

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

TEST REPORT				
Report No. ······	CTC2024206502			
FCC ID:	2AQ5R-UD10			
Applicant:	Shenzhen KTC Commercial Display	/ Technology Co.,LTD.		
Address:	No.4023,Northern Wuhe Road,Bantia trict,Shenzhen City,Guangdong Provir			
Manufacturer:	Shenzhen Bluesource Electronics Tec	hnology Co., Ltd		
Address	Building 5A1103, Huaqiang IdeaPark, zhen, China	Guangming District, Shen-		
Product Name······:	Dongle			
Trade Mark······:	Horion			
Model/Type reference······:	UD10			
Listed Model(s) ······:	/			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of receipt of test sample:	Aug. 23, 2024			
Date of testing	Aug. 23, 2024 ~ Sept. 14, 2024			
Date of issue:	Sept. 14, 2024			
Result:	PASS			
Compiled by:		T: Jiang		
(Printed name+signature)	Jim Jiang	Jim Jiang Zric zhang		
Supervised by:		7-, shang		
(Printed name+signature)	Eric Zhang	GACZ		
Approved by: (Printed name+signature)	Totti Zhao	Johnas		
Testing Laboratory Name:	CTC Laboratories, Inc.			
Address	Room 101 Building B, No. 7, Lanqing Guanhu Subdistrict, Longhua District, China			
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.				

Table of Contents

Page

1. TE	EST SUMMARY	3
1.1.	Test Standards	3
1.2.	REPORT VERSION	3
1.3.	TEST DESCRIPTION	3
1.4.	Test Facility	4
1.5.	Measurement Uncertainty	4
1.6.	Environmental Conditions	5
2. G	ENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	Accessory Equipment Information	7
2.4.	OPERATION STATE	8
2.5.	Measurement Instruments List	9
3. TE	EST ITEM AND RESULTS	10
3.1.	Conducted Emission	10
3.2.	Radiated Emission	
3.3.	BAND EDGE EMISSIONS (RADIATED)	23
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3.5.	BANDWIDTH	43
3.6.	CHANNEL SEPARATION	48
3.7.		
3.8.	DWELL TIME	52
3.9.		
3.10). DUTY CYCLE	58
3.11	L. ANTENNA REQUIREMENT	61

creditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024206502	Sept. 14, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)					
Test Item	Standard Section	Result	Test Engineer		
rest item	FCC	Result			
Antenna Requirement	15.203	Pass	Jim Jiang		
Conducted Emission	15.207	Pass	Jim Jiang		
Restricted Bands	15.205	Pass	Jim Jiang		
Hopping Channel Separation	15.247(a)(1)	Pass	Jim Jiang		
Dwell Time	15.247(a)(iii)	Pass	Jim Jiang		
Peak Output Power	15.247(b)(1)	Pass	Jim Jiang		
Number of Hopping Frequency	15.247(a)(iii)	Pass	Jim Jiang		
Conducted Band Edge and Spu- rious Emissions	15.247(d)	Pass	Jim Jiang		
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	Pass	Jim Jiang		
Radiated Spurious Emission	15.247(d)&15.209	Pass	Jim Jiang		
20dB Bandwidth	15.247(a)	Pass	Jim Jiang		

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会 中国国家认证认 EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
RF output power	± 1.24 dB	(1)
Power Spectral Density	±1.88 dB	(1)
Duty Cycle	±0.566 dB	(1)
Tx-sequence	±0.566 dB	(1)
Tx-gap	±0.566 dB	(1)
Medium Utilization (MU) factor	±0.566 dB	(1)
Dwell time	±0.028%	(1)
Minimum Frequency Occupation	±0.028%	(1)
Hopping Sequence	±1.9%	(1)
Hopping Frequency Separation	±1.9%	(1)
Occupied Channel Bandwidth	±0.0196%	(1)
Transmitter unwanted emissions in the out-of-band domain	±1.328dB	(1)
Transmitter unwanted emissions in the spurious domain	30MHz~1GHz: ±0.746dB 1GHz~12.75GHz: ±1.328dB	(1)
Receiver spurious emissions	30MHz~1GHz: ±0.746dB 1GHz~12.75GHz: ±1.328dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

EN

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Ac-中国国家认证认可监督管理委员会 creditation Administration of the People's Republic of China : yz.cnca.cn

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen KTC Commercial Display Technology Co.,LTD.
Address:	No.4023,Northern Wuhe Road,Bantian Street, Longgang Dis- trict,Shenzhen City,Guangdong Province,P.R.
Manufacturer:	Shenzhen Bluesource Electronics Technology Co., Ltd
Address:	Building 5A1103, Huaqiang IdeaPark, Guangming District, Shenzhen, China

2.2. General Description of EUT

Product Name:	Dongle		
Trade Mark:	Horion		
Model/Type reference:	UD10		
Listed Model(s):	1		
Model Difference:	/		
Power supply:	DC 5V		
Hardware version:	1		
Software version:	/		
Bluetooth 5.0/ BR/EDR			
Modulation:	GFSK, π/4-DQPSK		
Operation frequency:	2402MHz~2480MHz		
Channel number:	79		
Channel separation:	1MHz		
Antenna type:	PCB Antenna		
Antenna gain:	3.23dBi		

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 自 中国国家认证认可监督管理委员会 Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

2.3. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
Notebook	ThinkBook 14 G3 ACL	/	Lenovo			
USB TO TTL	/	/	/			
Cable Information	Cable Information					
Name Shielded Type Ferrite Core Length						
USB Cable	Unshielded	Without	100cm			
Test Software Information						
Name / / /						
FCC assist	1.0.2.2	1	/			

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 日目家认证认可监督管理委员会 Fax: (86)755-27521011 Fax: (86)755-27521011 Fax: (86)755-27521011 Fax: (86)755-27521011 Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

	RF Test System - SRD					
Item	Item Test Equipment Manufacturer Model No. Serial No. Calibrate					
1	1 Spectrum Analyzer Keysig		N9020A	MY52091402	Aug. 21, 2025	
2	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21 2025	
3	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21 2025	
4	Test Software	Tonscend	JS1120-3	V3.3.38	/	

	Radiated emission					
Item	Item Test Equipment Manufacturer Model No. Serial No.					
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024	
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024	
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026	
7	Test Software	FARA	EZ-EMC	FA-03A2	/	

		Conc	ducted emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 12, 2024
2	LISN	R&S	ENV216	101113	Dec. 12, 2024
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024
6	Test Software	R&S	EMC32	6.10.10	/

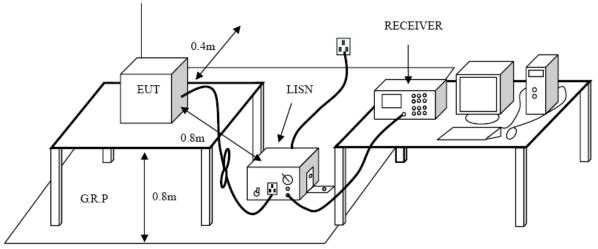
Note: 1. The Cal. Interval was one year.

EN

2. The cable loss has calculated in test result which connection between each test instruments.

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Ac-中国国家认证认可监督管理委员会 creditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

3.1. Conducted Emission

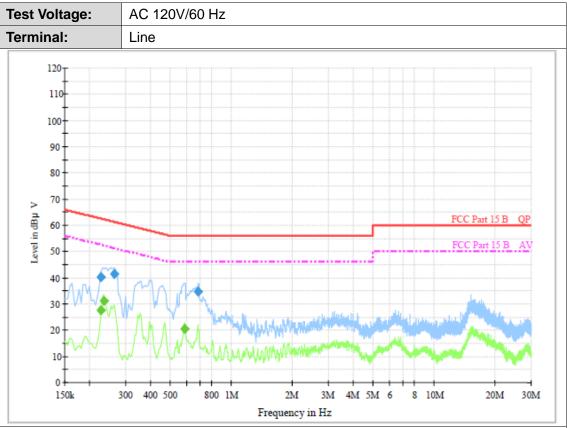

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

Test Configuration


Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting 2. ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization 3. network (LISN). The LISN provides a 500hm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 4. individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

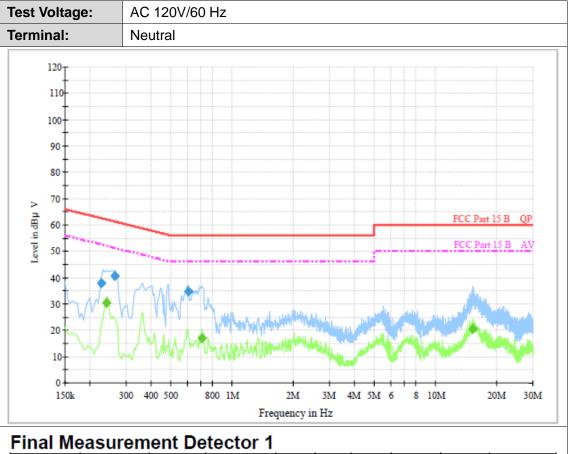
Test Mode

Please refer to the clause 2.4.

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.226500	40.3	1000.00	9.000	On	L1	9.5	22.3	62.6	
0.262500	41.5	1000.00	9.000	On	L1	9.5	19.9	61.4	
0.685500	34.9	1000.00	9.000	On	L1	9.5	21.1	56.0	

Final Measurement Detector 2


	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
[0.226500	27.8	1000.00	9.000	On	L1	9.5	24.8	52.6	
[0.235500	31.3	1000.00	9.000	On	L1	9.5	21.0	52.3	
Ī	0.586500	20.3	1000.00	9.000	On	L1	9.5	25.7	46.0	

Emission Level= Read Level+ Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 可监督管理委员会 中国国家认证认 EN

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
[0.226500	38.0	1000.00	9.000	On	Ν	9.4	24.6	62.6	
[0.262500	40.5	1000.00	9.000	On	N	9.4	20.9	61.4	
[0.604500	34.7	1000.00	9.000	On	N	9.4	21.3	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.240000	30.5	1000.00	9.000	On	Ν	9.4	21.6	52.1	
0.708000	17.0	1000.00	9.000	On	N	9.4	29.0	46.0	
15.162000	20.7	1000.00	9.000	On	N	9.6	29.3	50.0	

Emission Level= Read Level+ Correct Factor

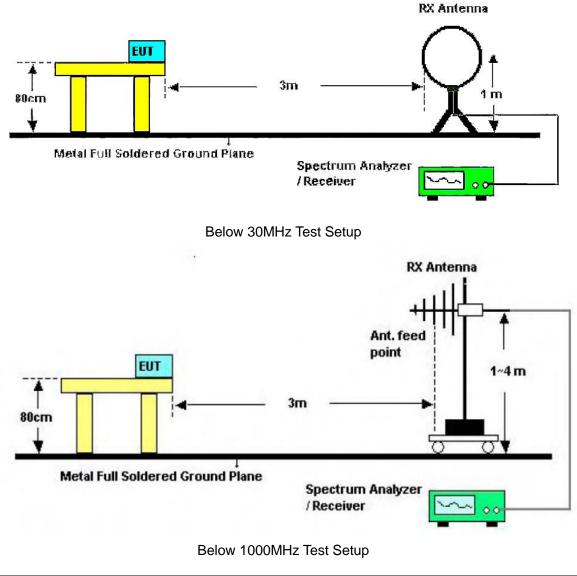
CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 可监督管理委员会 中国 国家认证认 EN

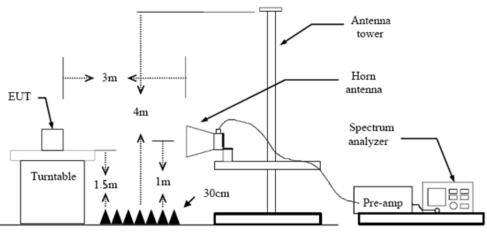
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

3.2. Radiated Emission

<u>Limit</u>


FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
	74.00	Peak


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

6. Use the following spectrum analyzer settings

(1) Span shall wide enough to fully capture the emission being measured;

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the

quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

nt. Po	.	Hori	izor	ntal							
est Mo	de:	TX	GFS	SK	Мо	de 2402MHz					
Remark	:	Only	y wo	ors	e c	ise is reported	ł				
40 30 20											
80											
60								FCC Part	5 RE-Clas	s B 30-1000M	
50				+				Margin -G			
40				-4			×.				*
30				-			A Market		ula.	up and an and a start	to we have a price
20				_		1 Abril an how Willow	(N	. indefending	Yama	When the second	
10	mon M	hu howy	helano	the states	W.W	MMMMMMMM					
0											
-10											
30.000		60.OD				(MHz)	300	D. OO	I		1000.0
	Freque	ncv	R	ea	din	Factor	Level	Li	mit	Margin	
No.	(MHz	-			uV)	·	(dBuV/m)		iV/m)	(dB)	Detector
1 *	220.44	33	(56.	52	-18.66	37.86	46	.00	-8.14	QP
2	288.02	00	4	47.	27	-16.14	31.13	46	.00	-14.87	QP
3	312.27	00	4	47.	00	-15.35	31.65	46	.00	-14.35	QP
	360.12	33	4	44.	34	-14.06	30.28	46	.00	-15.72	QP
4				13	27	-12.95	30.32	46	.00	-15.68	QP
4 5	399.24	66	1 *	τυ.	21						

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

creditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

۹nt.	. Pol.		Ver	tical									
Test	t Moo	le:	ТХ	GFS	ΚN	lode	e 2402MHz						
Ren	nark:	Onl	y wo	rse	cas	e is reported	k						
90.0	dBulv	//m			_				1				
80													
70													
60													
50									FCC Part		s B 30-100	DM	
40					_								+1
					┢			1	2	4 3 X 5		ş	
30								- myny	and robilishing		June Mariles	p. Marin	
20	m	monun	while	M. Alapatr	A hut	MAN	An Aby An Angenese	- YIN					+
10					WW ²								+
0					-								+
-10 30). 000		60.00				(MHz)	3	00.00				1000.000
N	lo.	Freque (MH	-		adi Bu'		Factor (dB/m)	Level (dBuV/m		imit uV/m)	Margi (dB)		etector
1	*	214.6	233	5	1.9	4	-18.86	33.08	4	3.50	-10.4	2	QP
1	2	312.9	166	4	3.8	7	-15.33	28.54	4	6. 00	-17.4	6	QP
	3	399.8	933	4	2.0	9	-12.93	29.16	4	6.00	-16.8	4	QP
4	4	433.1	966	4	4.1	1	-11.92	32.19	4	6.00	-13.8	1	QP
	5	474.2	600	4	0.9	1	-11.01	29.90	4	6. 00	-16.1	0	QP
(6	797.2	700	3	6.6	9	-3.83	32.86	4	6.00	-13.1	4	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

	1
Above	1GHz

A	nt. Pol		Hori	zontal					
T	est Mo	de:	тх с	GFSK Mode	2402MHz				
F	Remark	:		eport for the bed limit.	emission v	which more	than 10 dB l	below the	e pre-
	No. Freque			Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4313.5	00	41.92	0.96	42.88	74.00	-31.12	peak
	2	6499.0	00	39.46	7.32	46.78	74.00	-27.22	peak
	3	7674.0	00	40.27	10.20	50.47	74.00	-23.53	peak
	4	9236.7	50	39.51	12.40	51.91	74.00	-22.09	peak
	5 *	11622.0	000	38.53	15.13	53.66	74.00	-20.34	peak
	6	12409.2	250	37.80	15.52	53.32	74.00	-20.68	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Po	I.	Vert	ical										
Test Mo	Fest Mode: Remark:		TX GFSK Mode 2402MHz										
Remarl	« :		No report for the emission which more than 10 dB below the pre- scribed limit.										
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector					
1	4783.5	500	43.43	1.95	45.38	74.00	-28.62	peak					
2	7227.5	500	39.49	10.03	49.52	74.00	-24.48	peak					
3	8684.5	500	40.82	11.18	52.00	74.00	-22.00	peak					
4	9577.5	500	39.53	12.59	52.12	74.00	-21.88	peak					
5	10893.	500	38.85	14.56	53.41	74.00	-20.59	peak					
6 *	12691.	250	37.39	16.29	53.68	74.00	-20.32	peak					

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 可监督管理委员会 中国国家认 ūΕΰ

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Тос			Horiz	zontal					
res	st Moo	de:	TX G	FSK Mode	2441MHz				
Re	mark:			eport for the ed limit.	emission v	vhich more 1	than 10 dB l	below the	e pre-
	No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4395.7	50	42.13	1.11	43.24	74.00	-30.76	peak
	2	5993.7	50	40.01	5.63	45.64	74.00	-28.36	peak
	3	7286.2	5 0	40.10	10.05	50.15	74.00	-23.85	peak
	4	8954.7	5 0	41.23	11.63	52.86	74.00	-21.14	peak
	5	10858.2	250	38.74	14.52	53.26	74.00	-20.74	peak
	6 *	12291.	750	38.09	15.61	53.70	74.00	-20.30	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

A	nt. Pol	•	Verti	ical					
Т	est Mo	de:	тх с	GFSK Mode	2441MHz				
R	emark	:		eport for the bed limit.	emission v	which more	than 10 dB l	below the	e pre-
	No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4689.5	00	42.80	1.78	44.58	74.00	-29.42	peak
	2	6475.5	00	40.00	7.26	47.26	74.00	-26.74	peak
	3	7920.7	'50	42.59	10.69	53.28	74.00	-20.72	peak
	4	9295.5	00	39.68	12.45	52.13	74.00	-21.87	peak
	5	10834.	750	38.37	14.50	52.87	74.00	-21.13	peak
	6 *	12338.	750	38.02	15.56	53.58	74.00	-20.42	peak

Remarks:

中国

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

A	nt. Pol.		Horiz	zontal					
Те	est Moo	de:	TX G	SFSK Mode	2480MHz				
Re	emark:			eport for the bed limit.	emission v	vhich more	than 10 dB l	below the	e pre-
	No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4865.7	50	43.48	2.07	45.55	74.00	-28.45	peak
	2	7251.0	00	40.46	10.04	50.50	74.00	-23.50	peak
	3	8285.0	00	41.42	10.43	51.85	74.00	-22.15	peak
	4	10000.	500	38.97	13.18	52.15	74.00	-21.85	peak
	5	10940.	500	38.56	14.61	53.17	74.00	-20.83	peak
	6 *	12456.2	250	37.90	15.65	53.55	74.00	-20.45	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Po	d.	Vert	ical					
Test Mo	ode:	ТХ (GFSK Mode	2480MHz				
Remarl	« :	MHz) (dBuV) (dB/r 50.500 42.04 1.05 53.750 39.99 7.23 56.000 40.78 10.7 12.500 40.34 12.9	emission v	which more	than 10 dB l	below the	e pre-	
No.	Freque (MHz			Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4360.5	500	42.04	1.05	43.09	74.00	-30.91	peak
2	6463.7	750	39.99	7.23	47.22	74.00	-26.78	peak
3	7956.0	000	40.78	10.77	51.55	74.00	-22.45	peak
4	9812.5	500	40.34	12.96	53.30	74.00	-20.70	peak
5	11246.	000	38.66	14.78	53.44	74.00	-20.56	peak
6 *	12303.	500	37.94	15.60	53.54	74.00	-20.46	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

A	nt. Pol	-	Hori	zontal					
Т	est Mo	de:	TX 1	π/4-DQPSK	Mode 2402	2MHz			
R	emark	:		eport for the bed limit.	emission v	which more	than 10 dB	below the	e pre-
	No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	5136.0	00	42.36	2.69	45.05	74.00	-28.95	peak
	2	7192.2	50	39.47	9.98	49.45	74.00	-24.55	peak
	3	8484.7	50	40.37	10.70	51.07	74.00	-22.93	peak
	4	9836.0	00	39.20	12.99	52.19	74.00	-21.81	peak
	5	11152.0	000	38.30	14.74	53.04	74.00	-20.96	peak
	6 *	12667.	750	37.34	16.24	53.58	74.00	-20.42	peak
									I

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol		Vert	ical					
Test Mo	de:	TX ·	π/4-DQPSK	Mode 2402	2MHz			
Remark	:		eport for the bed limit.	emission v	which more	than 10 dB l	below the	e pre-
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	3878.7	50	41.82	0.07	41.89	74.00	-32.11	peak
2	4936.2	50	42.75	2.16	44.91	74.00	-29.09	peak
3	7803.2	50	39.92	10.43	50.35	74.00	-23.65	peak
4	9824.2	50	40.05	12.97	53.02	74.00	-20.98	peak
5	11727.	750	38.11	15.10	53.21	74.00	-20.79	peak
6 *	12738.	250	37.13	16.41	53.54	74.00	-20.46	peak

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

A	nt. Pol	•	Hori	zontal					
Т	est Mo	de:	TX 1	π/4-DQPSK	Mode 2441	IMHz			
R	emark	:		eport for the bed limit.	emission v	vhich more	than 10 dB	below the	e pre-
	No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4748.2	50	42.79	1.89	44.68	74.00	-29.32	peak
	2	6029.0	00	40.87	5.74	46.61	74.00	-27.39	peak
	3	7897.2	50	40.88	10.63	51.51	74.00	-22.49	peak
	4	9718.5	00	39.38	12.80	52.18	74.00	-21.82	peak
	5 *	11034.	500	38.83	14.69	53.52	74.00	-20.48	peak
	6	12045.0	000	37.93	15.51	53.44	74.00	-20.56	peak
									•

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol		Vert	ical					
Test Mo	de:	ТХ	π/4-DQPSK	Mode 244	1MHz			
Remark	:		eport for the bed limit.	emission v	which more	(m) (dBuV/m) (dB) 2 74.00 -29.08 1 74.00 -24.89 3 74.00 -22.27 7 74.00 -21.33 2 74.00 -20.88	e pre-	
No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		-	Detector
1	4924.5	00	42.76	2.16	44.92	74.00	-29.08	peak
2	7239.2	50	39.08	10.03	49.11	74.00	-24.89	peak
3	9213.2	50	39.35	12.38	51.73	74.00	-22.27	peak
4	10458.7	750	38.75	13.92	52.67	74.00	-21.33	peak
5	11316.	500	38.30	14.82	53.12	74.00	-20.88	peak
6 *	12573.	750	37.28	16.00	53.28	74.00	-20.72	peak

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

A	nt. Pol		Hori	zontal					
Т	est Mo	de:	TX 1	π/4-DQPSK	Mode 2480	OMHz			
R	emark	:		eport for the bed limit.	emission v	which more	than 10 dB	(m) (dB) Detect 0 -32.57 pea 0 -28.97 pea 0 -22.35 pea 0 -22.18 pea 0 -20.70 pea	e pre-
	No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	-	Detector
	1	3902.2	50	41.27	0.16	41.43	74.00	-32.57	peak
	2	5183.0	00	42.21	2.82	45.03	74.00	-28.97	peak
	3	7309.7	50	41.58	10.07	51.65	74.00	-22.35	peak
	4	9213.2	50	39.44	12.38	51.82	74.00	-22.18	peak
	5	10823.	000	38.82	14.48	53.30	74.00	-20.70	peak
	6 *	12374.	000	37.94	15.52	53.46	74.00	-20.54	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

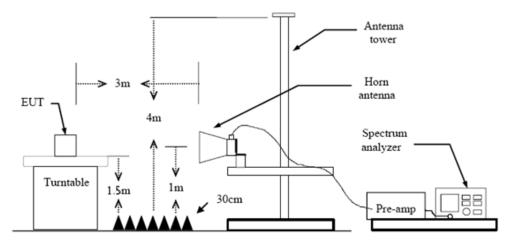
Ant. Po	ol.	Verti	ical					
Test M	ode:	TX	π/4-DQPSK	Mode 2480	OMHz			
Remar	k:		eport for the bed limit.	emission v	which more	than 10 dB l	below the	e pre-
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4536.7	750	42.41	1.45	43.86	74.00	-30.14	peak
2	6369.7	750	40.56	6.94	47.50	74.00	-26.50	peak
3	7885.5	500	40.58	10.61	51.19	74.00	-22.81	peak
4	9236.7	750	39.33	12.40	51.73	74.00	-22.27	peak
5 *	10999.	250	38.65	14.67	53.32	74.00	-20.68	peak
6	12303.	500	37.72	15.60	53.32	74.00	-20.68	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Results

~	ntal	al																							
00	Мо	ode	e	24	40	2N	1H	Ζ																	
T									_				_						_			_			_
\vdash	\downarrow	\vdash							_													-			
	_	<u> </u>							+													-			_
_	+	<u> </u>							+										_			-	_	_	-
_	+	<u> </u>							_					ECI	• Da	15 F		1		how	10	DK	+	╞	_
╞	+								+					100				1000		0010			Ŧ		
\vdash	+	-							+					FC	° Pa	15 F	E.C	lass	R A	bove	16	A.V	╀	$\left - \right $	-
F	+				_				+					100						1			Ŧ	+	7
+								uh-mu			1.000	ut a		ماده				and the	hur	2	and the second		╞	- (
-									-				F			-			+			-			-
\vdash	+	-							+										+			+			+
┝	+	-							+							-			+			+			+
24.0	2324.	4.00	0		233	6.00)	0	MHz	9		236	50. O	0	23	2.00		23	84.0	0	23	96.0	0	2	408
	lea (d₿							icte 3/n		- 1		Le Bu		el /m) (im uV						D	ete	cto
7.	17	7.6	69)		3	31	.3	1			49	.0	0		74	4.0)0		-2	5.0	0		pea	ak
-	5.	5.99	9		T	3	31	.3	1			37	.3	0		54	4.0	0		-1(6.7	0		ΑV	'G
B	(dB 17	Bu 7.6	۷u 69	/) 9		(0 3	dB 31	3/n .3	n) 1	- 1	(d	Ви 49	VI 0.	/m 0) (dB 74	u\ 4.(//m) 00	//m) (0 00 -2	//m) (dB)	//m) (dB) 00 -25.00	//m) (dB) ^D 00 -25.00 j	//m) (dB) ^{Dete} 00 -25.00 pe

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Fight 中国国家认证认可监督管理委员会

EN

Ant. Pol.			Vertical									
est Mo	de:	GFS	K Mode 240	02MHz								
20.0 dBu	W/m											
10						_						
00												
o						_						
:0												
·o 📃					FCC I	Par 15 RE-Class B	Above 1G PK					
:0												
o ⊨					FCC I	Par 15 RE-Class B	Above 1G AV					
								\square				
:0	hander land handland	the state of the s	and a start a start and a start a start a start a start a start	and a second	-Martinen and march adde	address of the second second	and the second	we have				
:0						_						
o												
0.0	2298.20	2310.20	2322.20 23	34.20 (MHz)	2358.20	2370.20 2382	.20 2394.2	20 2406.				
	_											
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto				
1	2390.	000	15.46	31.31	46.77	74.00	-27.23	peak				
2 *	2390.	000	4.27	31.31	35.58	54.00	-18.42	AVG				
Remark												

Ant. Pol. Horizontal								
est Mo	de:	GFS	K Mode 24	80 MHz				
20.0 dBu	iV/m							
10								
00								
o 🔲								
o 🗖					FCC	Parl15 RE-Class B	Above 1G PK	
o 🗖	i.				FCC	Par 15 RE-Class B	Above 1G AV	
0	3							
0	See	~~~~	ware and the second	-	and and and and and a start and a start		an and the second	-
o 📖								
0								
0.0								
				22.00 (MHz)				
No.	Freque (MH:	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.5	500	18.60	31.48	50.08	74.00	-23.92	peak
2 *	2483.5	500	6.26	31.48	37.74	54.00	-16.26	AVG
			·					

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会 creditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Ant.	Pol.			Verti	ical												
Test	Mod	le:		GFS	SK M	ode 24	80 N	ЛHz									
120.0	dBuV	//m		-												1	_
110				_													
100				_													
90	-n																
80	4																
70											FCC	Parl	15 RE-Class	Abov	e 1G I	PK	
60				_													
50	1										FCC	Par	15 RE-Class	3 Abov	'e 16 /	4V	_
40	11																
30	13	in the second	*****	man	nogen and the second	han Markelen gsbert	e.m.		im	w.hopenanomenano	adaptation of the second s	~~~	eneretetetetetetetetetetetetetetetetetet	estation and the		and the second second	
20																	
10																	
0.0	75.800	2487.1		499.80		1.80 2	2523.80) (MI			7.80		9.80 257	1.80		33.80 2	2595.80
No	o.		equer MHz	-		ading BuV)		acto B/m		Le (dBu		(d	Limit IBuV/m)		Margin (dB)		ctor
1		24	83.5	00	- 16	5.93	3	31.48		48.	41		74.00	-2	5.5	9 pe	ak
2	*	24	83.5	00	4	.27	3	31.48		35.	75		54.00	-1	-18.25		'G
														·			
1.Fac		(dB/r				actor (t value		n)+Ca	abl	e Fac	tor (dE	3)-	Pre-amp	lifie	r Fa	ctor	

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

nt.	Pol	•	Hori	zontal					
est	Mo	de:	π/4-	DQPSK Mo	de 2402MH	Z			
20.0) dBu	V/m							
10									
00									
0									
0									
o						FCC	Parl15 RE-Class B	Above 1G PK	
:0									
0						FCC	Par 15 RE-Class B	Above 16 AV	
								× 	
0		menonem	-	renormal person dealers		un preserver and a	and a start of the second	and the second second	(with
0									
0									
0.0									
N	lo.	Frequ (Mi	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1	2390	.000.	16.40	31.31	47.71	74.00	-26.29	peak
2	*	2390	.000	6.04	31.31	37.35	54.00	-16.65	AVG
	narks								

2.Margin value = Level -Limit value

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luh Tel.: (86)755-27521059 EEE 中国国家认证认可监督管理委员会

nt. Pol	•	Verti	cal					
est Mo	de:	π/4-	DQPSK Moo	de 2402M⊦	lz			
20.0 dBuX	//m							
10								
00								
10		_						
:0		_						
'o					FCC F	Part15 RE-Class B	Above 1G PK	
50		_						
50					FCC F	Pari 15 RE-Class B	Above 16 AV	
10 <u> </u>		_					_,	
30	un philadeland	maturde	www.en.marked.egelan	an in the second second second	wanter and a second of the	And the second state and the second second	mither	
20		_						
10								
0.0 2288.000	2300.00 2	312.00	2324.00 23	36.00 (MHz)	2360.00 2	2372.00 2384	.00 2396.0	0 2408.00
	Freque	ncv	Reading	Factor	Level	Limit	Margin	
No.	(MHz	-	(dBuV)	(dB/m)	(dBuV/m)		-	Detector
1	2390.0	000	17.46	31.31	48.77	74.00	-25.23	peak
2 *	2390.0	000	0 5.27 31.31		36.58	36.58 54.00		AVG
Remarks	:				·			
.Factor	(dB/m) = d		na Factor (c Limit value	lB/m)+Cabl	le Factor (dE	3)-Pre-amp	lifier Fact	or

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

nt. Po		Hori	zontal					
est Mo	de:	π/4-	DQPSK Mo	de 2480MH	Z			
20.0 dB	uV/m							
10								
00								
0								
o 🗐							41 1C PK	
0					FLL	Part15 RE-Class B	Above IG PK	
o					ECC.			
io 样	×				FLL	Par 15 RE-Class B	ADOVE 15 AV	
	2							
0	20-01-00-00-00	****	eneralden der Annahanse (Manarana)	y at an	49486-74884498449847487-16-943-48466-	-nthabalters and some share the	and a start of the	6-14-14-14-1-14-19-14-19-14-19-1-14-19-1-14-19-1-14-19-1-14-19-1-14-19-1-14-19-1-14-19-1-14-19-1-14-19-1-14-19
o								
o								
0.0 2474.000) 2486.00	2498.00	2510.00 25	22.00 (MHz)	2546.00	2558.00 2570.	00 2582.0	0 2594.0
No.	Freque	-	Reading	Factor	Level	Limit	Margin	Detector
	(MHz	·	(dBuV)	(dB/m)	(dBuV/m)			
1	2483.5	00	18.37	31.48	49.85	74.00	-24.15	peak
2 *	2483.5	00	4.95	31.48	36.43	54.00	-17.57	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

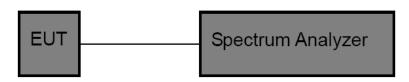
CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

est Mo	de:	π/4-	DQPSK Mod	de 2480MH	Z			
20.0 dBu	V/m							
10								
00								
					FCC	Part 15 RE-Class B	Above 1G PK	
'0								
i0					FCC	Par 15 RE-Class B	Above 1G AV	
0	×							
0	2	-	where the state of	and an an and a second	M. Sources	an water with the factor	and an other strands and the	Marshowsky
:0		•						
:0								
0				+				
0.0 2475.800	2487.80	2499.80	2511.80 25	23.80 (MHz)	2547.80	2559.80 2571.	.80 2583.8	30 2595.8
No.	Freque	-	Reading	Factor	Level	Limit	Margin	Detector
	(MH:	Z)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.8	500	18.45	31.48	49.93	74.00	-24.07	peak
2 *	2483.5	500	3.93	31.48	35.41	54.00	-18.59	AVG
			I					

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 证认可监督管理委员会 中国 creditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>



3.4. Band edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss 1. was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: RBW = 100 kHz, VBW \geq RBW, scan up through 10th harmonic.
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

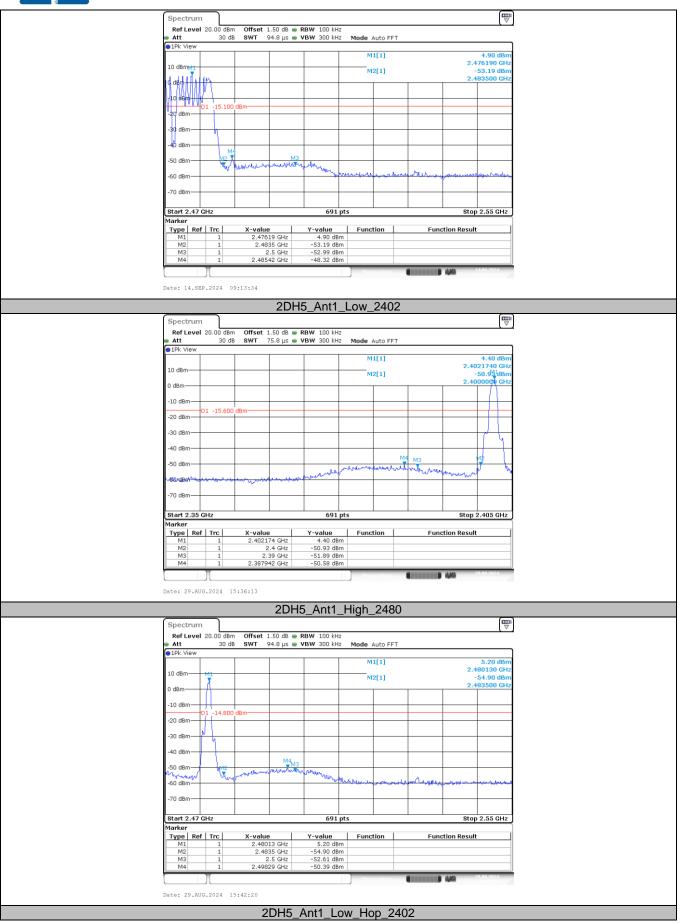
Please refer to the clause 2.4.

中国国家认证认

Test Results

(1) Band edge Conducted Test

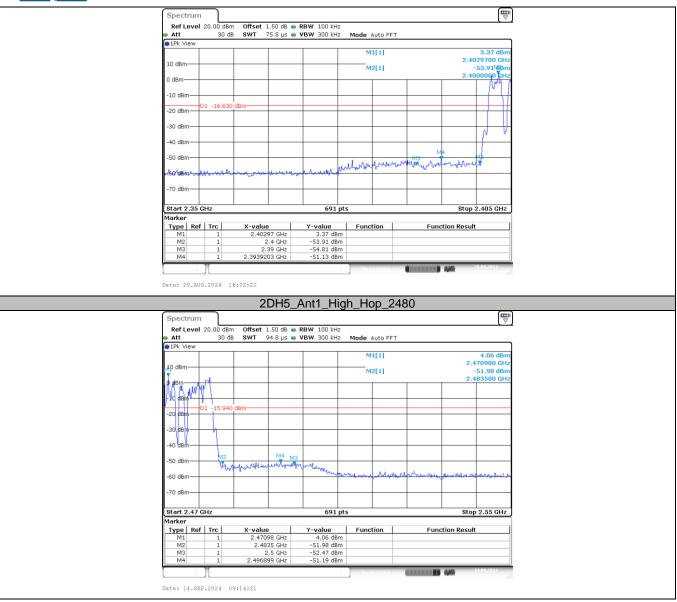
Toot Mode	Antenna	ChName		RefLevel	Result	Limit	Vordiat	
Test Mode	Antenna	Chivame	Freq(MHz)	[dBm]	[dBm]	[dBm]	Verdict	
		Low	2402	4.05	-50.44	≤-15.95	PASS	
DH5	Ant1	High	2480	4.67	-50.26	≤-15.33	PASS	
DHD		Low	Hop_2402	4.39	-50.62	≤-15.61	PASS	
		High	Hop_2480	4.90	-48.32	≤-15.10	PASS	
		Low	2402	4.40	-50.58	≤-15.60	PASS	
2DH5	Ant1	High	2480	5.20	-50.39	≤-14.80	PASS	
2003	AILI	Low	Hop_2402	3.37	-51.13	≤-16.63	PASS	
		High	Hop_2480	4.06	-51.19	≤-15.94	PASS	

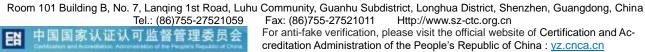


CTC Laboratories, Inc.

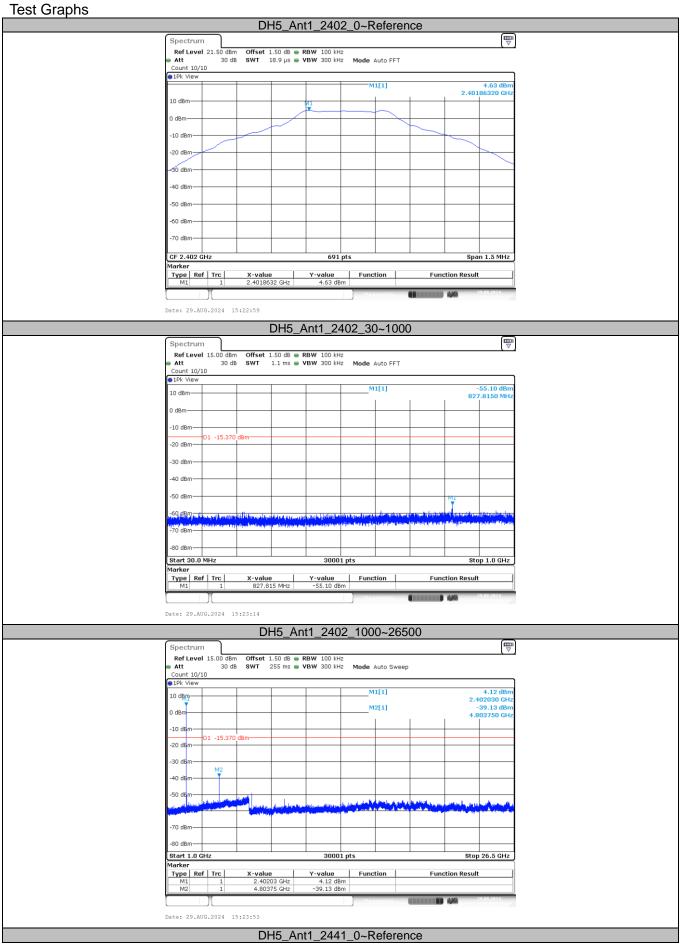
Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

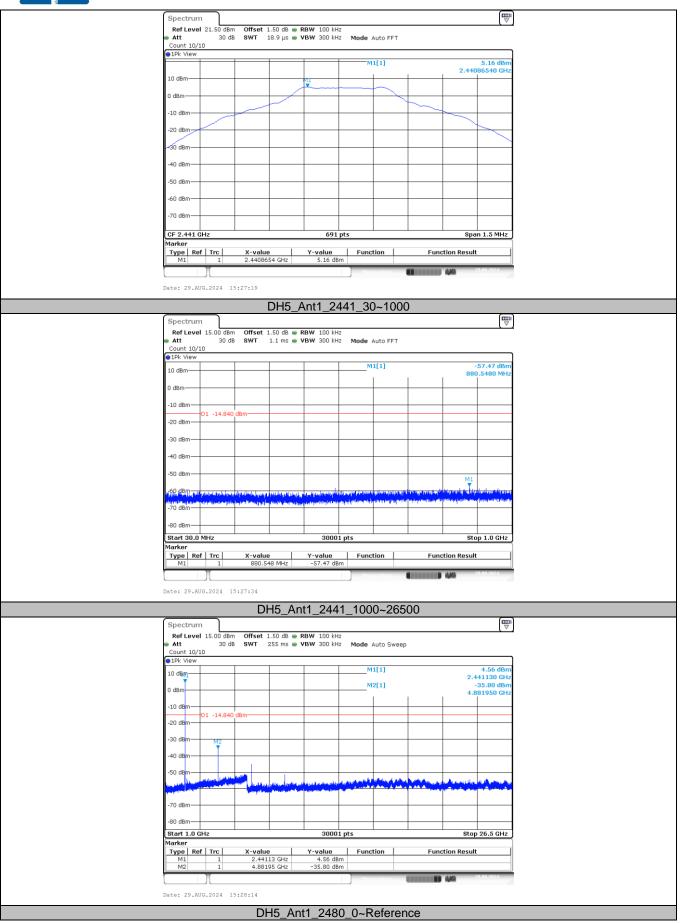



CTC Laboratories, Inc.

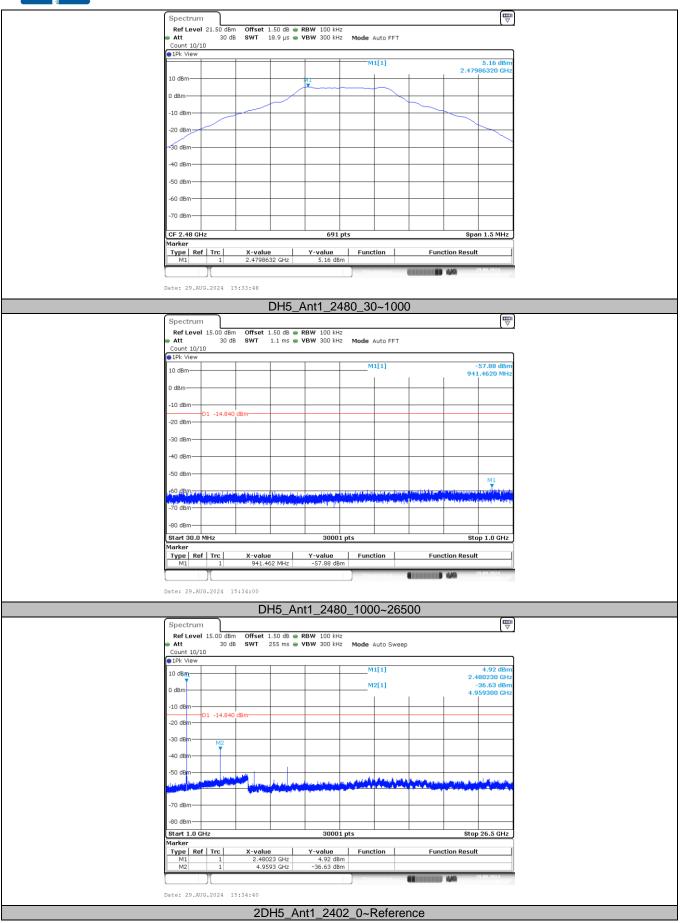
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

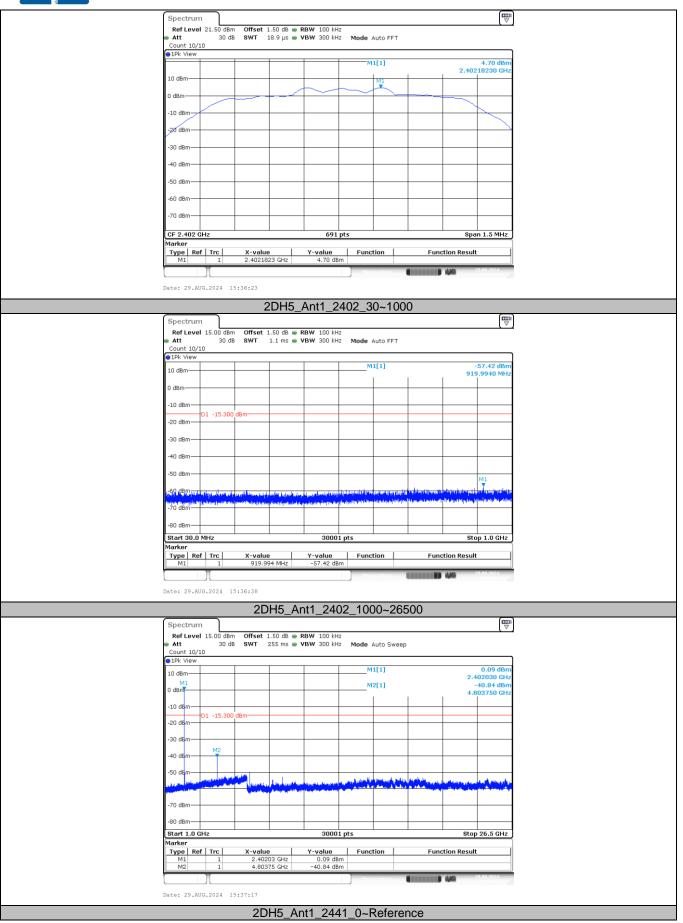


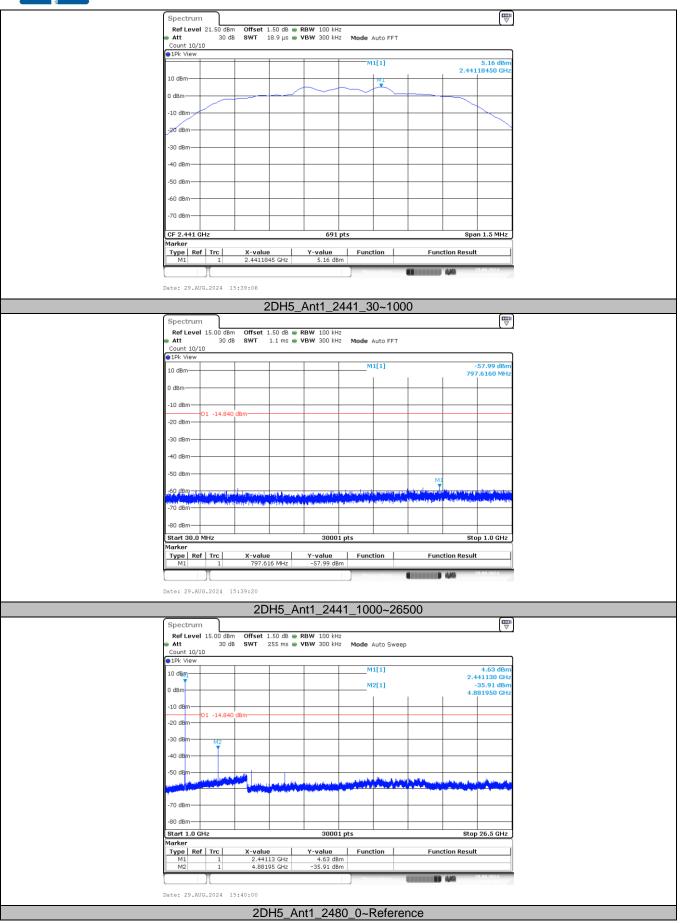
(2) Conducted Spurious Emissions Test

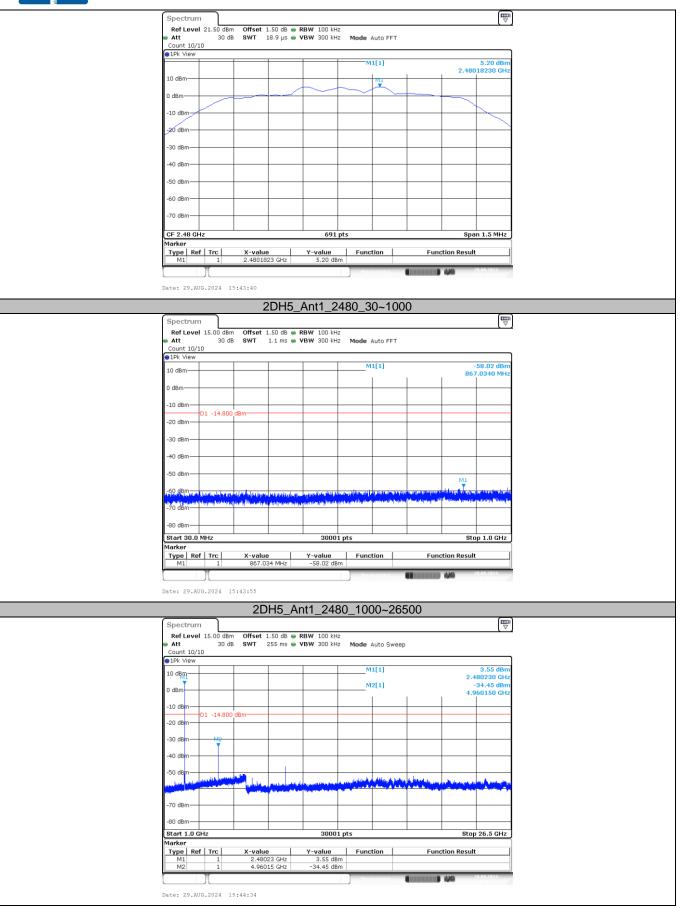

Test Mode	Antenna	Freq(MHz)	FreqRange [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	4.63	4.63		PASS
		2402	30~1000	4.63	-55.10	≤-15.37	PASS
			1000~26500	4.63	-39.13	≤-15.37	PASS
			Reference	5.16	5.16		PASS
DH5	Ant1	2441	30~1000	5.16	-57.47	≤-14.84	PASS
			1000~26500	5.16	-35.80	≤-14.84	PASS
			Reference	5.16	5.16		PASS
		2480	30~1000	5.16	-57.88	≤-14.84	PASS
			1000~26500	5.16	-36.63	≤-14.84	PASS
		2402	Reference	4.70	4.70		PASS
			30~1000	4.70	-57.42	≤-15.30	PASS
			1000~26500	4.70	-40.84	≤-15.30	PASS
			Reference	5.16	5.16		PASS
2DH5	Ant1	2441	30~1000	5.16	-57.99	≤-14.84	PASS
			1000~26500	5.16	-35.91	≤-14.84	PASS
			Reference	5.20	5.20		PASS
		2480	30~1000	5.20	-58.02	≤-14.80	PASS
			1000~26500	5.20	-34.45	≤-14.80	PASS

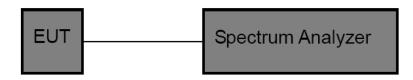
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会


Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn









3.5. Bandwidth

Limit

N/A

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. OCB and 20dB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.

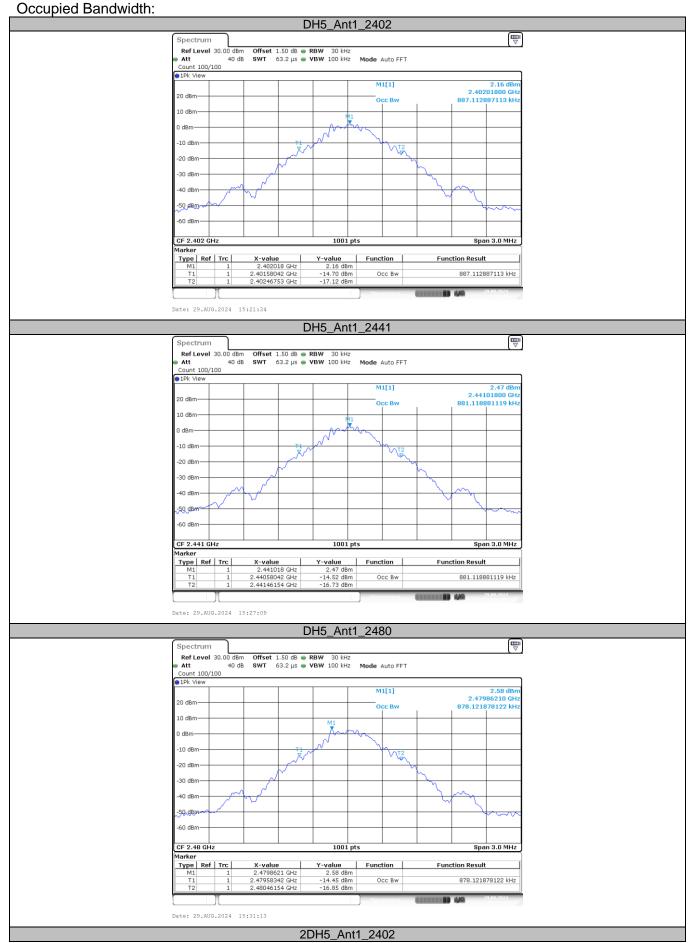
中国国家认证认

ΕN

- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

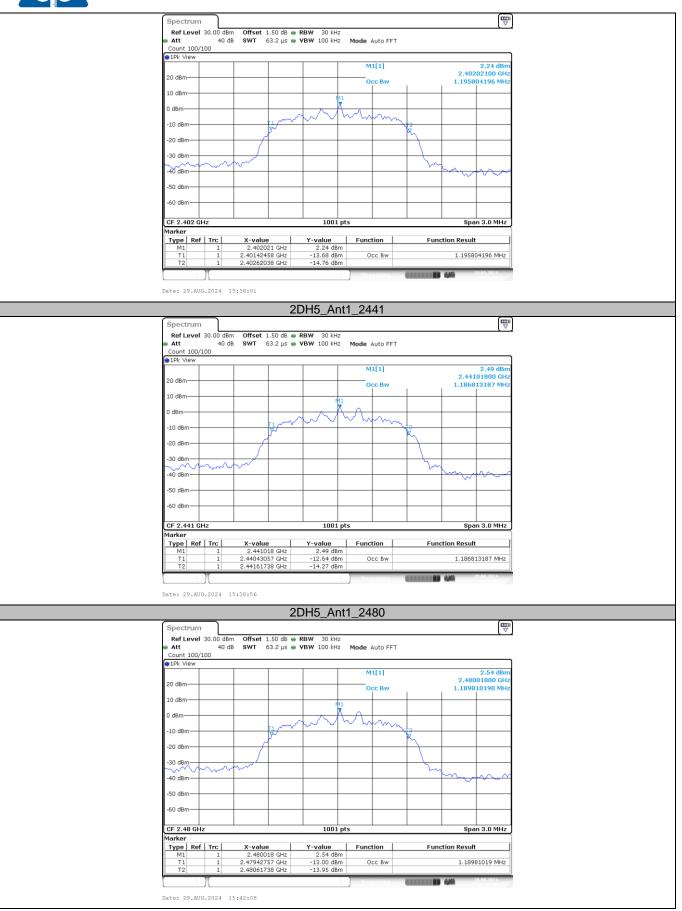
Test Mode

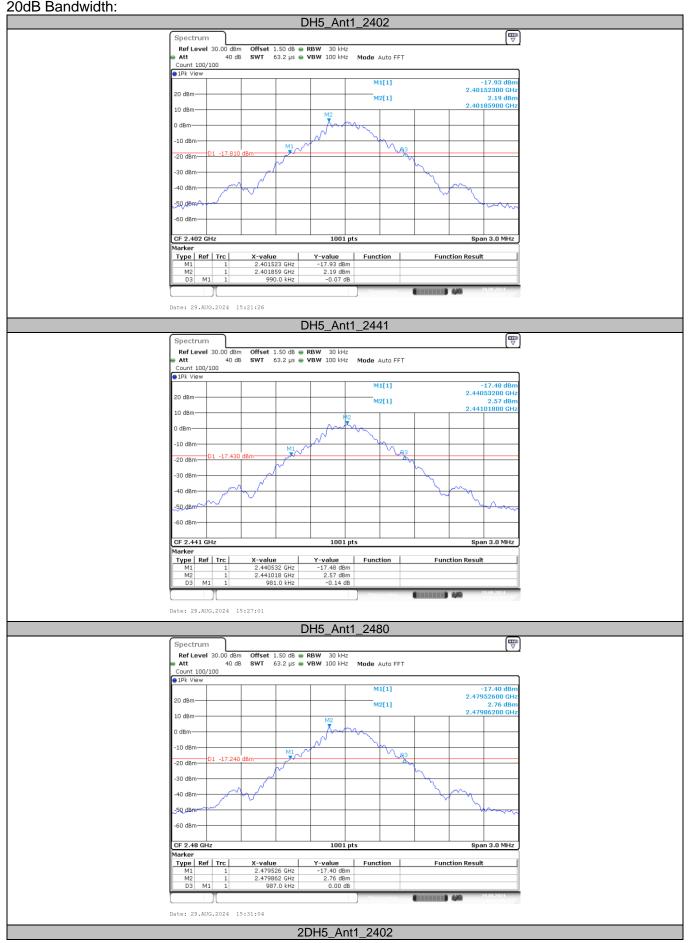

Please refer to the clause 2.4.

Test Results

Modulation type	Channel	Occupied Bandwidth (MHz)	20dB Bandwidth (MHz)	20dB Bandwidth *2/3 (MHz)
	00	0.887	0.990	0.660
GFSK	39	0.881	0.981	0.654
	78	0.878	0.987	0.658
	00	1.196	1.323	0.882
π/4-DQPSK	39	1.187	1.323	0.882
	78	1.190	1.326	0.884

creditation Administration of the People's Republic of China : yz.cnca.cn

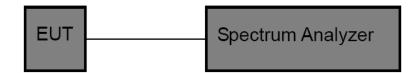



Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

EN



Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会


3.6. Channel Separation

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Test Item	Limit	Frequency Range(MHz)
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

Test Configuration

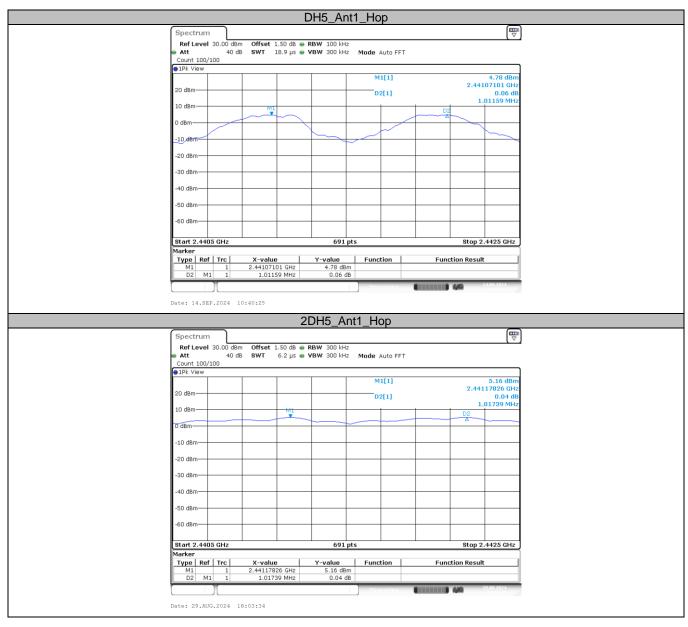
Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. Spectrum Setting:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

Test Mode


ΕN

Please refer to the clause 2.4.

Test Results

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.012	≥0.654	PASS
2DH5	Ant1	Нор	1.017	≥0.882	PASS

CTC Laboratories, Inc.

Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会


3.7. Number of Hopping Channel

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(iii)

Section	Test Item	Limit
15.247 (a)(iii)	Number of Hopping Channel	≥15

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. Spectrum Setting:

(1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

Test Mode

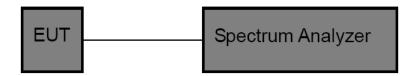
Please refer to the clause 2.4.

Test Result

EN

Modulation type	Channel number	Limit	Result
GFSK	79	>15.00	Data
π/4-DQPSK	79	≥15.00	Pass

	DH5_Ant1_Hop					
Spectrum						
	ffset 1.50 dB 👄 RBW 300 kHz					
Att 40 dB SWT 31.7 µs • VBW 300 kHz Mode Auto FFT						
PIPk View						
00 d0m						
20 dBm						
10.10.						
10 dBm						
	<u>ballafi hadhadhadhadhadhalafi hadadhadh</u>	000000000000000000000000000000000000000				
o' delw<u>ynn yn yn yn yn yn yn yn</u> yn y	<u>╷╸╏╷╢╏╽╸╏╢╷┑╏╻╸║╽╸╢┇╸╢┇┍╷╏╹┍╏║╟┠┠╸┰╢╢╸╞╏</u>					
-10 dBm						
-20 dBm						
-Lo ubiii						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
Start 2.4 GHz	691 pts	Stop 2.4835 GHz				
Marker						
	Measuring	29.08.2024				
Date: 29.AUG.2024 16:00:	13					
	2DU5 Anti Uan					
	2DH5_Ant1_Hop					
Spectrum	2DH5_Ant1_Hop	(TTT)				
Ref Level 30.00 dBm Of	ffset 1.50 dB ● RBW 300 kHz	(IIII)				
RefLevel 30.00 dBm Of Att 40 dB St		(m)				
Ref Level 30.00 dBm Of	ffset 1.50 dB ● RBW 300 kHz	(m) ()				
RefLevel 30.00 dBm Of Att 40 dB St	ffset 1.50 dB ● RBW 300 kHz					
RefLevel 30.00 dBm Of Att 40 dB St	ffset 1.50 dB ● RBW 300 kHz					
RefLevel 30.00 dBm O ● Att 40 dB St ● 1Pk View	ffset 1.50 dB ● RBW 300 kHz					
RefLevel 30.00 dBm O ● Att 40 dB St ● 1Pk View	ffset 1.50 dB ● RBW 300 kHz					
Ref Level 30.00 dBm OI Att 40 dB S1 ● 1Pk View 20 dBm 10 dBm 10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB S1 @1Pk View 20 dBm 10 dBm 10 dBm	ffset 1.50 dB ● RBW 300 kHz					
Ref Level 30.00 dBm OI Att 40 dB S1 ● 1Pk View 20 dBm 10 dBm 10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB S1 ● 1Pk View 20 dBm 10 dBm 10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 dBm 10 dBm 0 dBm 10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB S1 © 1Pk View 20 dBm 20 dBm 10 dBm 0 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB S1 © 1Pk View 20 dBm 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 dBm 10 dBm 0 dBm 10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 20 dBm 20 dBm 10 dBm 0 dBm 20 dBm 20 dBm -10 dBm -0 dBm -10 dBm -10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB S1 © 1Pk View 20 dBm 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -40 dBm -10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 20 dBm 20 dBm 10 dBm 0 dBm 20 dBm 20 dBm -10 dBm -0 dBm -10 dBm -10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 20 dBm 20 dBm 10 dBm 0 dBm 20 dBm 20 dBm -10 dBm -0 dBm -10 dBm -10 dBm -20 dBm -50 dBm -50 dBm -50 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -40 dBm -40 dBm -10 dBm	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 20 dBm 20 dBm 10 dBm 0 0 0 0 10 dBm - 0 0 0 0 -10 dBm - - 0 <td>Image: fiset 1.50 dB ● RBW 300 kHz MT 31.7 μs VBW 300 kHz Mode Auto FFT</td> <td></td>	Image: fiset 1.50 dB ● RBW 300 kHz MT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 10 dBm 0 dBm 10 -10 dBm - - - -30 dBm - - - -30 dBm - - - -50 dBm - - - -60 dBm - - - -50 dBm - - -	ffset 1.50 dB RBW 300 kHz NT 31.7 μs VBW 300 kHz Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 20 dBm 20 dBm 10 dBm 0 0 0 0 10 dBm - 0 0 0 0 -10 dBm - - 0 <td>fset 1.50 dB RBW 300 kHz VT 31.7 μs VBW 300 kHz MM MM Mode Auto FFT</td> <td>Stop 2.4835 GHz</td>	fset 1.50 dB RBW 300 kHz VT 31.7 μs VBW 300 kHz MM MM Mode Auto FFT	Stop 2.4835 GHz				
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 10 dBm 0 dBm 10 -10 dBm - - - -30 dBm - - - -30 dBm - - - -50 dBm - - - -60 dBm - - - -50 dBm - - -	fset 1.50 dB RBW 300 kHz VT 31.7 μs VBW 300 kHz MM MM Mode Auto FFT					
Ref Level 30.00 dBm OI Att 40 dB St ● 1Pk View 20 dBm 10 10 dBm 0 dBm 10 -10 dBm - - - -30 dBm - - - -30 dBm - - - -50 dBm - - - -60 dBm - - - -50 dBm - - -	fset 1.50 dB • RBW 300 kHz VT 31.7 µs • VBW 300 kHz MM Mode Auto FFT	Stop 2.4835 GHz				


3.8. Dwell Time

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(iii)

Section	Test Item	Limit
15.247 (a)(iii)	Average Time of Occupancy	0.4 sec

Test Configuration

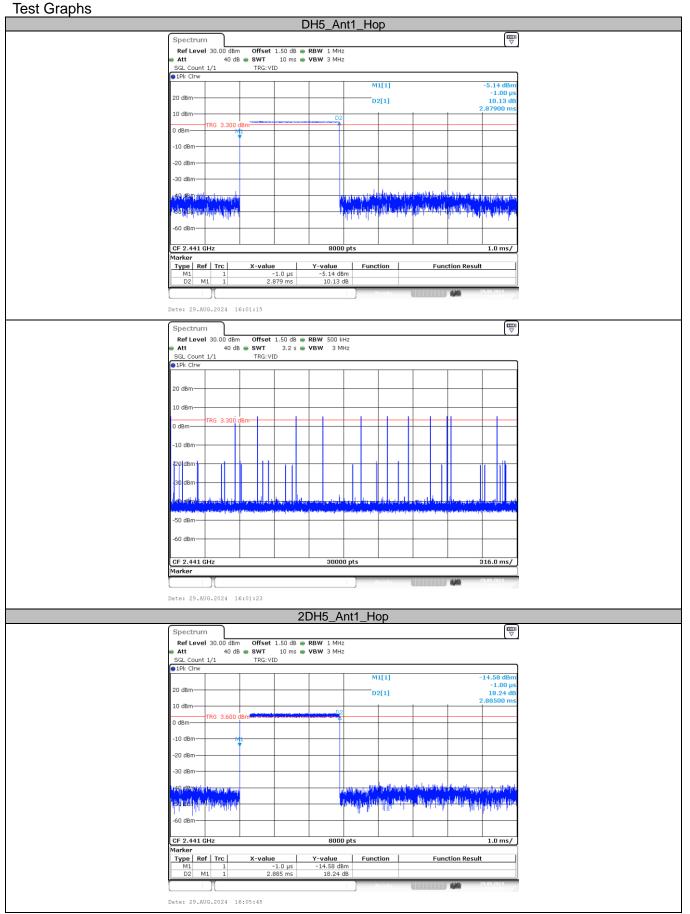
Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the 1. block diagram above.
- Spectrum Setting: 2.
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
 - (4) Set the center frequency on any frequency would be measure and set the frequency span to

zero.

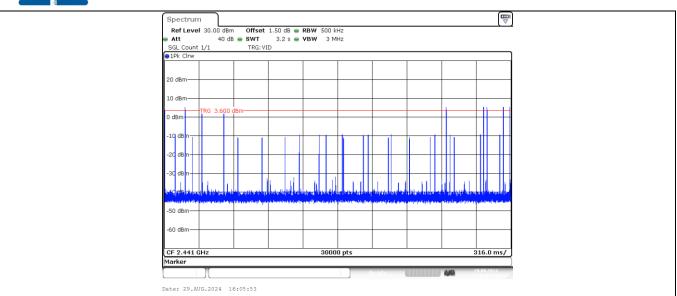
- (5) Measure the maximum time duration of one single pulse.
- (6) Set the EUT for packet transmitting.

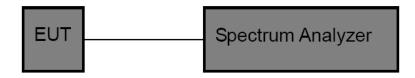
Test Mode


Please refer to the clause 2.4.

Test Result

ΞN


Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH5	Ant1	Нор	2.879	120	0.345	≤0.4	PASS
2DH5	Ant1	Нор	2.885	90	0.260	≤0.4	PASS


3.9. Peak Output Power

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1):

Test Item	Limit	Frequency Range(MHz)
Maximum Conducted Peak Output Power	Hopping Channels>75 Pow- er<1W(30dBm) Other <125mW(21dBm)	2400~2483.5

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- 2. Spectrum Setting:
 - (1) Set RBW> 20DB Bandwidth.
 - (2) Set the video bandwidth (VBW) \geq RBW.
 - (3) Detector = Peak.

中国国家认证认

EN

- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

Test Mode

Please refer to the clause 2.4.

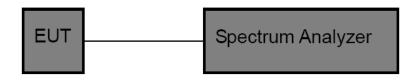
Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	5.61	≤20.97	PASS
DH5	Ant1	2441	5.66	≤20.97	PASS
		2480	6.09	≤20.97	PASS
		2402	5.36	≤20.97	PASS
2DH5	Ant1	2441	5.58	≤20.97	PASS
		2480	5.82	≤20.97	PASS

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

EN



3.10. Duty Cycle

Limit

None, for report purposes only.

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to test channel center frequency. Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz **Detector: Peak** Sweep time: Auto

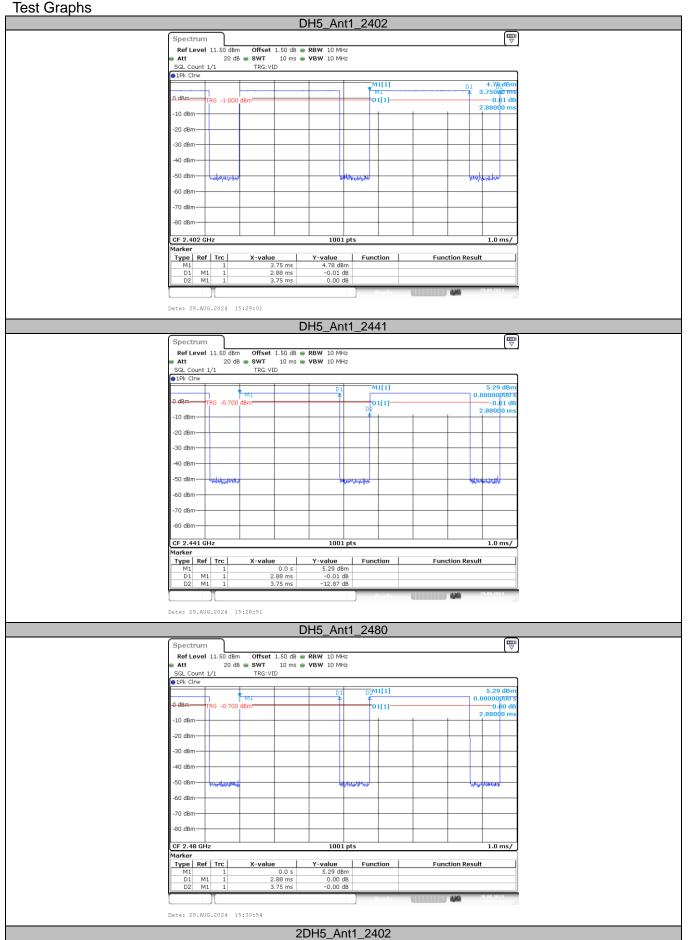
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

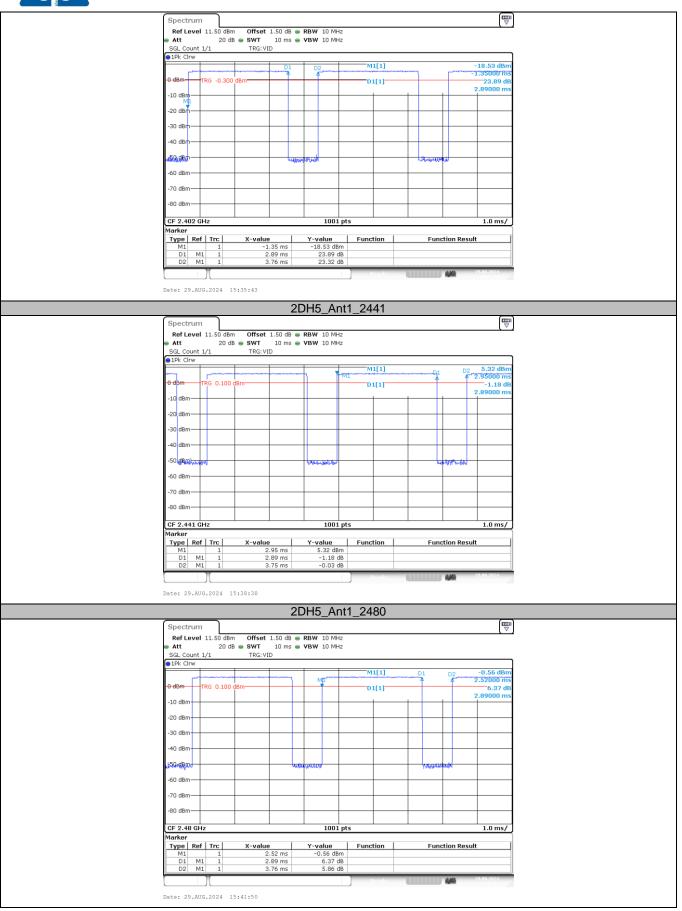
Test Result

ΞN


Test Mode	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	2402	2.88	3.75	76.80	0.35	1
GFSK	2441	2.88	3.75	76.80	0.35	1
	2480	2.88	3.75	76.80	0.35	1
	2402	2.89	3.76	76.86	0.35	1
π/4-DQPSK	2441	2.89	3.75	77.07	0.35	1
	2480	2.89	3.76	76.86	0.35	1

CTC Laboratories, Inc.

creditation Administration of the People's Republic of China : yz.cnca.cn


Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Ac-可监督管理委员会 中国国家认证认

Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会

3.11. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.