameters of Probe: EX3DV4 - SN:3930

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-82.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3930_Jul22

Page 4 of 9

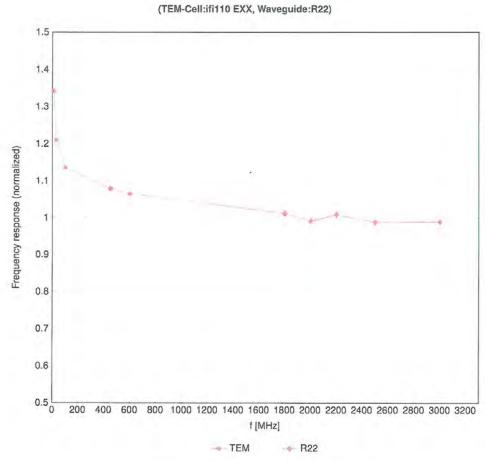
July 25, 2022

Parameters of Probe: EX3DV4 - SN:3930

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
1450	40.5	1.20	8.82	8.82	8.82	0.30	0.86	±12.0%
2450	39.2	1.80	7.78	7.78	7.78	0.34	0.90	±12.0%
2600	39.0	1.96	7.66	7.66	7.86	0.43	0.90	±12.0%
3500	37,9	2.91	6.95	6.95	6.95	0.30	1.30	±13.1%
3700	37.7	3.12	6.80	6.80	6.80	0.30	1.30	±13.1%
5200	36.0	4.66	5.64	5.64	5.64	0.40	1.80	±13.1%
5300	35.9	4,76	5.41	5.41	5.41	0.40	1.80	±13.1%
5500	35.6	4.96	5.05	5.05	5.05	0.40	1.80	±13.1%
5600	35.5	5.07	4.95	4.95	4.95	0.40	1.80	±13.1%
5800	35.3	5.27	4.89	4.89	4.89	0.40	1.80	±13.1%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (*ε* and *σ*) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*ε* and *σ*) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated frequencies.


indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary

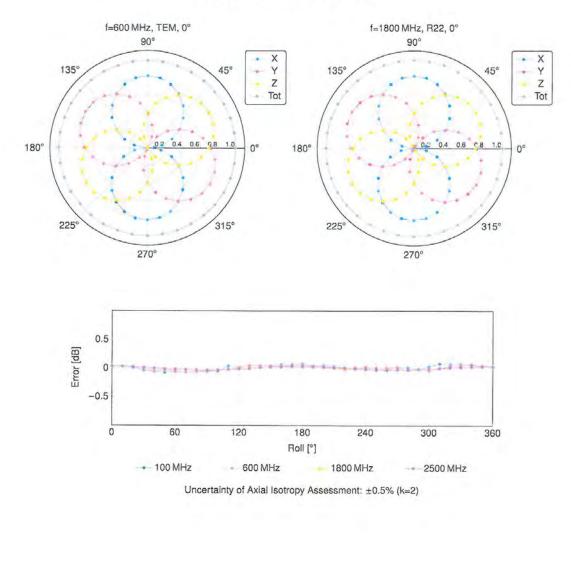
Certificate No: EX-3930_Jul22

Page 5 of 9

July 25, 2022

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

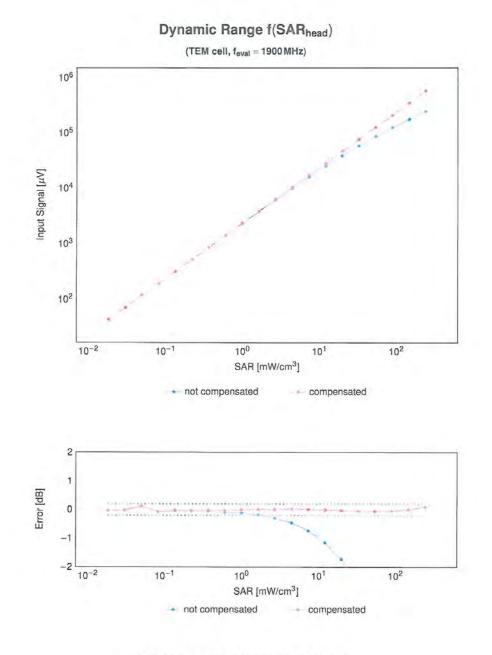

Certificate No: EX-3930_Jul22

Page 6 of 9

Dt&C

D

July 25, 2022

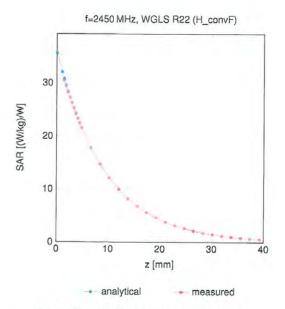


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

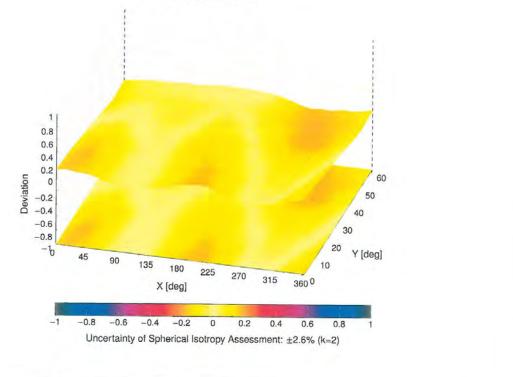
Certificate No: EX-3930_Jul22

Page 7 of 9

July 25, 2022


Certificate No: EX-3930_Jul22

Page 8 of 9


July 25, 2022

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , θ), f = 900 MHz

Certificate No: EX-3930_Jul22

Page 9 of 9

APPENDIX B. – Dipole Calibration Data

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

DT&C (Dymstec)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S

С

S

Certificate No: D900V2-1d175_May22

Object	D900V2 - SN:1d175					
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz					
Calibration date:	May 30, 2022					
		onal standards, which realize the physical unit				
he measurements and the uncert	ainties with confidence p	robability are given on the following pages and	d are part of the certificate.			
Il calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.			
		· · · · · · · · · · · · · · · · · · ·				
Calibration Equipment used (M&TE	E critical for calibration)					
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration			
ower meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23			
ower sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23			
ower sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23			
eference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23			
pe-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23			
eference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22			
AE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23			
	ID #	Check Date (in house)	Scheduled Check			
econdary Standards		00 0 1 1 1 /	In house check: Oct-22			
	SN: GB39512475	30-Oct-14 (in house check Oct-20)				
Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: GB39512475 SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22			
Power meter E4419B	Leading and second to be a					
ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22			
ower meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41093315	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22			
Power meter E4419B Power sensor HP 8481A	SN: US37292783 SN: MY41093315 SN: 100972	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22			
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature			
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Joanna Lleshaj	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician				
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22			
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Joanna Lleshaj	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	In house check: Oct-2; In house check: Oct-2; In house check: Oct-2; Signature			

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- · Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-1d175 May22

Page 2 of 8

S С S

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		_

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	11.0 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.72 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	53.8 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	11.2 W/kg ± 17.0 % (k=2)
SAP averaged over 10 and (40 m) of Poster TO		
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.78 W/kg

Certificate No: D900V2-1d175_May22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω + 0.2 jΩ	
Return Loss	- 31.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 3.4 jΩ	
Return Loss	- 27.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.414 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: D900V2-1d175_May22

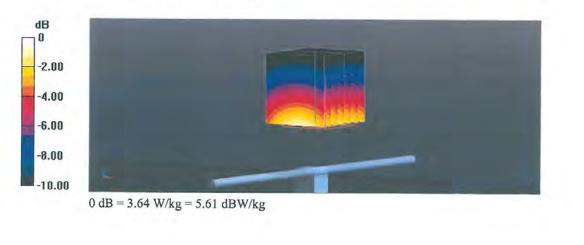
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 27.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

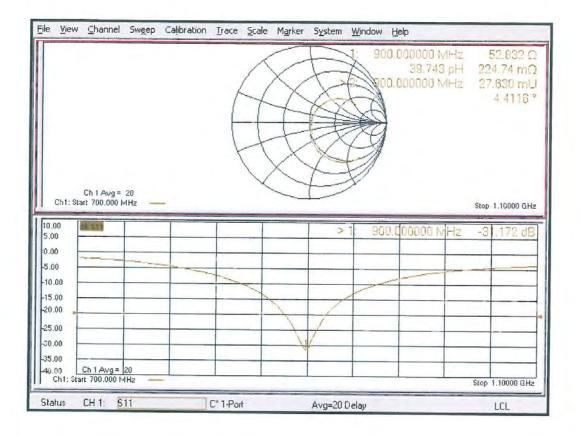
DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d175


Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 65.40 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.19 W/kg SAR(1 g) = 2.7 W/kg; SAR(10 g) = 1.72 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 64.7% Maximum value of SAR (measured) = 3.64 W/kg

Certificate No: D900V2-1d175_May22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D900V2-1d175_May22

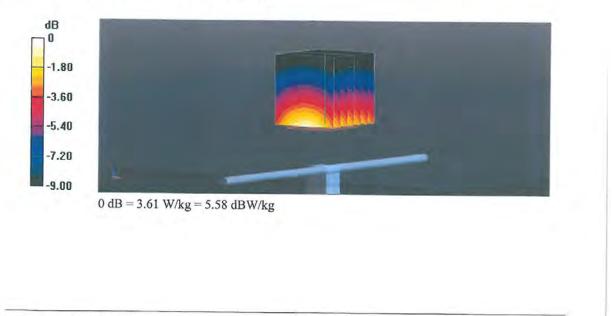
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 30.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d052

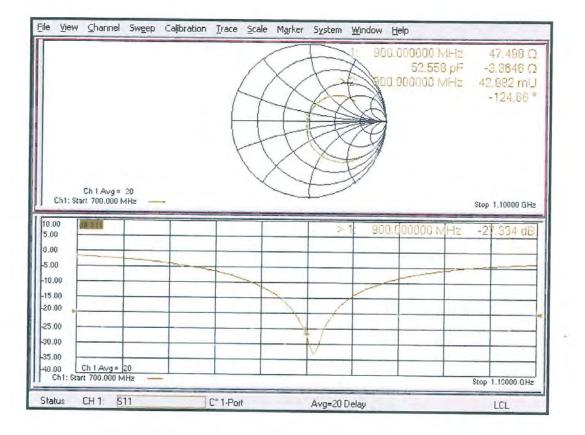

Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; σ = 1 S/m; ϵ_r = 53.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.81, 9.81, 9.81) @ 900 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.75 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.04 W/kg SAR(1 g) = 2.72 W/kg; SAR(10 g) = 1.78 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 3.61 W/kg



Certificate No: D900V2-1d175_May22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D900V2-1d175_May22

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D2450V2-920_Aug22

S

Object	D2450V2 - SN:9	20	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	August 18, 2022		
The measurements and the uncert All calibrations have been conduct	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}C$	d are part of the certificate.
Calibration Equipment used (M&T) Primary Standards	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
			and the second sec
ower sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
	and and the strength of the strength	04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	Apr-23 Apr-23
eference 20 dB Attenuator	SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	04-Apr-22 (No. 217-03527)	Apr-23
eference 20 dB Attenuator /pe-N mismatch combination	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: BH9394 (20k) SN: 310982 / 06327	04-Apr-22 (No. 217-03527)	Apr-23 Apr-23
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21)	Apr-23 Apr-23 Dec-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22)	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house)	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-23 Apr-23 Dec-22 May-23
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22

Certificate No: D2450V2-920_Aug22

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- · Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- . SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-920 Aug22

Page 2 of 8

С S

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	1
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.9 W/kg ± 17.0 % (k=2)
	As a second s	
SAP averaged over 10 cm3 (10 c) of Head TSI	condition	
	condition	6.00 M/I/-
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR for nominal Head TSL parameters	condition 250 mW input power normalized to 1W	6.26 W/kg 24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.04 W/kg

Certificate No: D2450V2-920_Aug22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.4 Ω + 2.2 jΩ	
Return Loss	- 25.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3 Ω + 4.9 jΩ	
Return Loss	- 25.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard,

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

WE AT A TOTAL	
Manufactured by	SPEAG
the second s	Gr Erio

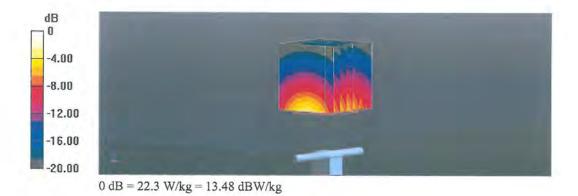
Certificate No: D2450V2-920_Aug22

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 18.08.2022

Test Laboratory: SPEAG, Zurich, Switzerland

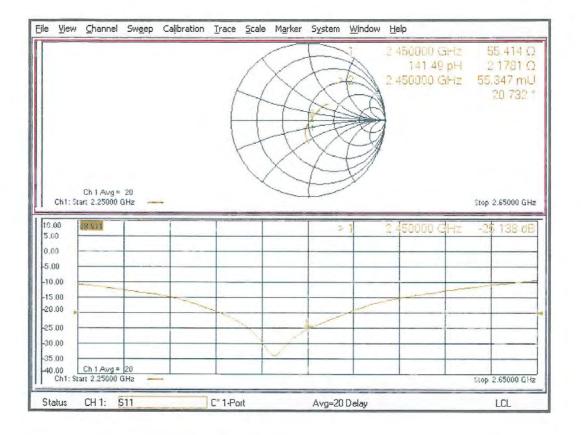

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.1 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.4% Maximum value of SAR (measured) = 22.3 W/kg



Certificate No: D2450V2-920_Aug22

Page 5 of 8

Impedance Measurement Plot for Head TSL

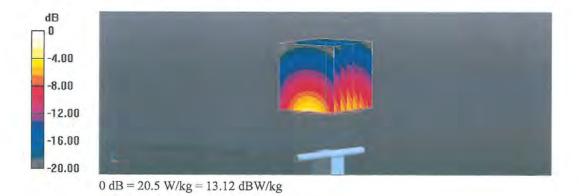
Certificate No: D2450V2-920_Aug22

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 18.08.2022

Test Laboratory: SPEAG, Zurich, Switzerland

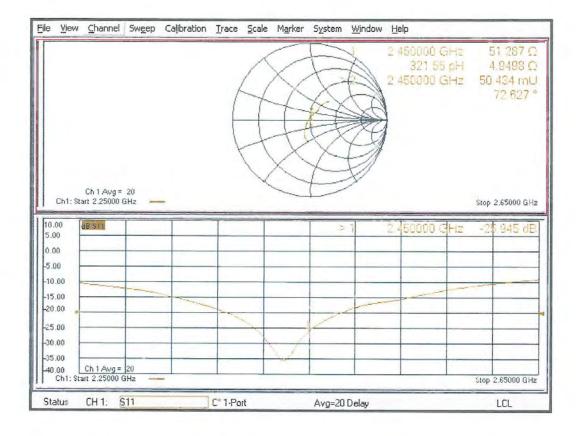

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.1 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.3 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 20.5 W/kg



Certificate No: D2450V2-920_Aug22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-920_Aug22

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D5GHzV2-1103_Jan23

Object	D5GHzV2 - SN:1103		
Calibration procedure(s)	QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz		
Calibration date:	January 25, 2023	3	
The measurements and the uncerta	ainties with confidence pr	onal standards, which realize the physical uni robability are given on the following pages an y facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
ower sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
stated and and state and the	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
ower sensor NRP-Z91	SN: 103245 SN: BH9394 (20k)	04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	Apr-23 Apr-23
Power sensor NRP-Z91 Reference 20 dB Attenuator			
ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: BH9394 (20k) SN: 310982 / 06327	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	Apr-23 Apr-23
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22)	Apr-23 Apr-23 Mar-23
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22)	Apr-23 Apr-23 Mar-23 Dec-23
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 Signature
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Re generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 Signature
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 Signature
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Paulo Pina	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function Laboratory Technician	Apr-23 Apr-23 Mar-23 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 Signature

Certificate No: D5GHzV2-1103_Jan23

Page 1 of 16

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

s

C

s

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1103_Jan23

Page 2 of 16

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx. dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	المتر الم	1000-000

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103_Jan23

Page 3 of 16

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6±6%	4.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.8 W/kg ± 19.9 % (k=2)
	and the second	and a same to fit al
SAR averaged over 10 cm ³ (10 o) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2,39 W/kg

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

SAR result with Head TSL at 5500 MHz

SAR for nominal Head TSL parameters

Condition	
100 mW input power	8.68 W/kg
normalized to 1W	86.8 W/kg ± 19.9 % (k=2)
condition	
	100 mW input power normalized to 1W

normalized to 1W

24.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103 Jan23

Page 4 of 16

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm² (10 g) of Head ISL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.18 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103_Jan23

Page 5 of 16

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.06 W/kg

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.9 ± 6 %	5.59 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103 Jan23

Page 6 of 16

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.18 W/kg

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103_Jan23

Page 7 of 16

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.05 W/kg

Certificate No: D5GHzV2-1103_Jan23

Page 8 of 16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.2 Ω - 6.4 jΩ	
Return Loss	- 23,9 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.4 Ω - 0.2 jΩ
Return Loss	- 36.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.7 Ω - 2,0 jΩ	
Return Loss	- 34.0 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.5 Ω + 0.8 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω + 1.5 jΩ	
Return Loss	- 32.4 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.4 Ω - 4.5 jΩ	
Return Loss	- 26.8 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.5 Ω + 2.1 jΩ	
Return Loss	- 31.6 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.4 Ω + 0.1 jΩ	
Return Loss	- 46.6 dB	

Certificate No: D5GHzV2-1103_Jan23

Page 9 of 16

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.4 Ω + 4.2 jΩ		
Return Loss	- 22.9 dB		

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.8 Ω + 2.5 jΩ		
Return Loss	- 27.2 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1,207 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

b American and here	
Manufactured by	SPEAG
	SFEAG

Certificate No: D5GHzV2-1103_Jan23

Page 10 of 16

DASY5 Validation Report for Head TSL

Date: 25.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.58$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 4.72$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.03$ S/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.18$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.18$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.18$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³

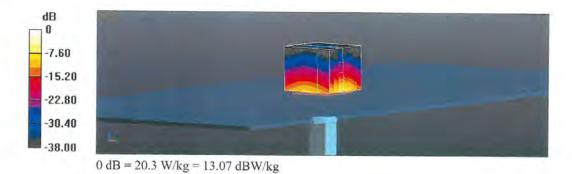
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601: Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.46 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 69.2% Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.84 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.4% Maximum value of SAR (measured) = 19.1 W/kg

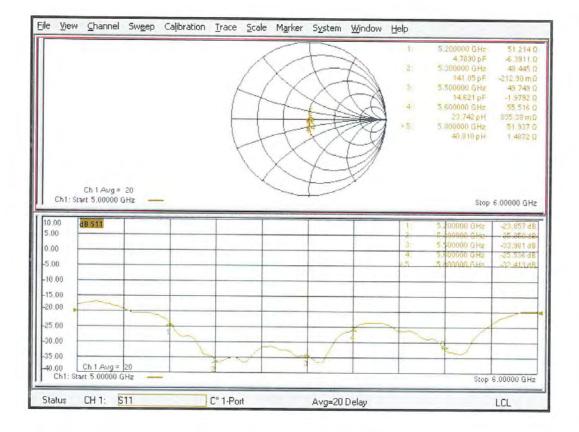
Certificate No: D5GHzV2-1103_Jan23


Page 11 of 16

Dt&C

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.72 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.68 W/kg; SAR(10 g) = 2.45 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 20.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.00 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.48 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.7% Maximum value of SAR (measured) = 19.7 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.84 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 19.3 W/kg

Certificate No: D5GHzV2-1103_Jan23

Page 12 of 16

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1103_Jan23

Page 13 of 16

DASY5 Validation Report for Body TSL

Date: 18.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 49$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 5.59$ S/m; $\varepsilon_r = 48.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 5.88$ S/m; $\varepsilon_r = 48.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\varepsilon_r = 48.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³

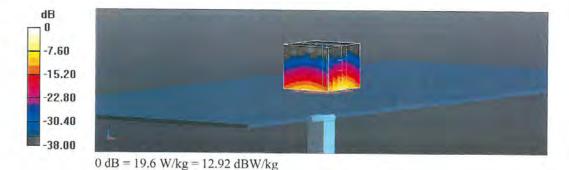
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.29 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.11 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.12 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 17.9 W/kg

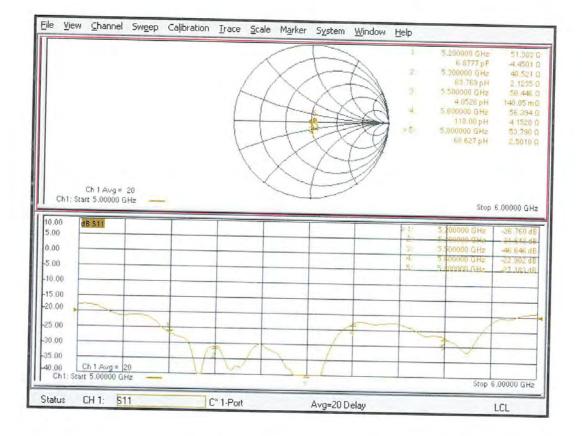
Certificate No: D5GHzV2-1103 Jan23


Page 14 of 16

Dt&C

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.78 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.97 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64% Maximum value of SAR (measured) = 19.6 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.41 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1103_Jan23

Page 15 of 16

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1103_Jan23

Page 16 of 16

APPENDIX C. – SAR Tissue Specifications

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Ingredients (% by weight) Tissue Type	Frequency (MHz)			
	900	1 900	2 450	5 200 ~ 5 800
	Head	Head	Head	Head
Water	41.45	55.24	71.88	65.52
Salt (NaCl)	1.45	0.310	0.160	-
Sugar	56.00	-	-	-
HEC	1.00	-	-	-
Bactericide	0.10	-	-	-
Triton X-100	-	-	19.97	17.24
DGBE	-	44.45	7.990	-
Diethylene glycol hexyl ether	-	-	-	17.24
Polysorbate (Tween) 80	-	-	-	
Target for Dielectric Constant	41.50	40.0	39.2	-
Target for Conductivity (S/m)	0.97	1.40	1.80	-

Table C 1 Composition of the Tissue Equivalent Matter

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose
DGBE:	99 % Di(ethylene glycol) butyl ether,[2	-(2-butoxyeth	oxy) ethanol]
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-te	etramethylbut	yl)phenyl] ether

APPENDIX D. – SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013.Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Freq.	-	Probe	Probe	Probe CAL. Point		PERM.	COND.	CW Validation			MOD. Validation		
[MHz]	Date	SN	Туре			(ɛr)	(σ)	Sensi- tivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
900	2023.02.14	3327	ES3DV3	900	Head	41.997	1.003	PASS	PASS	PASS	N/A	N/A	N/A
2 450	2023.02.16	3327	ES3DV3	2 450	Head	39.867	1.828	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
5 200	2022.08.19	3930	EX3DV4	5 200	Head	36.444	4.802	PASS	PASS	PASS	OFDM	N/A	PASS
5 300	2022.08.20	3930	EX3DV4	5 300	Head	36.417	4.896	PASS	PASS	PASS	OFDM	N/A	PASS
5 500	2022.08.23	3930	EX3DV4	5 500	Head	35.477	5.017	PASS	PASS	PASS	OFDM	N/A	PASS
5 600	2022.08.24	3930	EX3DV4	5 600	Head	35.323	5.096	PASS	PASS	PASS	OFDM	N/A	PASS
5 800	2022.08.25	3930	EX3DV4	5 800	Head	34.997	5.275	PASS	PASS	PASS	OFDM	N/A	PASS
	[MH2] 900 2 450 5 200 5 300 5 500 5 600	Image Date 900 2023.02.14 2 450 2023.02.16 5 200 2022.08.19 5 300 2022.08.20 5 500 2022.08.23 5 600 2022.08.24	Image Date SN 900 2023.02.14 3327 2 450 2023.02.16 3327 5 200 2022.08.19 3930 5 300 2022.08.20 3930 5 500 2022.08.23 3930 5 500 2022.08.24 3930	[MHz] Date SN Type 900 2023.02.14 3327 ES3DV3 2 450 2023.02.16 3327 ES3DV3 5 200 2022.08.19 3930 EX3DV4 5 300 2022.08.20 3930 EX3DV4 5 500 2022.08.23 3930 EX3DV4 5 600 2022.08.24 3930 EX3DV4	[MHz] Date SN Type Probe C/ 900 2023.02.14 3327 ES3DV3 900 2 450 2023.02.16 3327 ES3DV3 2450 5 200 2022.08.19 3930 EX3DV4 5 200 5 300 2022.08.20 3930 EX3DV4 5 300 5 500 2022.08.23 3930 EX3DV4 5 500 5 600 2022.08.24 3930 EX3DV4 5 600	[MHz] Date SN Type Probe CAL. Point 900 2023.02.14 3327 ES3DV3 900 Head 2 450 2023.02.16 3327 ES3DV3 2 450 Head 5 200 2022.08.19 3930 EX3DV4 5 200 Head 5 300 2022.08.20 3930 EX3DV4 5 300 Head 5 500 2022.08.23 3930 EX3DV4 5 500 Head 5 600 2022.08.24 3930 EX3DV4 5 600 Head	Freq. [MHz] Date Probe SN Probe Type Probe Probe SN Probe Type Probe Probe CAL. Point [] 900 2023.02.14 3327 ES3DV3 900 Head 41.997 2 450 2023.02.16 3327 ES3DV3 2 450 Head 39.867 5 200 2022.08.19 3930 EX3DV4 5 200 Head 36.414 5 300 2022.08.20 3930 EX3DV4 5 300 Head 36.417 5 500 2022.08.23 3930 EX3DV4 5 500 Head 35.477 5 600 2022.08.24 3930 EX3DV4 5 600 Head 35.323	Freq. [MHz] Date Probe SN Probe Type Probe Type Probe L. Point Image: Constraint of the state of the	Freq. [MHz] Date Probe SN Probe Type Probe Probe Type Probe Probe M Probe M Probe M M I I I I Sensi- tivity 900 2023.02.14 3327 ES3DV3 900 Head 41.997 1.003 PASS 2 450 2023.02.16 3327 ES3DV3 2 450 Head 39.867 1.828 PASS 5 200 2022.08.19 3930 EX3DV4 5 200 Head 36.414 4.802 PASS 5 300 2022.08.20 3930 EX3DV4 5 300 Head 36.417 4.896 PASS 5 500 2022.08.23 3930 EX3DV4 5 500 Head 35.477 5.017 PASS 5 600 2022.08.24 3930 EX3DV4 5 600 Head 35.323 5.096 PASS	Freq. [MHz] Date Probe SN Probe Type Probe CL . Point Image: Certe Cer	$ \begin{array}{ c c c c c } \hline \mbox{Probe} & \$	Freq. [MHz]DateProbe SNProbe TypeProbe TypeProbe Probe LinearityProbe SNProbe TypeProbe Probe LinearityMOD. Type9002023.02.143327ES3DV3900Head41.9971.003PASSPASSPASSN/A2 4502023.02.163327ES3DV32 450Head39.8671.828PASSPASSPASSOFDM/TDD5 2002022.08.193930EX3DV45 200Head36.4144.802PASSPASSPASSOFDM5 3002022.08.203930EX3DV45 300Head36.4174.896PASSPASSPASSOFDM5 5002022.08.233930EX3DV45 500Head35.4775.017PASSPASSPASSOFDM5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDM5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDM5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDM5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDM5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDM <td>Freq. [MHz]DateProbe SNProbe TypeProbe TypeProbe ProbeProbe TypeProbe ProbeProbe ProbeProbe Probe LinearityProbe IsortopyMOD. TypeDuty Pactor9002023.02.143327ES3DV3900Head41.9971.003PASSPASSPASSN/AN/A2 4502023.02.163327ES3DV32 450Head39.8671.828PASSPASSPASSOFDM/TDDPASS5 2002022.08.193930EX3DV45 200Head36.4174.802PASSPASSPASSOFDMN/A5 3002022.08.203930EX3DV45 300Head36.4174.896PASSPASSPASSOFDMN/A5 5002022.08.233930EX3DV45 500Head35.4775.017PASSPASSPASSOFDMN/A5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDMN/A</td>	Freq. [MHz]DateProbe SNProbe TypeProbe TypeProbe ProbeProbe TypeProbe ProbeProbe ProbeProbe Probe LinearityProbe IsortopyMOD. TypeDuty Pactor9002023.02.143327ES3DV3900Head41.9971.003PASSPASSPASSN/AN/A2 4502023.02.163327ES3DV32 450Head39.8671.828PASSPASSPASSOFDM/TDDPASS5 2002022.08.193930EX3DV45 200Head36.4174.802PASSPASSPASSOFDMN/A5 3002022.08.203930EX3DV45 300Head36.4174.896PASSPASSPASSOFDMN/A5 5002022.08.233930EX3DV45 500Head35.4775.017PASSPASSPASSOFDMN/A5 6002022.08.243930EX3DV45 600Head35.3235.096PASSPASSPASSOFDMN/A

Table D.1 SAR System Validation Summary

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

APPENDIX E. – Description of Test Equipment

Dt&C

E.1 SAR Measurement Setup

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. E.1.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-8 700K 3.70 GHz / i7-3 770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

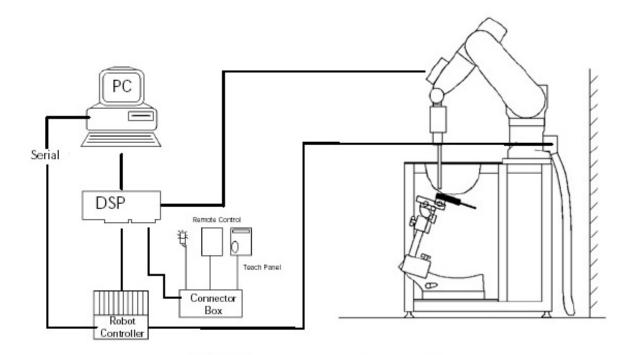


Figure E.1.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

E.2 Probe Specification

Frequency	4 MHz to 4 GHz/4 MHz to 10 GHz				
Linearity	±0.2 dB (30 MHz to 4 GHz/30 MHz to 10 GHz)				
Dynamic	10 μW/g to > 100 mW/g	54.7			
Range	Linearity : ±0.2 dB	Δ- BEAM			
Dimensions	Overall length: 337 mm	Eiguro E 2.1 Triongular Broke Configurations			
Tip length	20 mm	Figure E.2.1 Triangular Probe Configurations			
Body diameter	12 mm	p 7			
Tip diameter	3.9 mm/2.5 mm	e la			
Distance from probe tip to sensor center 2.0 mm/1.0 mm					
Application	SAR Dosimetry Testing Compliance tests of mobile phones				
		Figure E.2.2 Probe Thick-Film Technique			

DAE System

The SAR measurements were conducted with the dosimetric probe ES3DV3 and EX3DV4 designed in the classical triangular configuration(see E.2.1) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

E.3 E-Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10 %. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

σ

D

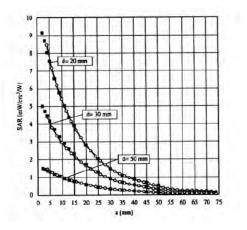
SAR =
$$C\frac{\Delta T}{\Delta t}$$

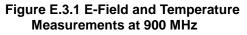
where:

where:

 $\mathsf{SAR} = \frac{|\mathsf{E}|^2 \cdot \sigma}{\rho}$

simulated tissue conductivity,


Tissue density (1.25 g/cm³ for brain tissue)


 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

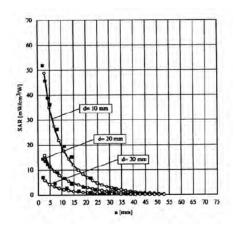


Figure E.3.2 E-Field and Temperature Measurements at 1 800 MHz

E.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$W_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 Cf = crest factor of exciting field (DASY parameter
 dcp_{i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

V,	= compensated signal of channel i (i = x,y,z)
Norm,	= sensor sensitivity of channel i (i = x,y,z)
1.1	μV/(V/m) ² for E-field probes
ConvF	= sensitivity of enhancement in solution
Ei	= electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_{z}^{2} + E_{y}^{2} + E_{z}^{2}}$$

 $P_{pur} = \frac{E_{tot}}{3770}$

The primary field data are used to calculate the derived field units.

$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$	with	SAR E _{tot}	= local specific absorption rate in W/g = total field strength in V/m
		σ	= conductivity in [mho/m] or [Siemens/m]
		P	= equivalent tissue density in g/cm ³

The power flow density is calculated assuming the excitation field to be a free space field.

with P_{pwe} = equivalent power density of a plane wave in W/cm² E_{tor} = total electric field strength in V/m

E.5 SAM Twin Phantom

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. E.5.1)

Phantom

SAM Twin Phantom Specification:

Construction	 The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.
Shell Thickness	$(2.0 \pm 0.2) \text{ mm}$
Filling Volume	Approx. 25 liters

Filling Volume Approx. 25 liters Dimensions Length: 1000 mm Width: 500 mm Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications:

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. E.5.2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure E.5.2 Sam Twin Phantom shell

E.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst case condition (the hand absorbs antenna output power), the hand is emitted

worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure E.6.1 Mounting Device

E.7 Automated Test System Specifications

Positioner

Robot Repeatability No. of axis	Stäubli Unimation Corp. Robot Model: TX60L/TX90XL 0.02 mm 6				
Data Acquisition Electro	onic (DAE) System				
<u>Cell Controller</u> Processor Clock Speed Operating System Data Card	Intel Core i7-8 700K / i7-3 770 3.70 GHz / 3.40 GHz Window 10 Pro / Windows 7 Professional DASY5 PC-Board				
Data Converter Features Software Connecting Lines	Signal, multiplexer, A/D converter. & control logic DASY5 Optical downlink for data and status info Optical uplink for commands and clock				
PC Interface Card Function	24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot				
<u>E-Field Probes</u> Model Construction Frequency Linearity	ES3DV3 S/N: 3327 / EX3DV4 S/N: 3930 Triangular core fiber optic detection system 4 MHz to 4 GHz/4 MHz to 10 GHz ±0.2 dB (30 MHz to 4 GHz/30 MHz to 10 GHz)				
<u>Phantom</u> Phantom Shell Material Thickness	SAM Twin Phantom (V5.0) Composite (2.0 ± 0.2) mm				

Figure E.7.1 DASY5 Test System