

RF TEST REPORT

Product Name: Smartphone

Model Name: VORTEX HD65 Choice

FCC ID: 2ADLJ-HD65CHOICE

Issued For : Xwireless LLC.

11565 Old Georgetown Road, Rockville, MD, USA

Issued By : Shenzhen LGT Test Service Co., Ltd. Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number:	LGT23K001RF02
Sample Received Date:	Nov. 01, 2023
Date of Test:	Nov. 01, 2023 – Nov. 25, 2023
Date of Issue:	Nov. 25, 2023

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant:	Xwireless LLC.
Address:	11565 0ld Georgetown Road, Rockville, MD, USA
Manufacturer:	Xwireless LLC.
Address:	11565 0ld Georgetown Road, Rockville, MD, USA
Product Name:	Smartphone
Trademark:	VORTEX
Model Name:	VORTEX HD65 Choice
Sample Status:	Normal

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
FCC Part 15.247, Subpart C ANSI C63.10-2013	PASS			

Prepared by:

Zane Shan

Zane Shan Engineer

TESTSE Approved by: reali ENZHE Vita Li 冠

Technical Director

检

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 TEST SOFTWARE AND POWER LEVEL	9
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.5 EQUIPMENTS LIST	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 EUT OPERATING CONDITIONS	13
3.5 TEST RESULTS	14
4. RADIATED EMISSION MEASUREMENT	16
4.2 TEST PROCEDURE	18
4.3 TEST SETUP	18
4.4 EUT OPERATING CONDITIONS	19
4.5 FIELD STRENGTH CALCULATION	19
4.7 TEST RESULTS (BAND EDGE REQUIREMENTS)	25
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	27
5.1 LIMIT	27
5.2 TEST PROCEDURE	27
5.3 TEST SETUP	27
5.4 EUT OPERATION CONDITIONS	27
5.5 TEST RESULTS	27
6. POWER SPECTRAL DENSITY TEST	28
6.1 LIMIT	28
6.2 TEST PROCEDURE	28
6.3 TEST SETUP	28
6.4 EUT OPERATION CONDITIONS	28
6.5 TEST RESULTS	28

Table of Contents

7. BANDWIDTH TEST	29
7.1 LIMIT	29
7.2 TEST PROCEDURE	29
7.3 TEST SETUP	29
7.4 EUT OPERATION CONDITIONS	29
7.5 TEST RESULTS	29
8. PEAK OUTPUT POWER TEST	30
8.1 LIMIT	30
8.2 TEST PROCEDURE	30
8.3 TEST SETUP	30
8.4 EUT OPERATION CONDITIONS	30
8.5 TEST RESULTS	30
9. ANTENNA REQUIREMENT	31
9.1 STANDARD REQUIREMENT	31
9.2 EUT ANTENNA	31
APPENDIX I:TEST RESULTS	32
DUTY CYCLE	32
MAXIMUM PEAK CONDUCTED OUTPUT POWER	35
-6DB BANDWIDTH	36
OCCUPIED CHANNEL BANDWIDTH	39
MAXIMUM POWER SPECTRAL DENSITY LEVEL	42
BAND EDGE	45
CONDUCTED RF SPURIOUS EMISSION	49

Page

Revision History

Rev.	Issue Date	Contents
00	Nov. 25, 2023	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247, Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.209	Radiated Spurious Emission	PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.205	Restricted Band Edge Emission	PASS			
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.		
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.1 Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China		
	A2LA Certificate No.: 6727.01		
Accreditation Certificate	FCC Registration No.: 746540		
	CAB ID: CN0136		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

Note: The measurement uncertainty is not included in the test result.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	Smartphone			
Trademark:	VORTEX			
Model Name:	VORTEX HD65 Choice			
Series Model:	N/A			
Model Difference:	N/A			
Product Description:	Operation Frequency: Modulation Type: Radio Technology: Bluetooth Configuration: Number Of Channel: Antenna Designation: Antenna Gain (dBi)	2402~2480 MHz GFSK BLE BLE (1M PHY, 2M PHY) 40 FPC -0.18dBi		
Channel List:	Please refer to the Note 3.			
Adapter:	Input: AC 100-240V, 50/60Hz 0.2A Output: DC 5V, 1A, 0.5W Capacity: 3500mAh			
Battery:	Rated Voltage: 3.8V			
Hardware Version:	N/A			
Software Version:	N/A			
Connecting I/O Port(s):	Please refer to the Note 1.			

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.
 3.

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1 MHz/GFSK
Mode 2	TX CH19(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Worst Mode	Description	Data/Modulation
Mode 4	TX CH00(2402MHz)	2 MHz/GFSK
Mode 5	TX CH19(2440MHz)	2 MHz/GFSK
Mode 6	TX CH39(2480MHz)	2 MHz/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.(2) We have be tested for all avaiable U.S. voltage and frequency (For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

(3) The battery is fully-charged during the radited and RF conducted test.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 7: Keeping BLE TX

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: BLE		
	Mode Or Modulation type	Power setting	
Engineering Mode	1M	Default	
	2M	Default	

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
Adapter	VORTEX	HD65 Chice	N/A	Input: 100-240V ~ 50/60Hz 0.2A Output: 5V, 1A
USB-A to USB-C Cable	N/A	N/A	N/A	1m

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating

Note:

- (1) For detachable type I/O cable should be specified the length in cm in [®]Length ^{_} column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.5 EQUIPMENTS LIST

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12
LISN	COM-POWER	LI-115	02032	2023.04.07	2024.04.06
LISN	SCHWARZBECK	NNLK 8122	00160	2023.04.07	2024.04.06
Transient Limiter	CYBERTEK	EM5010A	E225010004 9	2023.04.07	2024.04.06
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Testing Software	EMC-I_V1.4.0.3_SKET				

Radiated Test equipment		r	1		1
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12
Active loop Antenna	ETS	6502	00049544	2022.06.02	2025.06.01
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.06.05	2025.06.04
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2023.04.07	2024.04.06
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2023.04.07	2024.04.06
Pre-amplifier(18-40G)	com-mw	LNPA_18-40-01	18050003	2023.04.07	2024.04.06
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Testing Software	EMC-I_V1.4.0.3_SKET				

Conducted Test equipment					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
Signal Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2023.04.07	2024.04.06
Power Sensor	MW	MW100-RFCB	MW220324LG-33	2023.04.13	2024.04.12
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2023.05.10	2024.05.09
Attenuator	eastsheep	90db	N.A	2023.04.10	2024.04.09
Testing Software		MTS8200_ V2.0.0.0_MW			

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

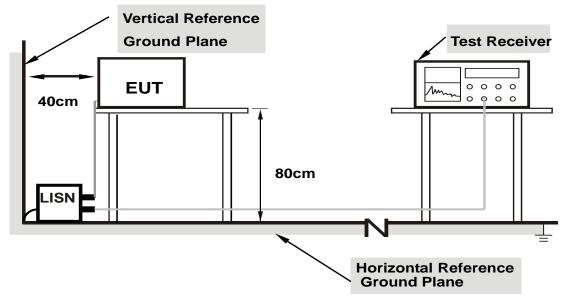
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)	
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

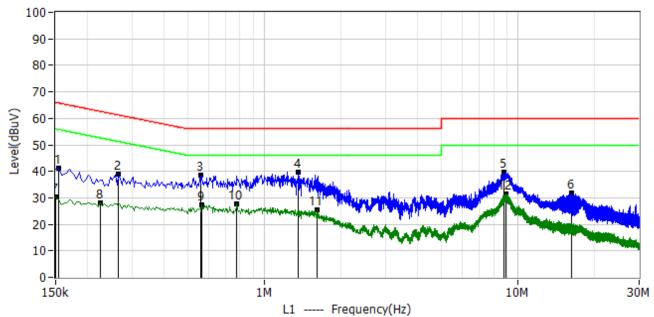
3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

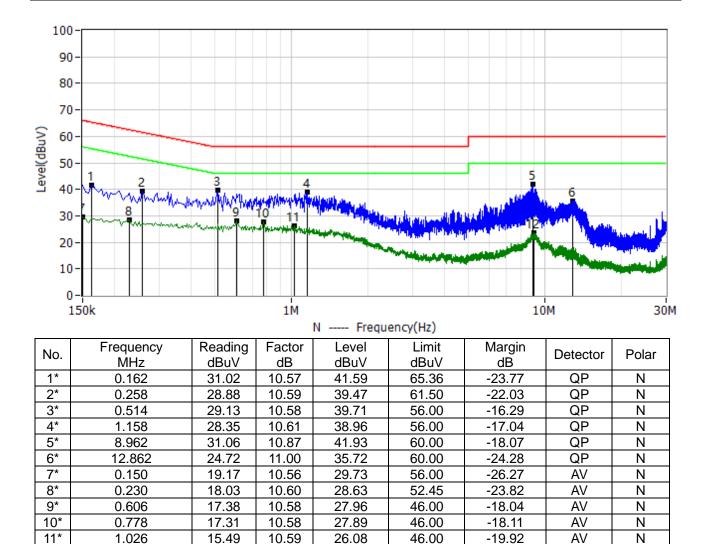
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.


3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS


Project: LGT23K001	Test Engineer: LiuH
EUT: Smartphone	Temperature: 27.1°C
M/N: VORTEX HD65 Choice	Humidity: 55%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-11-06
Test Mode: TX BLE 1M 2402	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.154	30.65	10.57	41.22	65.78	-24.56	QP	L1
2*	0.266	28.49	10.59	39.08	61.24	-22.16	QP	L1
3*	0.558	27.95	10.58	38.53	56.00	-17.47	QP	L1
4*	1.358	29.14	10.65	39.79	56.00	-16.21	QP	L1
5*	8.818	28.87	10.84	39.71	60.00	-20.29	QP	L1
6*	16.206	20.61	11.14	31.75	60.00	-28.25	QP	L1
7*	0.150	19.78	10.56	30.34	56.00	-25.66	AV	L1
8*	0.226	17.58	10.60	28.18	52.60	-24.41	AV	L1
9*	0.566	16.58	10.58	27.16	46.00	-18.84	AV	L1
10*	0.778	17.10	10.58	27.68	46.00	-18.32	AV	L1
11*	1.614	14.85	10.69	25.54	46.00	-20.46	AV	L1
12*	8.942	20.62	10.85	31.47	50.00	-18.53	AV	L1

Project: LGT23K001	Test Engineer: LiuH
EUT: Smartphone	Temperature: 27.1°C
M/N: VORTEX HD65 Choice	Humidity: 55%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-11-06
Test Mode: TX BLE 1M 2402	
Note:	

23.48

50.00

-26.52

AV

Ν

9.002

12.61

10.87

12*

4. RADIATED EMISSION MEASUREMENT

4.1 Radiated Emission Limits

In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)					
Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

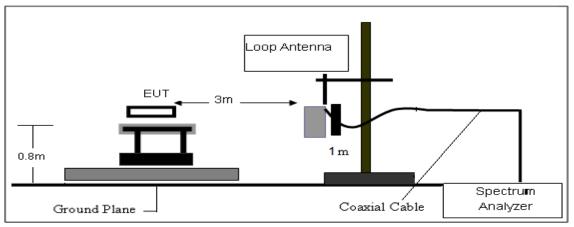
For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz (Peak/QP/AV)
Stop Frequency	150KHz/30MHz (Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

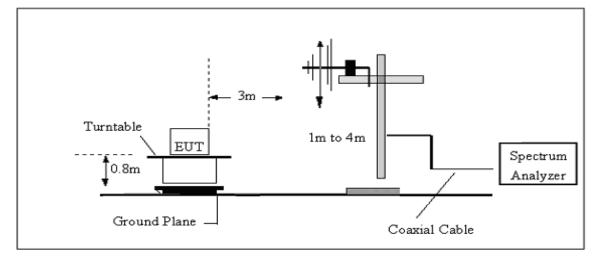
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz (Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted		
band)	120 KHz / 300 KHz	

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak		
Start Frequency	1000 MHz (Peak/AV)		
Stop Frequency	10th carrier hamonic (Peak/AV)		
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		
For Restricted band			
Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Fraguapay	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

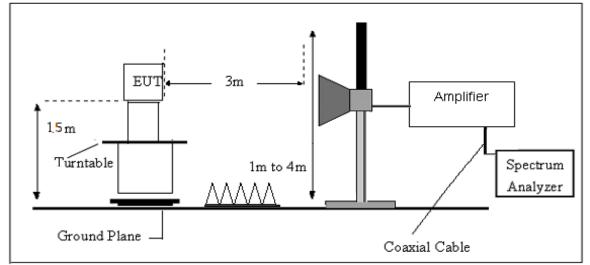

4.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

4.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

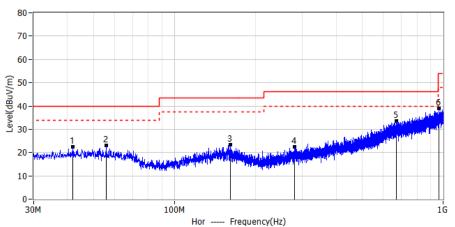
Factor=AF+CL-AG

4.6 TEST RESULTS

Results of Radiated Emissions (9 KHz~30MHz)

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Remark
1*	-	-	-	-	-	-	-	See Note

Note:

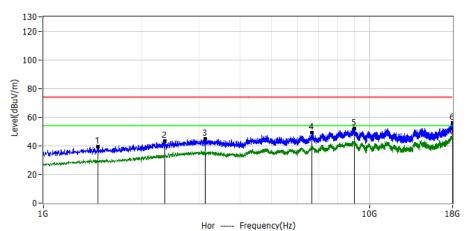

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

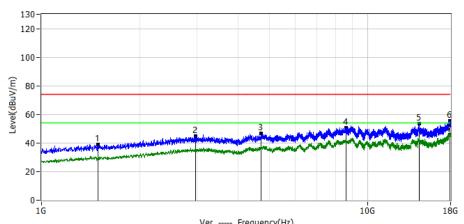
Results of Radiated Emissions (30MHz~1000MHz)

Project: LGT23K001	Test Engineer: Xiangdong Ma
EUT: Smartphone	Temperature: 28.2°C
M/N: VORTEX HD65 Choice	Humidity: 61%RH
Test Voltage: Battery	Test Data: 2023-11-06
Test Mode: TX BLE 1M 2402	
Note:	

				iner inequence				
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	42.004	3.07	19.32	22.39	40.00	-17.61	QP	Hor
2*	55.826	4.06	18.94	23.00	40.00	-17.00	QP	Hor
3*	161.799	3.60	19.83	23.43	43.50	-20.07	QP	Hor
4*	279.533	2.85	19.51	22.36	46.00	-23.64	QP	Hor
5*	668.745	4.26	29.44	33.70	46.00	-12.30	QP	Hor
6*	966.656	4.56	34.28	38.84	54.00	-15.16	QP	Hor

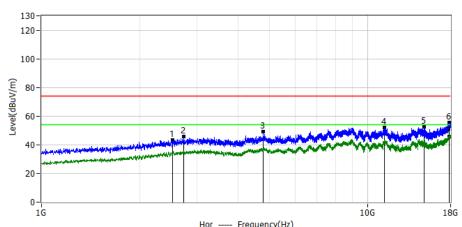


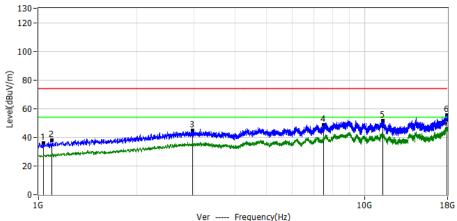
				ver frequency	()			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
_	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1*	63.829	3.50	18.40	21.90	40.00	-18.10	QP	Ver
2*	170.044	3.35	19.78	23.13	43.50	-20.37	QP	Ver
3*	276.865	2.59	19.46	22.05	46.00	-23.95	QP	Ver
4*	510.635	2.96	25.13	28.09	46.00	-17.91	QP	Ver
5*	687.539	7.85	29.69	37.54	46.00	-8.46	QP	Ver
6*	968.233	4.20	34.31	38.51	54.00	-15.49	QP	Ver



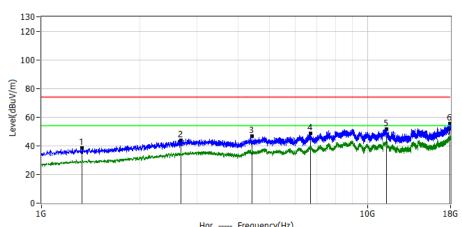
Results of Radiated Emissions (Above 1000MHz)

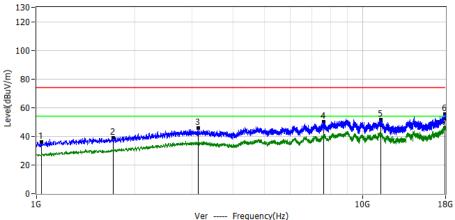
Project: LGT23K001	Test Engineer: Xiangdong Ma
EUT: Smartphone	Temperature: 24.7°C
M/N: VORTEX HD65 Choice	Humidity: 32%RH
Test Voltage: Battery	Test Data: 2023-11-18
Test Mode: BLE 1M 2402	
Note: Worst Case	


				nor requere	.,(112)			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1467.5000	60.36	-21.02	39.34	74.00	-34.66	PK	Hor
2*	2360.0000	55.79	-12.45	43.34	74.00	-30.66	PK	Hor
3*	3135.6000	53.27	-8.38	44.89	74.00	-29.11	PK	Hor
4*	6669.5000	55.26	-6.27	48.99	74.00	-25.01	PK	Hor
5*	8994.2000	53.39	-1.19	52.20	74.00	-21.80	PK	Hor
6*	17976.6000	47.58	8.50	56.08	74.00	-17.92	PK	Hor
7*	17976.6000	37.10	8.50	45.60	54.00	-8.40	AV	Hor


				Ver Frequence	y(Hz)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
140.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1*	1486.6000	59.68	-20.91	38.77	74.00	-35.23	PK	Ver
2*	2963.5000	53.19	-8.53	44.66	74.00	-29.34	PK	Ver
3*	4725.1000	52.60	-5.93	46.67	74.00	-27.33	PK	Ver
4*	8594.7000	52.97	-2.32	50.65	74.00	-23.35	PK	Ver
5*	14415.1000	47.88	5.91	53.79	74.00	-20.21	PK	Ver
6*	17885.2000	47.08	8.44	55.52	74.00	-18.48	PK	Ver
7*	17885.2000	37.46	8.44	45.90	54.00	-8.10	AV	Ver

Project: LGT23K001	Test Engineer: Xiangdong Ma
EUT: Smartphone	Temperature: 24.7°C
M/N: VORTEX HD65 Choice	Humidity: 32%RH
Test Voltage: Battery	Test Data: 2023-11-18
Test Mode: BLE 1M 2440	
Note: Worst Case	

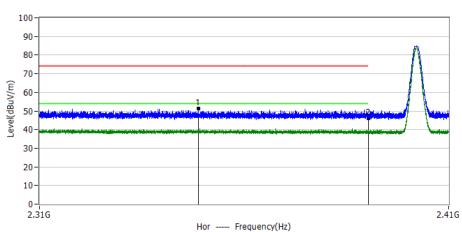

				Hor Frequence	y(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	2527.9000	53.97	-10.84	43.13	74.00	-30.87	PK	Hor
2*	2731.9000	55.34	-9.76	45.58	74.00	-28.42	PK	Hor
3*	4786.7000	55.18	-5.98	49.20	74.00	-24.80	PK	Hor
4*	11272.2000	50.16	1.79	51.95	74.00	-22.05	PK	Hor
5*	14954.9000	46.59	5.96	52.55	74.00	-21.45	PK	Hor
6*	17847.0000	46.94	8.41	55.35	74.00	-18.65	PK	Hor
7*	17847.0000	37.49	8.41	45.90	54.00	-8.10	AV	Hor


				ver Frequenc	.,((12)			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1036.1000	60.43	-24.43	36.00	74.00	-38.00	PK	Ver
2*	1099.9000	61.75	-23.86	37.89	74.00	-36.11	PK	Ver
3*	2963.5000	53.19	-8.53	44.66	74.00	-29.34	PK	Ver
4*	7496.1000	53.13	-4.31	48.80	74.00	-25.20	PK	Ver
- - 5*	11397.6000	49.96	1.86	51.82	74.00	-23.20	PK	Ver
6*	17885.2000	47.08	8.44	55.52	74.00	-18.48	PK	Ver
7*	17885.2000	37.46	8.44	45.90	54.00	-8.10	AV	Ver

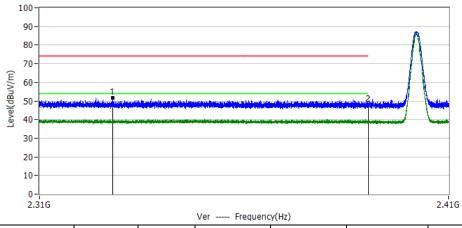
Project: LGT23K001	Test Engineer: Xiangdong Ma
EUT: Smartphone	Temperature: 24.7°C
M/N: VORTEX HD65 Choice	Humidity: 32%RH
Test Voltage: Battery	Test Data: 2023-11-18
Test Mode: BLE 1M 2480	
Note: Worst Case	

				Hor Frequence	y(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	1331.5000	60.39	-21.92	38.47	74.00	-35.53	PK	Hor
2*	2680.9000	53.95	-10.03	43.92	74.00	-30.08	PK	Hor
3*	4427.6000	52.70	-6.06	46.64	74.00	-27.36	PK	Hor
4*	6680.1000	54.81	-6.25	48.56	74.00	-25.44	PK	Hor
5*	11425.2000	49.54	1.88	51.42	74.00	-22.58	PK	Hor
6*	17902.2000	46.89	8.45	55.34	74.00	-18.66	PK	Hor
7*	17902.2000	36.85	8.45	45.30	54.00	-8.70	AV	Hor

				ver rrequenc	.,()			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1036.1000	60.43	-24.43	36.00	74.00	-38.00	PK	Ver
2*	1716.1000	58.07	-19.06	39.01	74.00	-34.99	PK	Ver
3*	3137.7000	54.08	-8.39	45.69	74.00	-28.31	PK	Ver
4*	7587.5000	54.17	-4.24	49.93	74.00	-24.07	PK	Ver
5*	11397.6000	49.96	1.86	51.82	74.00	-22.18	PK	Ver
6*	17885.2000	47.08	8.44	55.52	74.00	-18.48	PK	Ver
7*	17885.2000	37.46	8.44	45.90	54.00	-8.10	AV	Ver

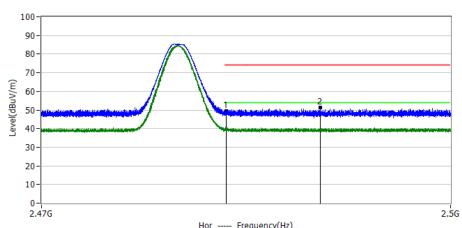

Remark:

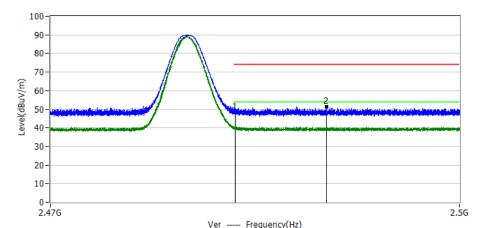
In frequency ranges 18~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.



4.7 TEST RESULTS (BAND EDGE REQUIREMENTS)

Project: LGT23K001	Test Engineer: Xiangdong Ma
EUT: Smartphone	Temperature: 24.7°C
M/N: VORTEX HD65 Choice	Humidity: 32%RH
Test Voltage: Battery	Test Data: 2023-11-18
Test Mode: BLE 2402	
Note:	


No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2.3483GHz	17.10	34.05	51.15	74.00	-22.85	PK	Hor
2*	2.3900GHz	12.15	33.95	46.10	74.00	-27.90	PK	Hor


No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2.3276GHz	17.71	34.10	51.81	74.00	-22.19	PK	Ver
2*	2.3900GHz	14.15	33.95	48.10	74.00	-25.90	PK	Ver

Project: LGT23K001	Test Engineer: Xiangdong Ma
EUT: Smartphone	Temperature: 24.7°C
M/N: VORTEX HD65 Choice	Humidity: 32%RH
Test Voltage: Battery	Test Data: 2023-11-18
Test Mode: BLE 2480	
Note:	

	Hor Frequency(Hz)								
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar	
1*	2.4835GHz	15.17	34.13	49.30	74.00	-24.70	PK	Hor	
2*	2.4904GHz	17.09	34.14	51.23	74.00	-22.77	PK	Hor	

				Thequeine	.,((12)			
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2.4835GHz	14.27	34.13	48.40	74.00	-25.60	PK	Ver
2*	2.4902GHz	17.15	34.14	51.29	74.00	-22.71	PK	Ver

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Stort/Stop Fraguaday	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT which is powered by the \${ POWER BY}, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247, Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS					

6.2 TEST PROCEDURE

1. Set analyzer center frequency to DTS channel center frequency.

2. Set the span to 1.5 times the DTS channel bandwidth.

- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

6.5 TEST RESULTS

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247, Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247, Subpart C							
Section Test Item		Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS			

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 × RBW].

c) Set the span \geq [1.5 \times DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

EUT	Power
	Sensor

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

8.5 TEST RESULTS

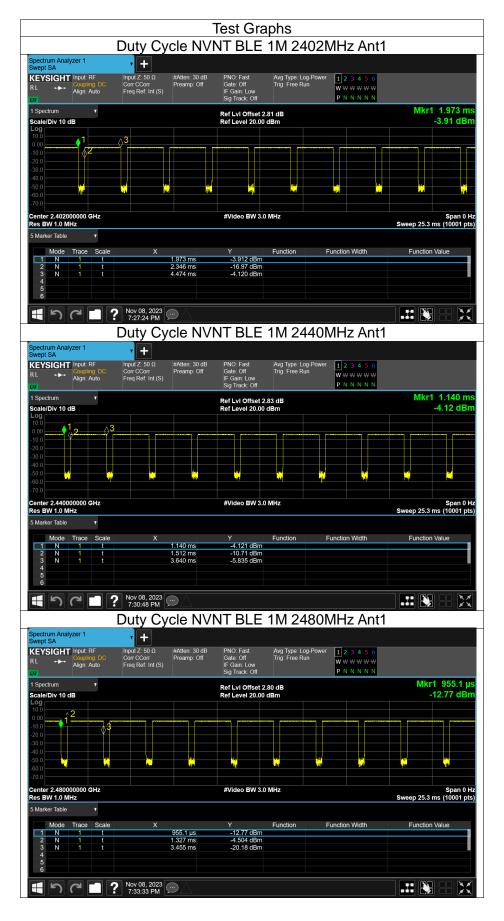
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is FPC Antenna. It comply with the standard requirement.



APPENDIX I:TEST RESULTS

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	85.11	0.7	0.47
NVNT	BLE 1M	2440	Ant1	85.11	0.7	0.47
NVNT	BLE 1M	2480	Ant1	85.11	0.7	0.47
NVNT	BLE 2M	2402	Ant1	57.15	2.43	0.93
NVNT	BLE 2M	2440	Ant1	57.15	2.43	0.93
NVNT	BLE 2M	2480	Ant1	57.15	2.43	0.93

Maximum Peak Conducted 0	Output Power
--------------------------	--------------

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-3.28	30	Pass
NVNT	BLE 1M	2440	Ant1	-2.91	30	Pass
NVNT	BLE 1M	2480	Ant1	-3.31	30	Pass
NVNT	BLE 2M	2402	Ant1	-3.4	30	Pass
NVNT	BLE 2M	2440	Ant1	-3.01	30	Pass
NVNT	BLE 2M	2480	Ant1	-3.48	30	Pass

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.671	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.663	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.674	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.124	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.122	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.159	0.5	Pass

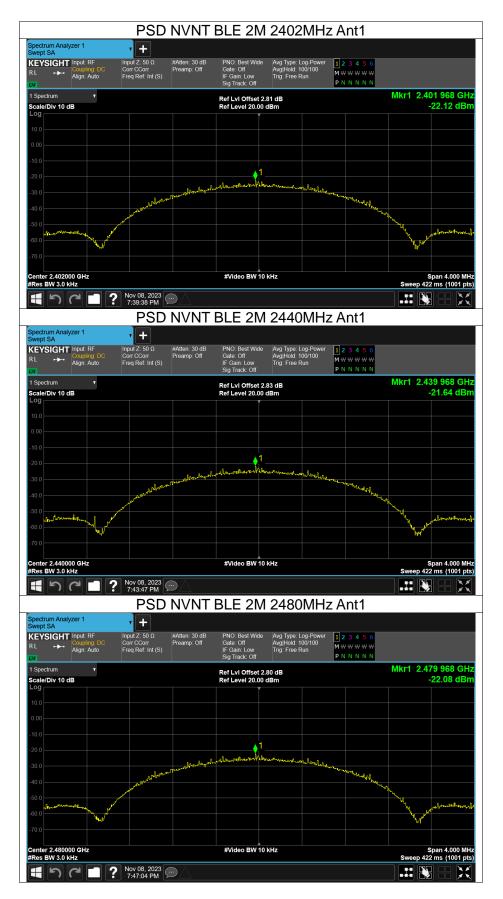
-6dB Bandy	width NVNT E	BLE 2M 2402N	/IHz Ant1
Spectrum Analyzer 1 Occupied BW			
	Atten: 30 dB Trig: Free Ru Preamp: Off Gate: Off #IF Gain: Lov	Avg Hold: 100/100	Hz
1 Graph v Scale/Div 10.0 dB	Ref LvI Offse Ref Value 22		Mkr3 2.402555000 GHz -7.61 dBm
Log 12.8 2.81 7.19		Å1	3
-17.2 -27.2 -37.2			and the second
-47.2 -57.2 -67.2			
Center 2.402000 GHz #Res BW 100.00 kHz 2 Metrics v	#Video BW 3	00.00 kHz	Span 2 MHz Sweep 1.33 ms (10001 pts)
		Measure Trace	Trace 1
	7.258 kHz	Total Power % of OBW Pow	
	.124 MHz	x dB	-6.00 dB
		BLE 2M 2440N	/Hz Ant1
Spectrum Analyzer 1			
R L ↔ Coupling: DC Corr CCorr Align: Auto Freq Ref: Int (S)	Atten: 30 dB Trig: Free Ru Preamp: Off Gate: Off #IF Gain: Lov	Avg Hold: 100/100	Hz
Lvi 1 Graph ▼ Scale/Div 10.0 dB	Ref LvI Offse Ref Value 22		Mkr3 2.440563000 GHz -10.08 dBm
Log 12.8 2.83		01	43
-17.2		and a second second the second s	
-37.2 -47.2 -57.2			
-67.2 Center 2.440000 GHz #Res BW 100.00 kHz	#Video BW 3	00.00 kHz	Span 2 MHz Sweep 1.33 ms (10001 pts)
2 Metrics V		Measure Trace	Trace 1
Occupied Bandwidth 1.8562 MHz		Total Power	3.13 dBm
	1.580 kHz .122 MHz	% of OBW Pov x dB	ver 99.00 % -6.00 dB
E 5 C I ? Nov 08, 2023 7:42:54 PM			
Spectrum Analyzer 1	width NVNT E	BLE 2M 2480N	/IHz Ant1
KEYSIGHT Input: RF Input Z: 50 Q	Atten: 30 dB Trig: Free Ru Preamp: Off Gate: Off #IF Gain: Lov	Avg Hold: 100/100	Hz
1 Graph v Scale/Div 10.0 dB	Ref Lvi Offse Ref Value 22		Mkr3 2.480574000 GHz -11.60 dBm
Log 12.8		01	
280 -7.20 -17.2 -17.2			and the second s
-37.2 -47.2 -57.2			
-67.2 Center 2.480000 GHz #Res BW 100.00 kHz	#Video BW 3	00.00 kHz	Span 2 MHz Sweep 1.33 ms (10001 pts)
2 Metrics V		Measure Trace	
Occupied Bandwidth 1.8664 MHz		Total Power	2.62 dBm
	5.285 kHz .159 MHz	% of OBW Pow x dB	ver 99.00 % -6.00 dB
E n n n n n n n n n n			.:: 🕃 🕂 🔀

Occupied Channel Bandwidth

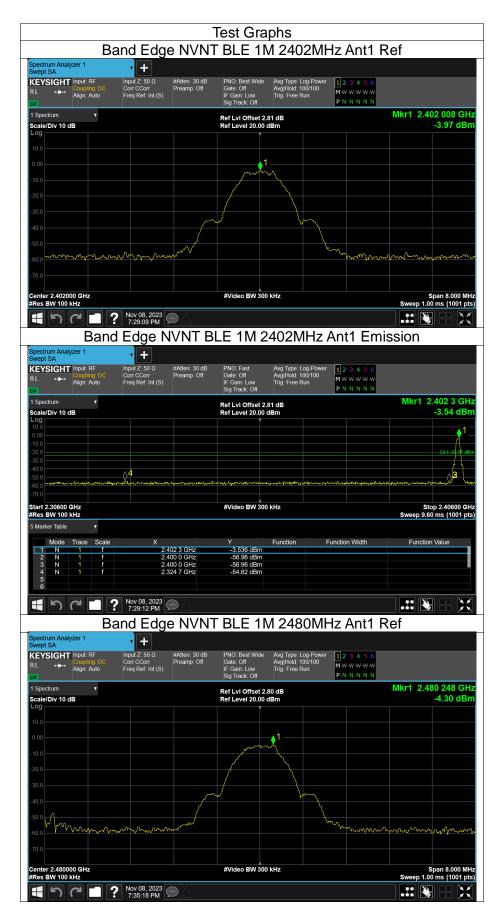
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.034
NVNT	BLE 1M	2440	Ant1	1.041
NVNT	BLE 1M	2480	Ant1	1.041
NVNT	BLE 2M	2402	Ant1	2.083
NVNT	BLE 2M	2440	Ant1	2.081
NVNT	BLE 2M	2480	Ant1	2.081

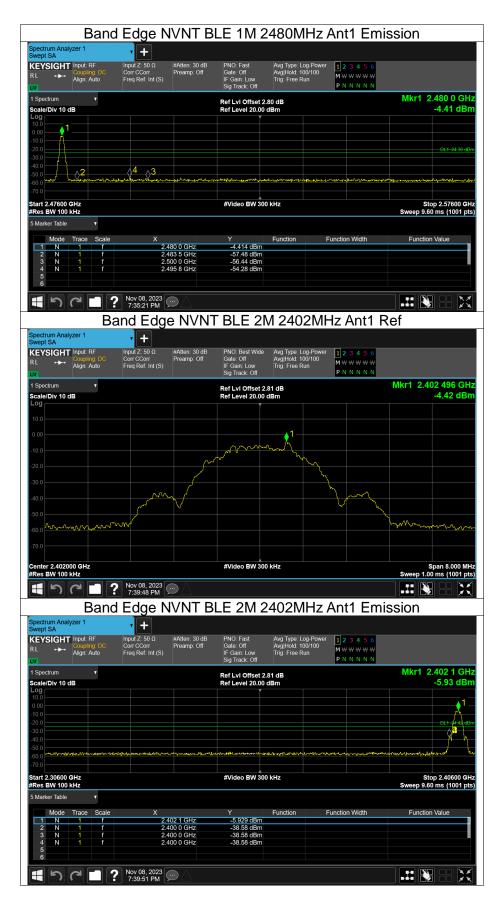


Report No.: LGT23K001RF02

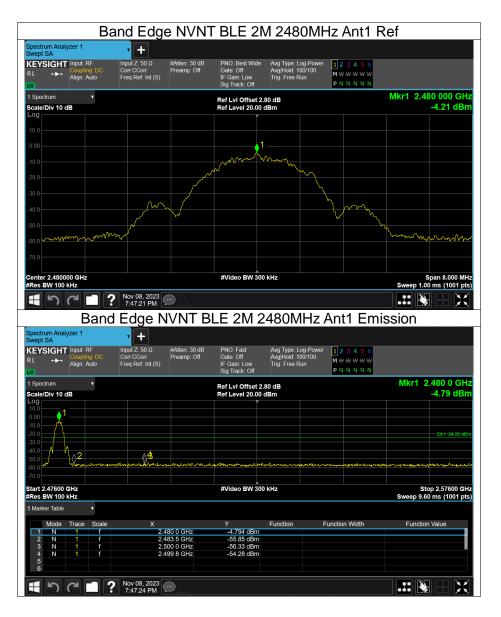


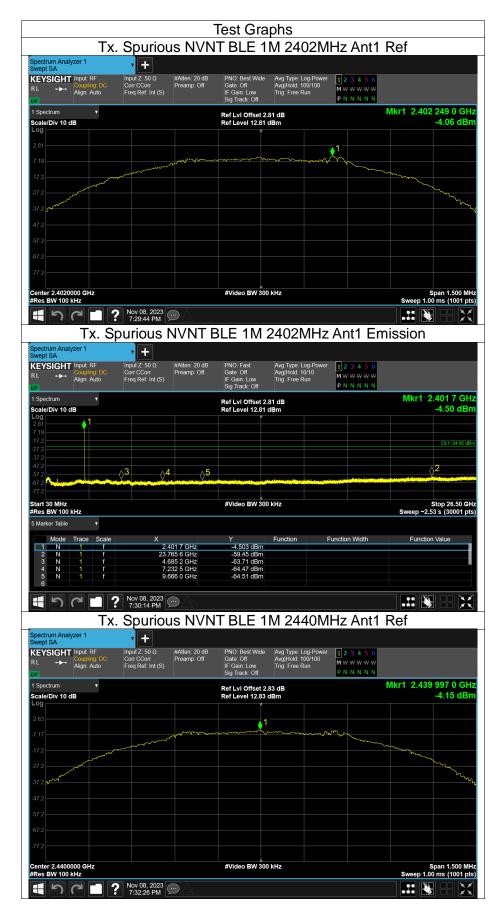
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-19.51	8	Pass
NVNT	BLE 1M	2440	Ant1	-19.15	8	Pass
NVNT	BLE 1M	2480	Ant1	-19.68	8	Pass
NVNT	BLE 2M	2402	Ant1	-22.13	8	Pass
NVNT	BLE 2M	2440	Ant1	-21.64	8	Pass
NVNT	BLE 2M	2480	Ant1	-22.08	8	Pass




Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-50.65	-20	Pass
NVNT	BLE 1M	2480	Ant1	-49.98	-20	Pass
NVNT	BLE 2M	2402	Ant1	-34.15	-20	Pass
NVNT	BLE 2M	2480	Ant1	-50.07	-20	Pass






Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-55.38	-20	Pass
NVNT	BLE 1M	2440	Ant1	-50.31	-20	Pass
NVNT	BLE 1M	2480	Ant1	-43.23	-20	Pass
NVNT	BLE 2M	2402	Ant1	-54.79	-20	Pass
NVNT	BLE 2M	2440	Ant1	-39.76	-20	Pass
NVNT	BLE 2M	2480	Ant1	-51.29	-20	Pass

