SAR Reference Waveguide Calibration Report Ref: ACR.109.9.18.SATU.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET,BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE WAVEGUIDE > FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA 33 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 04/19/2018 ### Summary: This document presents the method and results from an accredited SAR reference waveguide calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|---------------| | Prepared by : | Jérôme LUC | Product Manager | 4/19/2018 | JES | | Checked by: | Jérôme LUC | Product Manager | 4/19/2018 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 4/19/2018 | Jum Prethough | | | Customer Name | | | |---------------|---------------|--|--| | Distribution: | SHENZHEN NTEK | | | | | TESTING | | | | | TECHNOLOGY | | | | | CO., LTD. | | | | Issue | Date | Modifications | | |-------|-----------|-----------------|--| | A | 4/19/2018 | Initial release | # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|------------------------------|----| | 2 | Dev | ice Under Test | | | 3 | Proc | luct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Return Loss Requirements | 4 | | | 4.2 | Mechanical Requirements | | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results5 | | | | 6.1 | Return Loss | 5 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | Measurement Result | 7 | | | 7.3 | Body Measurement Result | 10 | | 8 | List | of Equipment 13 | | #### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A ### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### 2 DEVICE UNDER TEST | | Device Under Test | |--------------------------------|---| | Device Type | COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE | | Manufacturer | MVG | | Model | SWG5500 | | Serial Number | SN 13/14 WGA 33 | | Product Condition (new / used) | Used | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. # 4 MEASUREMENT METHOD The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards. # 4.2 MECHANICAL REQUIREMENTS The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide. Page: 4/13 ### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | ### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|-----------------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | ### 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS IN HEAD LIQUID Page: 5/13 # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------------------------| | 5200 | -8.23 | -8 | $26.31 \Omega + 19.19 j\Omega$ | | 5400 | -12.02 | -8 | 83.38 Ω - 2.98 jΩ | | 5600 | -14.04 | -8 | 33.47 Ω - 0.96 jΩ | | 5800 | -12.03 | -8 | $59.85 \Omega + 26.64 jΩ$ | ### 6.2 <u>RETURN LOSS IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------------------------| | 5200 | -9.40 | -8 | 97.78 $Ω$ + 15.77 j $Ω$ | | 5400 | -12.11 | -8 | 32.53 Ω - 11.03 jΩ | | 5600 | -14.73 | -8 | $67.48 \Omega + 13.08 j\Omega$ | | 5800 | -12.37 | -8 | 36.66 Ω - 16.68 jΩ | # 6.3 MECHANICAL DIMENSIONS | T | L (1 | mm) | W (| mm) | L _f (| mm) | Wf | (mm) | T (1 | mm) | |---------------------|--------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|--------------|--------------| | Frequenc
y (MHz) | Require
d | Measure
d | | 5200 | 40.39 ± 0.13 | PASS | 20.19 ± 0.13 | PASS | 81.03 ± 0.13 | PASS | 61.98 ± 0.13 | PASS | 5.3* | PASS | | 5800 | 40.39 ± 0.13 | PASS | 20.19 ± 0.13 | PASS | 81.03 ± 0.13 | PASS | 61.98 ± 0.13 | PASS | 4.3* | PASS | ^{*} The tolerance for the matching layer is included in the return loss measurement. ### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A Figure 1: Validation Waveguide Dimensions ### 7 VALIDATION MEASUREMENT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell. # 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative peri | mittivity (ε _r ′) | Conductivity (σ) S/m | | | |------------------|---------------|------------------------------|----------------------|----------|--| | | required | measured | required | measured | | | 5000 | 36.2 ±10 % | | 4.45 ±10 % | | | | 5100 | 36.1 ±10 % | | 4.56 ±10 % | | | | 5200 | 36.0 ±10 % | PASS | 4.66 ±10 % | PASS | | | 5300 | 35.9 ±10 % | | 4.76 ±10 % | | | | 5400 | 35.8 ±10 % | PASS | 4.86 ±10 % | PASS | | | 5500 | 35.6 ±10 % | | 4.97 ±10 % | | | | 5600 | 35.5 ±10 % | PASS | 5.07 ±10 % | PASS | | | 5700 | 35.4 ±10 % | | 5.17 ±10 % | | | | 5800 | 35.3 ±10 % | PASS | 5.27 ±10 % | PASS | | | 5900 | 35.2 ±10 % | | 5.38 ±10 % | | | | 6000 | 35.1 ±10 % | | 5.48 ±10 % | | | # 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power. Page: 7/13 # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A | Software | OPENSAR V4 | | | | |--|--|--|--|--| | Phantom | SN 20/09 SAM71 | | | | | Probe | SN 18/11 EPG122 | | | | | Liquid | Head Liquid Values 5200 MHz: eps':35.64 sigma: 4.67
Head Liquid Values 5400 MHz: eps':36.44 sigma: 4.87
Head Liquid Values 5600 MHz: eps':36.66 sigma: 5.17
Head Liquid Values 5800 MHz: eps':35.31 sigma: 5.31 | | | | | Distance between dipole waveguide and liquid | 0 mm | | | | | Area scan resolution | dx=8mm/dy=8mm | | | | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | | | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | | | | Input power | 20 dBm | | | | | Liquid Temperature | 21 °C | | | | | Lab Temperature | 21 °C | | | | | Lab Humidity | 45 % | | | | | Frequency (MHz) | 1 g SA | R (W/kg) | 10 g SAR (W/kg) | | | |-----------------|----------|----------------|-----------------|--------------|--| | | required | measured | required | measured | | | 5200 | 159.00 | 160.94 (16.09) | 56.90 | 55.97 (5.60) | | | 5400 | 166.40 | 170.60 (17.06) | 58.43 | 58.93 (5.89) | | | 5600 | 173.80 | 175.02 (17.50) | 59.97 | 59.90 (5.99) | | | 5800 | 181.20 | 184.13 (18.41) | 61.50 | 62.74 (6.27) | | Page: 8/13 # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # SAR MEASUREMENT PLOTS @ 5600 MHz # SAR MEASUREMENT PLOTS @ 5800 MHz Page: 9/13 # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ε _r ') | Conductivity (a) S/m | | | |------------------|--------------|------------------------------|----------------------|----------|--| | | required | measured | required | measured | | | 5200 | 49.0 ±10 % | PASS | 5.30 ±10 % | PASS | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | | 5400 | 48.7 ±10 % | PASS | 5.53 ±10 % | PASS | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | | 5600 | 48.5 ±10 % | PASS | 5.77 ±10 % | PASS | | | 5800 | 48.2 ±10 % | PASS | 6.00 ±10 % | PASS | | # 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |--|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values 5200 MHz: eps':48.64 sigma: 5.51
Body Liquid Values 5400 MHz: eps':46.52 sigma: 5.77
Body Liquid Values 5600 MHz: eps':46.79 sigma: 5.77
Body Liquid Values 5800 MHz: eps':47.04 sigma: 6.10 | | Distance between dipole waveguide and liquid | 0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency (MHz) | 1 g SAR (W/kg) | 10 g SAR (W/kg) | |-----------------|----------------|-----------------| | | measured | measured | | 5200 | 156.85 (15.68) | 55.20 (5.52) | | 5400 | 163.97 (16.40) | 57.26 (5.73) | | 5600 | 166.58 (16.66) | 57.87 (5.79) | | 5800 | 169.30 (16.93) | 58.49 (5.85) | Page: 10/13 # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # BODY SAR MEASUREMENT PLOTS @ 5400 MHz # BODY SAR MEASUREMENT PLOTS @ 5600 MHz Page: 11/13 # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # BODY SAR MEASUREMENT PLOTS @ 5800 MHz ### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.109.9.18.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |--|------------------------|-----------------|---|---|--|--| | Equipment Manufacturer / Identification No Model | | | Current
Calibration Date | Next Calibration
Date | | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2016 | 02/2019 | | | | Calipers | Carrera | CALIPER-01 | 01/2017 | 01/2020 | | | | Reference Probe | MVG | EPG122 SN 18/11 | 10/2017 | 10/2018 | | | | Multimeter | Keithley 2000 | 1188656 | 01/2017 | 01/2020 | | | | Signal Generator | Agilent E4438C | MY49070581 | 01/2017 | 01/2020 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | | | | | Power Meter | HP E4418A | US38261498 | 01/2017 | 01/2020 | | | | Power Sensor | HP ECP-E26A | US37181460 | 01/2017 | 01/2020 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature and
Humidity Sensor | Control Company | 150798832 | 11/2017 | 11/2020 | | | # <Justification of the extended calibration> If dipoles are verified in return loss (<-20dB, within 20% of prior calibration for below 3GHz, and <-8dB, within 20% of prior calibration for 5GHz to 6GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. # <Head 750MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -35.83 | - | 51.3 | - | Apr. 19, 2018 | | -35.948 | 0.329 | 51.314 | 0.014 | Apr. 18, 2019 | | -35.975 | 0.405 | 51.341 | 0.041 | Apr. 17, 2020 | <Body 750MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -32.65 | - | 50.8 | - | Apr. 19, 2018 | | -32.051 | 1.835 | 51.838 | 1.038 | Apr. 18, 2019 | | -32.075 | 1.761 | 51.817 | 1.017 | Apr. 17, 2020 | # <Head 835MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -23.67 | - | 56.8 | - | Apr. 19, 2018 | | -23.947 | 1.17 | 56.615 | 0.185 | Apr. 18, 2019 | | -23.920 | 1.056 | 56.632 | 0.168 | Apr. 17, 2020 | <Body 835MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -27.64 | - | 53.5 | - | Apr. 19, 2018 | | -27.789 | 0.54 | 53.734 | 0.234 | Apr. 18, 2019 | | -27.735 | 0.344 | 53.747 | 0.247 | Apr. 17, 2020 | # <Head 1800MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -26.62 | - | 47.3 | - | Apr. 19, 2018 | | -25.8 | 3.080 | 45.156 | 2.144 | Apr. 18, 2019 | | -25.880 | 2.780 | 45.246 | 2.054 | Apr. 17, 2020 | <Body 1800MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -27.86 | - | 46.2 | - | Apr. 19, 2018 | | -27.017 | 3.026 | 44.51 | 1.69 | Apr. 18, 2019 | | -27.027 | 2.990 | 44.32 | 1.88 | Apr. 17, 2020 | # <Head 1900MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -25.15 | - | 52.6 | - | Apr. 19, 2018 | | -23.144 | 7.976 | 53.604 | 1.004 | Apr. 18, 2019 | | -23.923 | 4.879 | 53.344 | 0.744 | Apr. 17, 2020 | # <Body 1900MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -22.99 | - | 47.6 | - | Apr. 19, 2018 | | -22.679 | 1.353 | 49.311 | 1.711 | Apr. 18, 2019 | | -22.690 | 1.305 | 49.385 | 1.785 | Apr. 17, 2020 | # <Head 2450MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -28.15 | - | 53.9 | - | Apr. 19, 2018 | | -26.296 | 6.586 | 54.99 | 1.09 | Apr. 18, 2019 | | -26.456 | 6.018 | 54.65 | 0.75 | Apr. 17, 2020 | # <Body 2450MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -22.99 | - | 57.6 | - | Apr. 19, 2018 | | -20.498 | 10.840 | 56.16 | 1.44 | Apr. 18, 2019 | | -20.445 | 11.07 | 56.26 | 8.66 | Apr. 17, 2020 | # <Head 2600MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -20.85 | - | 54.9 | - | Apr. 19, 2018 | | -21.627 | 3.727 | 54.412 | 0.488 | Apr. 18, 2019 | | -21.660 | 3.885 | 54.470 | 0.43 | Apr. 17, 2020 | # <Body 2600MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -23.23 | - | 50.6 | - | Apr. 19, 2018 | | -22.966 | 1.136 | 49.629 | 0.971 | Apr. 18, 2019 | | -22.959 | 1.1666 | 49.865 | 0.735 | Apr. 17, 2020 | # <Head 5200MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -8.23 | - | 26.31 | - | Apr. 19, 2018 | | -8.317 | 1.057 | 26.673 | 0.363 | Apr. 18, 2019 | | -8.200 | 0.365 | 26.412 | 0.102 | Apr. 17, 2020 | # <Body 5200MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -9.40 | - | 97.78 | - | Apr. 19, 2018 | | -9.090 | 3.298 | 98.293 | 0.513 | Apr. 18, 2019 | | -9.022 | 4.021 | 98.688 | 0.908 | Apr. 17, 2020 | # <Head 5800MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -12.03 | - | 59.85 | - | Apr. 19, 2018 | | -12.638 | 5.054 | 55.318 | 4.532 | Apr. 18, 2019 | | -12.808 | 6.467 | 55.209 | 4.641 | Apr. 17, 2020 | # <Body 5800MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -12.37 | _ | 36.66 | - | Apr. 19, 2018 | | -12.103 | 2.158 | 38.023 | 1.363 | Apr. 18, 2019 | | -12.203 | 1.350 | 38.143 | 1.483 | Apr. 17, 2020 | The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. _ END____