

# Test Report TR3664D

**Prepared for:** 

 Equipment Under Test:
 Sterling LWB+

 Requirement(s):
 FCC 2.1091 RSS-102

 Test Date(s):
 3/9/2023-3/13/2023

 Laird Connectivity

> Attn: Jonathan Kaye W66 N220 Commerce Ct. Cedarburg, WI 53012

Report Issued by: Anthony Smith, EMC Engineering Specialist

Signature: Date: 3/17/2023

Report Reviewed by: Adam Alger, Laboratory Manager

Signature: Afair O Alger Date: 3/22/2023

Report Constructed by: Anthony Smith, EMC Engineering Specialist

Signature: Date: 3/17/2023

This test report may not be reproduced, except in full, without approval of Laird Connectivity LLC

Company: Laird Connectivity

Report: TR3664D

Quote: NBO-12-2022-005678

Name: Sterling LWB+

Model: Sterling LWB+

Serial: 00071



### **C**ONTENTS

| C | ontents | 5                                                  | 2  |
|---|---------|----------------------------------------------------|----|
|   | Laird ( | Connectivity Test Services in Review               | 3  |
| 1 | Tes     | t Report Summary                                   | 4  |
| 2 | Clie    | nt Information                                     | 5  |
|   | 2.1     | Equipment Under Test (EUT) Information             | 5  |
|   | 2.2     | Product Description                                | 5  |
|   | 2.3     | Modifications Incorporated for Compliance          | 5  |
|   | 2.4     | Deviations and Exclusions from Test Specifications | 5  |
|   | 2.5     | Additional Information                             | 5  |
|   | 2.6     | Additional Information                             | 5  |
| 3 | Ref     | erences                                            | 6  |
| 4 | Und     | ertainty Summary                                   | 7  |
| 5 | Tes     | t Data                                             | 8  |
|   | 5.1     | Antenna Port Conducted Emissions                   | 8  |
| 6 | FCC     | Rf Exposure                                        | 10 |
|   | 6.1     | Calculations                                       | 10 |
| 7 | ISE     | O Canada Rf Exposure                               | 12 |
|   | 7.1     | Calculations                                       | 12 |
| Q | Rev     | icion History                                      | 1/ |



### **Laird Connectivity Test Services in Review**

The Laird Connectivity LLC laboratory located at W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA is recognized through the following organizations:



### A2LA – American Association for Laboratory Accreditation

Accreditation based on ISO/IEC 17025:2017 with Electrical (EMC) Scope

A2LA Certificate Number: 1255.01

Scope of accreditation includes all test methods listed herein unless otherwise noted



### Federal Communications Commission (FCC) - USA

Accredited Test Firm Registration Number: 953492

Recognition of two 3 meter Semi-Anechoic Chambers



### Innovation, Science and Economic Development Canada

Accredited U.S. Identification Number: US0218

Recognition of two 3 meter Semi-Anechoic Chambers

| Company: Laird Connectivity |                            | Name: Sterling LWB+  |
|-----------------------------|----------------------------|----------------------|
| Report: TR3664D             | Page <b>3</b> of <b>14</b> | Model: Sterling LWB+ |
| Quote: NBO-12-2022-005678   |                            | Serial: 00071        |



### 1 TEST REPORT SUMMARY

During March 9<sup>th</sup>, 2023 to March 13<sup>th</sup>, 2023 the Equipment Under Test (EUT), Sterling LWB+, as provided by Laird Connectivity was tested to the following requirements for the purpose of a Class 2 permissive change to add an antenna:

| Requirements                  | Description                                 | Method          | Compliant |
|-------------------------------|---------------------------------------------|-----------------|-----------|
| FCC 1.1307, 2.1091,<br>2.1093 | Radiofrequency Radiation Exposure<br>Limits | FCC KDB 447498  | Yes       |
| ISED Canada: RSS-<br>102      | Radiofrequency Radiation Exposure<br>Limits | RSS-102 § 2.5.2 | Yes       |

#### Notice:

The results relate only to the item tested as configured and described in this report. Any additional configurations, modes of operation, or modifications made to the equipment under test after the specified test date(s) are at the decision of the client and may not apply to the data seen in this test report.

The decision rule for Pass / Fail assessment to the specification or standard listed in this test report has been agreed upon by the client and laboratory to be as follows:

| Measurement Type      | Rule                           |
|-----------------------|--------------------------------|
| Emissions – Amplitude | 1 dB below specified limit     |
| Emissions – Frequency | 1% less than the specification |
| Immunity              | Tested at specified level      |



### **2** CLIENT INFORMATION

| Company Name          | Laird Connectivity                            |
|-----------------------|-----------------------------------------------|
| <b>Contact Person</b> | Jonathan Kaye                                 |
| Address               | W66N220 Commerce Court<br>Cedarburg, WI 53012 |

### 2.1 Equipment Under Test (EUT) Information

The following information has been supplied by the client

| Product Name  | Sterling LWB+ |
|---------------|---------------|
| Model Number  | Sterling LWB+ |
| Serial Number | 00071         |
| FCC ID        | SQG-LWBPLUS   |
| IC ID         | 3147A-LWBPLUS |

### 2.2 Product Description

Short

### 2.3 Modifications Incorporated for Compliance

None noted at time of test

### 2.4 Deviations and Exclusions from Test Specifications

None noted at time of test

### 2.5 Additional Information

Opti PA226SA 12VDC Power Supply. Laird Connectivity SU60-SOMC Carrier Board used for programming. Dell Latitude 5480 Laptop used to program radio.

BTLRU (Bluetooth Laird Regulatory Utility) Version 10.0.0.178 utilized to control Bluetooth radio.

LRU (Laird Regulatory Utility) Version 10.54.0.13 utilized to control WLAN radio.

#### 2.6 Additional Information

This testing is for a permissive change to add the iFlex-Pifa Antenna, with an antenna gain of 3.1 dBi, to the list of antennas usable by the Sterling LWB+.

| Company: Laird Connectivity |                            | Name: Sterling LWB+  |
|-----------------------------|----------------------------|----------------------|
| Report: TR3664D             | Page <b>5</b> of <b>14</b> | Model: Sterling LWB+ |
| Quote: NBO-12-2022-005678   |                            | Serial: 00071        |



### 3 REFERENCES

| Publication | Edition | Date | AMD 1 |
|-------------|---------|------|-------|
| FCC eCFR    | -       | 2023 | -     |
| RSS-102     | 5       | 2015 | 2021  |
| KDB 447498  | -       | 2015 | -     |



### 4 UNCERTAINTY SUMMARY

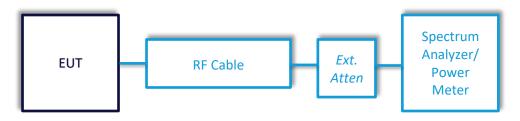
Using the guidance of the following publications the calculated measurement uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k = 2.

| References      |
|-----------------|
| CISPR 16-4-1    |
| CISPR 16-4-2    |
| CISPR 32        |
| ANSI C63.23     |
| A2LA P103       |
| A2LA P103c      |
| ETSI TR 100-028 |

| Measurement Type            | Configuration                 | Uncertainty ±  |
|-----------------------------|-------------------------------|----------------|
| Radiated Emissions          | Biconical Antenna             | 5.0 dB         |
| Radiated Emissions          | Log Periodic Antenna          | 5.3 dB         |
| Radiated Emissions          | Horn Antenna                  | 4.7 dB         |
| AC Line Conducted Emissions | Artificial Mains Network      | 3.4 dB         |
| Telecom Conducted Emissions | Asymmetric Artificial Network | 4.9 dB         |
| Disturbance Power Emissions | Absorbing Clamp               | 4.1 dB         |
| Radiated Immunity           | 3 Volts/meter                 | 2.2 dB         |
| Conducted Immunity          | CDN/EM/BCI                    | 2.4/3.5/3.4 dB |
| EFT Burst/Surge             | Peak pulse voltage            | 164 volts      |
| ESD Immunity                | 15 kV level                   | 1377 Volts     |

| Parameter                                  | ETSI U.C. ±        | U.C. ±                |
|--------------------------------------------|--------------------|-----------------------|
| Radio Frequency, from F0                   | 1x10 <sup>-7</sup> | 0.55x10 <sup>-7</sup> |
| Occupied Channel Bandwidth                 | 5 %                | 2 %                   |
| RF conducted Power (Power Meter)           | 1.5 dB             | 1.2 dB                |
| RF conducted emissions (Spectrum Analyzer) | 3.0 dB             | 1.7 dB                |
| All emissions, radiated                    | 6.0 dB             | 5.3 dB                |
| Temperature                                | 1° C               | 0.65° C               |
| Humidity                                   | 5 %                | 2.9 %                 |
| Supply voltages                            | 3 %                | 1 %                   |

| Company: Laird Connectivity |                            | Name: Sterling LWB+  |
|-----------------------------|----------------------------|----------------------|
| Report: TR3664D             | Page <b>7</b> of <b>14</b> | Model: Sterling LWB+ |
| Quote: NBO-12-2022-005678   |                            | Serial: 00071        |




### 5 TEST DATA

### **5.1** Antenna Port Conducted Emissions

| Description of<br>Measurement | The direct measurement of emissions at the antenna port of the EUT is achieved by use of a RF connection to a spectrum analyzer or power meter.  The cable and attenuator factors are loaded into the analyzer or power meter allowing for direct measurement readings without the need for further corrections. |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example<br>Calculations       | Measurement (dBm) + Cable factor (dB) + External Attenuator (dB) = Corrected Reading (dBm)  Margin (dB) = Limit (dBm) - Corrected Reading (dBm)                                                                                                                                                                  |

### **Block Diagram**



| Company: Laird Connectivity |                            | Name: Sterling LWB+  |  |
|-----------------------------|----------------------------|----------------------|--|
| Report: TR3664D             | Page <b>8</b> of <b>14</b> | Model: Sterling LWB+ |  |
| Quote: NBO-12-2022-005678   |                            | Serial: 00071        |  |



# 5.1.1 Antenna Port Conducted Emissions – RF Output Power

# **Output Power Data from Original Test Reports**

| Mode / Channel          | Antenna<br>Gain (dBi) | Output Power (dBm) | Limit (dBm) | Margin (dB) | Meas. Type |
|-------------------------|-----------------------|--------------------|-------------|-------------|------------|
| BT EDR3 / 0             | 3.1                   | 7.23               | 30          | 22.77       | Peak       |
| BT Low Energy /<br>Ch 0 | 3.1                   | 5.81               | 30          | 24.19       | Peak       |
| WLAN 6Mbps /<br>Ch 6    | 3.1                   | 26.31              | 30          | 3.69        | Peak       |

| Company: Laird Connectivity |                            | Name: Sterling LWB+  |
|-----------------------------|----------------------------|----------------------|
| Report: TR3664D             | Page <b>9</b> of <b>14</b> | Model: Sterling LWB+ |
| Quote: NBO-12-2022-005678   |                            | Serial: 00071        |



### 6 FCC RF EXPOSURE

### 6.1 Calculations

### Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

### **BT Classic EDR3:**

| Maximum peak output power at antenna input terminal:         | 7.23 (dBm)               |
|--------------------------------------------------------------|--------------------------|
| Tune-up tolerance:                                           | 1.00 (dB)                |
| Maximum peak output power at antenna input terminal:         | 6.653 (mW)               |
| Antenna gain:                                                | 3.1 (dBi)                |
| Maximum antenna gain:                                        | 2.042 (numeric)          |
| Prediction distance:                                         | 20 (cm)                  |
| Prediction frequency:                                        | 2402 (MHz)               |
| MPE limit for uncontrolled exposure at prediction frequency: | 1.00 (mW/cm <sup>2</sup> |
| Power density at prediction frequency:                       | 0.00270 (mW/cm²          |

### BT LE:

| Maximum peak output power at antenna input terminal:         | 5.81 (dBm)      |
|--------------------------------------------------------------|-----------------|
| Tune-up tolerance:                                           | 1.00 (dB)       |
| Maximum peak output power at antenna input terminal:         | 4.797 (mW)      |
| Antenna gain:                                                | 3.1 (dBi)       |
| Maximum antenna gain:                                        | 2.042 (numeric) |
| Prediction distance:                                         | 20 (cm)         |
| Prediction frequency:                                        | 2402 (MHz)      |
| MPE limit for uncontrolled exposure at prediction frequency: | 1.00 (mW/cm²)   |

Power density at prediction frequency: 0.00195 (mW/cm²)

| Company: Laird Connectivity |                             | Name: Sterling LWB+  |
|-----------------------------|-----------------------------|----------------------|
| Report: TR3664D             | Page <b>10</b> of <b>14</b> | Model: Sterling LWB+ |
| Quote: NBO-12-2022-005678   |                             | Serial: 00071        |



### WLAN 802.11g 6Mbps:

| Maximum peak output power at antenna input terminal:         | 26.31 (dBm)     |
|--------------------------------------------------------------|-----------------|
| Tune-up tolerance:                                           | 1.00 (dB)       |
| Maximum peak output power at antenna input terminal:         | 538.270 (mW)    |
| Antenna gain:                                                | 3.1 (dBi)       |
| Maximum antenna gain:                                        | 2.042 (numeric) |
| Prediction distance:                                         | 20 (cm)         |
| Prediction frequency:                                        | 2437 (MHz)      |
| MPE limit for uncontrolled exposure at prediction frequency: | 1.00 (mW/cm²)   |
|                                                              |                 |

Power density at prediction frequency: 0.21864 (mW/cm²)



### 7 ISED CANADA RF EXPOSURE

### 7.1 Calculations

# Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

#### **BT Classic EDR3:**

| Maximum peak output power at antenna input terminal:         | 7.23 (dBm)                            |
|--------------------------------------------------------------|---------------------------------------|
| Maximum peak output power at antenna input terminal:         | 0.005284 (W)                          |
| Antenna gain(typical):                                       | 3.1 (dBi)                             |
| Maximum antenna gain: _                                      | 2.042 (numeric)                       |
| Prediction distance:                                         | <u>0.2</u> (m)                        |
| Prediction frequency: _                                      | 2402 (MHz)                            |
| MPE limit for uncontrolled exposure at prediction frequency: | 2.68 (1.31x10^-2* f ^(0.6834)) (W/m²) |
|                                                              |                                       |
| Power density at prediction frequency:                       | 0.02 (W/m²)                           |

### BT LE:

| Maximum peak output power at antenna input terminal:         | 5.81 (dBm)                            |
|--------------------------------------------------------------|---------------------------------------|
| Maximum peak output power at antenna input terminal:         | 0.003811 (W)                          |
| Antenna gain(typical):                                       | 3.1 (dBi)                             |
| Maximum antenna gain:                                        | 2.042 (numeric)                       |
| Prediction distance:                                         | 0.2 (m)                               |
| Prediction frequency:                                        | 2402 (MHz)                            |
| MPE limit for uncontrolled exposure at prediction frequency: | 2.68 (1.31x10^-2* f ^(0.6834)) (W/m²) |
|                                                              |                                       |

Power density at prediction frequency: 0.02 (W/m²)

| Company: Laird Connectivity |                             | Name: Sterling LWB+  |
|-----------------------------|-----------------------------|----------------------|
| Report: TR3664D             | Page <b>12</b> of <b>14</b> | Model: Sterling LWB+ |
| Quote: NBO-12-2022-005678   |                             | Serial: 00071        |



### WLAN 802.11g 6Mbps:

| Maximum peak output power at antenna input terminal:         | 26.31 (dBm)                           |
|--------------------------------------------------------------|---------------------------------------|
| Maximum peak output power at antenna input terminal:         | 0.427563 (W)                          |
| Antenna gain(typical):                                       | 3.1 (dBi)                             |
| Maximum antenna gain: _                                      | 2.042 (numeric)                       |
| Prediction distance:                                         | <u>0.2</u> (m)                        |
| Prediction frequency:                                        | 2437 (MHz)                            |
| MPE limit for uncontrolled exposure at prediction frequency: | 2.70 (1.31x10^-2* f ^(0.6834)) (W/m²) |
|                                                              |                                       |

Power density at prediction frequency: 1.74 (W/m²)

| Company: Laird Connectivity |                             | Name: Sterling LWB+  |  |
|-----------------------------|-----------------------------|----------------------|--|
| Report: TR3664D             | Page <b>13</b> of <b>14</b> | Model: Sterling LWB+ |  |
| Quote: NBO-12-2022-005678   |                             | Serial: 00071        |  |



### 8 REVISION HISTORY

| Version | Date      | Notes         | Person        |
|---------|-----------|---------------|---------------|
| 0       | 3/17/2023 | Initial Draft | Anthony Smith |
| 1       | 3/21/2023 | Revised Draft | Anthony Smith |
| 2       | 3/22/2023 | Final Draft   | Anthony Smith |

# **END OF REPORT**

| Company: Laird Connectivity |                             | Name: Sterling LWB+  |  |
|-----------------------------|-----------------------------|----------------------|--|
| Report: TR3664D             | Page <b>14</b> of <b>14</b> | Model: Sterling LWB+ |  |
| Quote: NBO-12-2022-005678   |                             | Serial: 00071        |  |