

SAR TEST REPORT

Product Name: Tablet

Model Name: MID1110, MID109, MID1057, MID1061, MID8601, MID106, M11 PRO, R11, R10 Pro, R10 XS

FCC ID: XMF-MID1110

Issued For : Lightcomm Technology Co., Ltd.

UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number:	LGT25B032HA02
Sample Received Date:	Feb. 13, 2025
Date of Test:	Feb. 16,2025~ Feb. 21,2025
Date of Issue:	Feb. 25, 2025
Max. SAR (1g):	Body: 1.090 W/kg

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	14
6. SAR Evaluation Procedures	15
7. EUT Antenna Location Sketch	16
7.1 SAR test exclusion consider table	17
8. EUT Test Position	19
8.1 Define Two Imaginary Lines on the Handset	19
8.2 Hotspot mode exposure position condition	20
9. Uncertainty	21
9.1 Measurement Uncertainty	21
9.2 System validation Uncertainty	22
10. Conducted Power Measurement	23
10.1 Test Result:	23
11. EUT and Test Setup Photo	24
11.1 EUT Photos	24
11.2 Setup Photos	27
12. SAR Result Summary	29
12.1 Body-worn SAR	29
12.2 Repeated SAR	29
12.3 Repeated SAR measurement	29
13. Equipment List	30
Appendix A. System Validation Plots	31
Appendix B. SAR Test Plots	35

Appendix C. Probe Calibration and Dipole Calibration Report

Revision History

Rev.	Rev. Issue Date Contents			
00	Feb. 25, 2025	Initial Issue		

TEST REPORT CERTIFICATION

Applicant	Lightcomm Technology Co., Ltd.		
Address	UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK		
Manufacture Lightcomm Technology Co., Ltd.			
Address	UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK		
Product Name Tablet			
Trademark	N/A		
Model Name	MID1110, MID1109, MID1057, MID1061, MID8601, MID106, M11 PRO, R11, R10 Pro, R10 XS		
Sample number	LGT2502025-2		

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
ANSI/IEEE Std. C95.1-2019 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013	PASS		

Prepared by:

Della He

Della He Engineer

TESTSER Approved by: CHENZHEN tali Vita Li

冠检

Manager

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	Tablet			
Trademark	N/A			
Model Name	MID1110			
Series Model	MID1109, MID1057, MID1061, MID8601, R10 XS	MID106, M11 PRO, R11, R10 Pro,		
Model Difference	Only different in model name.			
Device Category	Portable			
Product stage	Production unit			
RF Exposure Environment	General Population / Uncontrolled			
Hardware Version	N/A			
Software Version	N/A			
Frequency Range WLAN 802.11b/g/n20: 2412 MHz ~ 2462 MHz WLAN 802.11n40: 2422 MHz ~ 2452 MHz WLAN 802.11a/n20/ac20: 5150 ~ 5250 MHz Bluetooth: 2402 ~ 2480 MHz Bluetooth: 2402 ~ 2480 MHz				
Max. Reported SAR(1g):	Mode	Body (W/ kg)		
(Limit:1.6W/kg)	2.4G WLAN	1.090		
Test distance: Body:0mm	5.2G WLAN 0.794			
Battery	Rated Voltage:3.8V Capacity: 7500mAh			
Operating Mode:	2.4G WLAN: 802.11b(DSSS): CCK, DQPSK, DBPSK 802.11g(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11n(OFDM): BPSK, QPSK,16-QAM,64-QAM 5G WLAN: 802.11a(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11n(OFDM): BPSK, QPSK,16-QAM,64-QAM 802.11ac (OFDM): BPSK, QPSK,16-QAM,64-QAM,256-QAM Bluetooth: GFSK +π/4DQPSK+8DPSK			
Antenna Specification	Bluetooth: FPC Antenna WLAN: FPC Antenna			
Operating Mode	Maximum continuous output			
Hotspot Mode	Not Support			
DTM Mode	Not Support			

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required		
Temperature (℃)	18-25		
Humidity (%RH)	30-70		

1.3 Test Factory

Company Name:	Shenzhen LGT Test Service Co., Ltd.	
Address:Room 205, Building 13, Zone B, Zhenxiong Industrial Park, I Renmin West Road, Jinsha, Kengzi Street, Pingshan District Shenzhen, Guangdong, China		
	FCC Registration No.: 746540	
Accreditation Certificate	A2LA Certificate No.: 6727.01	
	IC Registration No.: CN0136	

2. Test Standards and Limits

No.	Identity Document Title		
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations	
2	ANSI/IEEE Std. C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz	
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies	
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz	
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting	
7	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets	
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices	
9	FCC KDB 616217 D04 SAR for laptop and tablets v01r01	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers	

(A). Limits for Occupational/Controlled Exposure (W/kg)

	Whole-Body	<u>Partial-Body</u>	Hands, Wrists, Feet and Ankles				
	0.4 8.0		20.0				
(B). Limits for General Popula			tion/Uncontrolled Exposure (W/kg)				
	Whole-Body	Partial-Body	Hands Wrists Feet and Ankles				

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

3. SAR Measurement System

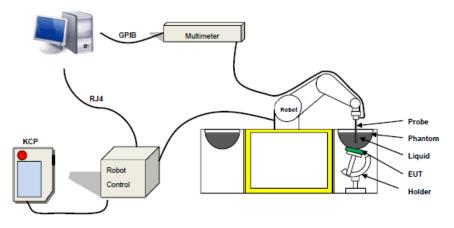
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items: - Main computer to control all the system

- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 1g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 04/22 EPGO364 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: <0.10 dB
- Spherical Isotropy: <0.10 dB
- Calibration range: 600 MHz to 6 GHz for head & body simulating liquid.
- -Angle between probe axis (evaluation axis) and surface normal line: less than 30°

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 06/22 SAM 148

Figure-SN 06/22 ELLI 51

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

3.2.3 Device Holder

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max $_5$ %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

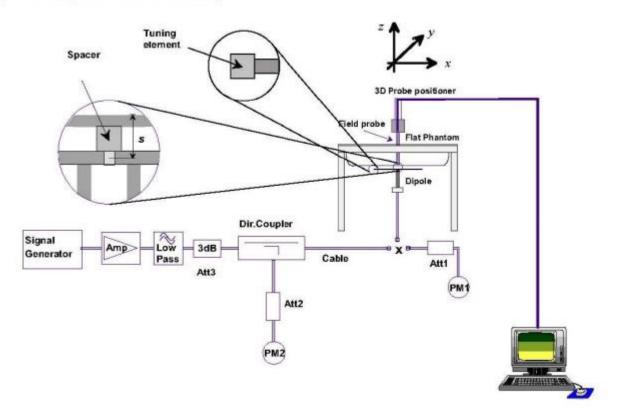
IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	۶r	σ 10g S/m		
300	45.3	0.87		
450	43.5	0.87		
750	41.9	0.89		
835	41.5	0.90		
900	41.5	0.97		
1450	40.5	1.20		
1800 to 2000	40.0	1.40		
2100	39.8	1.49		
2450	39.2	1.80		
2600	39.0	1.96		
3000	38.5	2.40		
3500	37.9	2.91		
4000	37.4	3.43		
4500	36.8	3.94		
5000	36.2	4.45		
5200	36.0	4.66		
5400	35.8	4.86		
5600	35.5	5.07		
5800	35.3	5.27		

LIQUID MEASUREMENT RESULTS

Data	Ambient Simu		Simulating I	_iquid	Devenetore	Torget	Management	Deviation	Limited
Date	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]	Parameters	Target	Measured	%	%
2025 02 16	21.7 42	2450 2	21.4	Permittivity	39.20	39.91	1.81	±5	
2025-02-16		72	2430	21.4	21.4	Conductivity	1.80	1.77	-1.67
2025-02-21	23	E 1	E200	22.7	Permittivity	36.00	36.31	0.86	±5
2025-02-21	23	51	51 5200 2	5200 22.7	Conductivity	4.66	4.68	0.43	±5



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of ± 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2025-02-16	2450	100	5.439	54.39	54.21	0.33	10
2025-02-21	5200	100	8.090	80.90	80.96	-0.07	10

Note:

- 1. The tolerance limit of System validation $\pm 10\%$.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

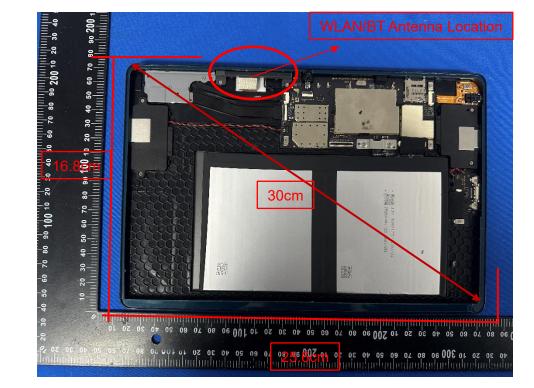
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.


When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is a Tablet, support WLAN/BT mode.

Left side

Top side

Right side

Bottom side (Front view)

Antenna Separation Distance(mm)								
ANT Back Side Front Side Left Side Right Side Top Side Bottom Side								
WLAN/BT	≤5	≤5	60	≤5	≤5	160		

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

7.1 SAR test exclusion consider table

	Wireless Interface	BT	2.4G WLAN	5.2G WLAN
Exposure Position	Calculated Frequency (MHz)	2480	2437	5240
Position	Maximum Turn-up power (dBm)	4	12	14
	Maximum rated power(mW)	2.51	15.85	25.12
	Separation distance (mm)	5	5	5
Back Side	exclusion threshold(mW)	9.53	9.61	6.55
	Testing required?	NO	YES	YES
	Separation distance (mm)	60	60	60
Left Edge	exclusion threshold(mW)	195.25	196.09	165.53
	Testing required?	NO	NO	NO
	Separation distance (mm)	139	139	139
Right Edge	exclusion threshold(mW)	985.25	986.09	955.53
	Testing required?	NO	NO	NO
	Separation distance (mm)	5	5	5
Top Edge	exclusion threshold(mW)	9.53	9.61	6.55
	Testing required?	NO	YES	YES
	Separation distance (mm)	160	160	160
Bottom Edge	exclusion threshold(mW)	1195.25	1196.09	1165.53
	Testing required?	NO	NO	NO

The WWAN/WLAN/BT SAR evaluation of Maximum power (dBm) summing tolerance.

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. per KDB 447498 D01, standalone SAR test exclusion threshold is applied; if the distance of the antenna to the user is <25mm,25mm is user to determine SAR exclusion threshold
- per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distance ≤50mm are determined by:

[(max.power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]*[$\sqrt{f(GHz)}$) \leq 3.0 for 1-g SAR and \leq 7.5 for10-g extremity SAR ,f(GHz) is the RF channel transmit frequency in GHz. Power and distance are rounded to the nearest mW and mm before calculation.

The result is rounded to one decimal place for comparison

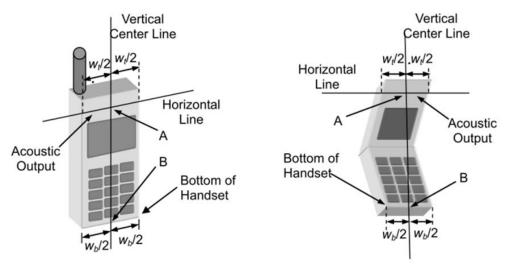
For <50mm distance, we just calculate mW of the exclusion threshold value(3.0)to do compare

per KDB 447498 D01, at 100 MHz to 6GHz and for test separation distances >50mm, the SAR test exclusion threshold is determined according to the following

 a)[threshold at 50mm in step 1]+(test separation distance -50mm)*(f (MHz)/150)]mW, at 100 MHz to 1500 MHz

b) [threshold at 50mm in step1]+(test separation distance -50mm) *10]mW at>1500MHz and≤ 6GHz

- 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.
- 7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary.


8. EUT Test Position

This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face.

8.1 Define Two Imaginary Lines on the Handset

(1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
 (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.

(3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Cheek Position

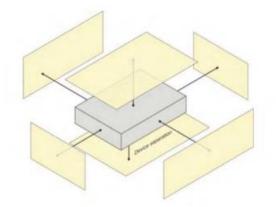
1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.

2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

Title Position

(1) To position the device in the "cheek" position described above.

(2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.


Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

8.2 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm) is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

approximately the 95% confider			coverage			4 1	40	
Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	(1- 70)	Dist.			(109)	(1-70)	(1-70)	
Probe calibration	5.8	N	1	1	1	5.8	5.8	8
Axial Isotropy	3.5	R	$\sqrt{3}$	√0.5	√0.5	1.43	1.43	8
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√0.5	√0.5	2.41	2.41	8
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
	3							
Modulation response		R	$\sqrt{3}$	1	1	1.73	1.73	8
Readout Electronics	0.5	N	1	1	1	0.50	0.50	8
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	1	1	1.81	1.81	8
RF ambient conditions-Noise	3	R	√3	1	1	1.73	1.73	8
RF ambient conditions-	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
reflections	_		V -			-	_	
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with								
respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, Interpolation								
and Integration Algoritms for	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Max, SAR			¥ -					
Test sample Related	1				r	r		
Test sample positioning	2.6	N	1	1	1	2.60	2.60	11
Device holder uncertainty	3	N	1	1	1	3.00	3.00	7
Output Power Variation - SAR Drift Measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	8
SAR Drift Measurement	2	R	√3	1	1	1.15	1.15	8
Phantom and tissue paramet		IX.	73	I	I	1.15	1.15	8
Phantom uncertainty								
(shape and thickness	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
uncertainty)			٧C	-				
Uncertainty in SAR								
correction for deviations in	2	Ν	1	1	0.84	2.00	1.68	8
permittivity and conductivity								
Liquid Conductivity -	4	Ν	1	0.78	0.71	3.12	2.84	5
Measurement Uncertainty)								
Liquid Permittivity -	5	Ν	1	0.23	0.26	1.15	1.30	5
Measurement Uncertainty								
(Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid Permittivity								
(Temperature Uncertainty)	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard		RSS				10.47	10.24	
Uncertainty		507				10.47	10.34	
Expanded Uncertainty		к				20.95	20.69	
(95% Confidence interval)						_0.00	_0.00	

9.2 System validation Uncertainty

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.8	N	1	1	1	5.8	5.8	8
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	8
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	4.7	R	$\sqrt{3}$	1	1	0.71	0.71	8
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	0.5	N	1	1	1	0.50	0.50	00
Response Time	0.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	3	R	<u></u>	1	1	1.73	1.73	-
RF ambient conditions-	3	ĸ	$\sqrt{3}$	I	I	1.73	1.73	00
reflections	3	R	√3	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, Interpolation and Integration Algoritms for Max, SAR	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Dipole				1	r	r		
Deviation of Experimental Source from Numerical	5	N	1	1	1	5.00	5.00	×
Source								
Input Power and SAR Drift Measurement	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	∞
Dipole Axis to Liquid Distance	2	R	$\sqrt{3}$	1	1	1.15	1.15	8
Phantom and Tissue Parame	ters							
Phantom uncertainty (shape and thickness uncertainty)	4	R	√3	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	Ν	1	1	0.84	2.00	1.68	8
Liquid Conductivity - Measurement Uncertainty)	4	Ν	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	Ν	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	~
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	×
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		К				20.32	20.06	

10. Conducted Power Measurement

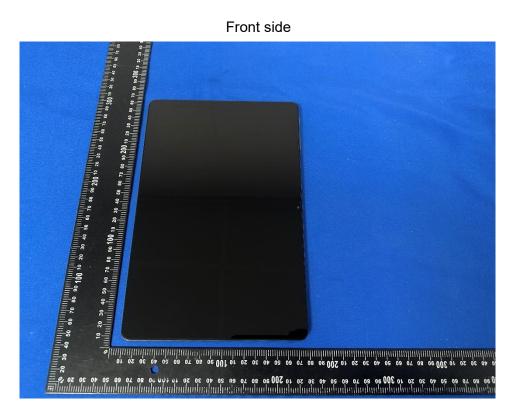
10.1 Test Result:

2.4G WLAN

		2.4GWIFI		
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)
	1	2412	11.42	13.87
802.11b	6	2437	11.87	15.38
	11	2462	11.71	14.83
	1	2412	11.12	12.94
802.11g	6	2437	11.37	13.71
	11	2462	11.29	13.46
	1	2412	11.05	12.74
802.11n-HT20	6	2437	11.13	12.97
	11	2462	10.98	12.53
	3	2422	11.48	14.06
802.11n-HT40	6	2437	11.64	14.59
	9	2452	11.44	13.93

Bluetooth

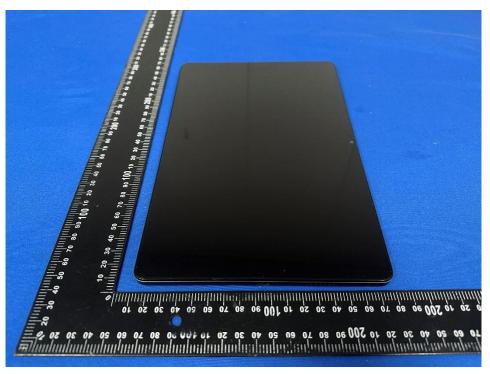
BT									
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)					
	0	2402	2.93	1.96					
GFSK(1Mbps)	39	2441	3.57	2.28					
	78	2480	3.72	2.36					
	0	2402	1.64	1.46					
π/4-QPSK(2Mbps)	39	2441	2.53	1.79					
	78	2480	2.54	1.79					
	0	2402	1.70	1.48					
8DPSK(3Mbps)	39	2441	2.63	1.83					
	78	2480	2.90	1.95					


WLAN (5.2Gband)

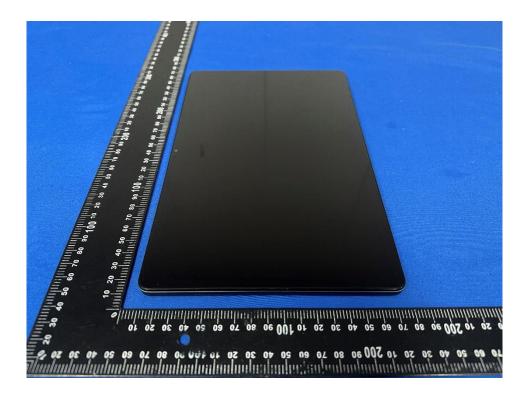
	5.2G WLAN									
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)						
	36	5180	13.22	20.99						
802.11a20	40	5200	12.73	18.75						
	48	5240	13.14	20.61						
	36	5180	13.00	19.95						
802.11n-HT20	40	5200	13.00	19.95						
	48	5240	13.48	22.28						
	36	5180	13.11	20.46						
802.11ac-VHT20	40	5200	13.41	21.93						
	48	5240	13.66	23.23						

11. EUT and Test Setup Photo

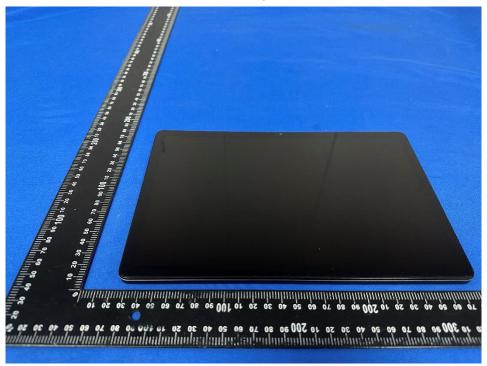
11.1 EUT Photos



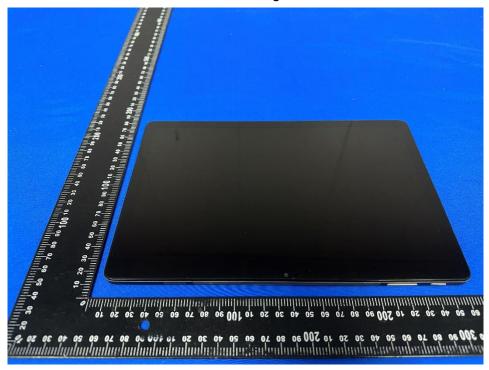
Back side



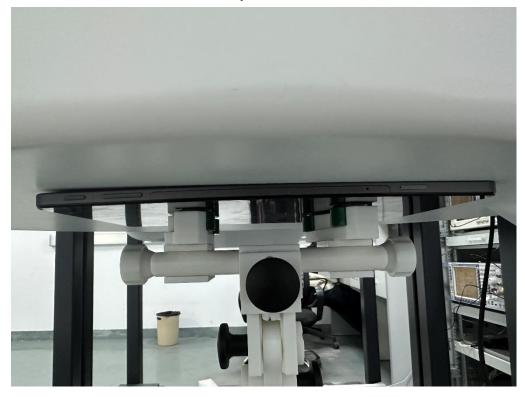
Right Edge



Left Edge

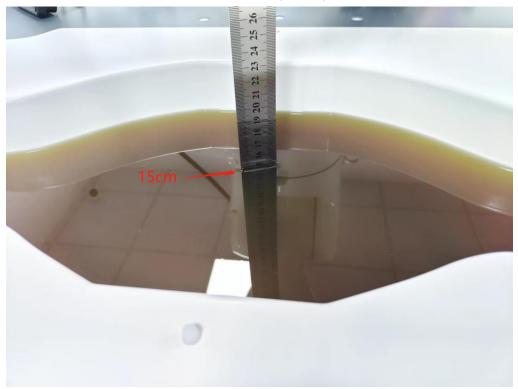


Top Edge


Bottom Edge

11.2 Setup Photos

Body Back side



Top Edge

Liquid depth (15 cm)

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift (%)	Max. Turn-up Power(dBm)	Meas. Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas. No.
		Back Side	2437	0.347	-0.58	12.00	11.87	1.030	0.358	/
2.4GHz	000 446	Top Side	2412	0.823	1.57	12.00	11.42	1.143	0.941	/
WLAN	802.11b	Top Side	2437	1.058	-1.76	12.00	11.87	1.030	1.090	1
		Top Side	2462	0.907	-0.60	12.00	11.71	1.069	0.970	/
5.2GHz	000 11-	Back Side	5240	0.374	1.46	14.00	13.66	1.081	0.404	/
WLAN 802.11a	ouz.11a	Top Side	5240	0.734	1.93	14.00	13.66	1.081	0.794	2

Note:

1. The test separation of all above table is 0mm.

2. BT and WIFI cannot transmit at the same time.

Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. Scaled SAR(W/kg) = Measured SAR(W/kg) *Tune-up Scaling Factor

12.2 Repeated SAR

Band	Mode	Test Position	Freq.	Result 1g (W/Kg)	Power Drift (%)	Max.Turn-up Power (dBm)	Meas.Output Power (dBm)	Scaling Factor	Scaled SAR (W/Kg)
	Top Side	2412	0.809	1.23	12.00	11.42	1.143	0.924	
2.4GHz WLAN	802.11b	Top Side	2437	1.047	-1.76	12.00	11.87	1.030	1.079
WEAN		Top Side	2462	0.896	-0.96	12.00	11.71	1.069	0.958

12.3 Repeated SAR measurement

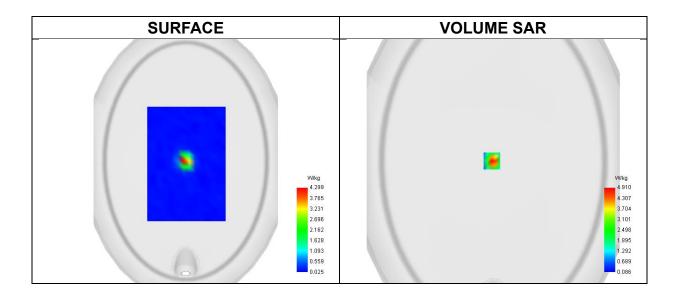
Band	Mode	Test Position	Freq.	Original Measured SAR 1g(W/kg)	1 st Repeated SAR 1g	Ratio
2.4GHz WLAN	802.11b	Top Side	2412	0.823	0.809	1.018
		Top Side	2437	1.058	1.047	1.032
		Top Side	2462	0.907	0.896	1.012

Note:

- 1. Per KDB 865664 D01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is≥0.8W/Kg.
- 2. Per KDB 865664 D01, if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2 and the measured SAR<1.45W/Kg, only one repeated measurement is required.
- 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45W/Kg.
- 4. The ratio is the difference in percentage between original and repeated measured SAR.

13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHz Dipole	MVG	DIP2G450	SN 06/22 DIP2G450-645	2025.02.05	2028.02.04
5000MHz Dipole	MVG	DIP5G000	SN 06/22 DIP5G000-653	2025.02.05	2028.02.04
E-Field Probe	MVG	EPGO364	SN 04/22 EPGO364	2025.02.05	2026.02.04
Liquid Calibration Kit	MVG	OCPG 87	SN 06/22 OCPG87	2025.02.05	2026.02.04
Antenna	MVG	ANTA 73	SN 06/22 ANTA 73	N/A	N/A
Ellipsoid Phantom	MVG	ELLI 51	SN 06/22 ELLI 51	N/A	N/A
Phantom	MVG	SAM 148	SN 06/22 SAM148	N/A	N/A
Phone holder	MVG	MSH 117	SN 06/22 MSH 117	N/A	N/A
Laptop positioner	MVG	LSH 36	SN 06/22 LSH 38	N/A	N/A
Directional coupler	SHW	SHWDCP	202203280013	N/A	N/A
Network Analyzer	ZVL	R&S	116184-HC	2024.03.25	2025.03.24
Multi Meter	DMM6500	Keithley	4527252	2024.03.15	2025.03.14
Signal Generator	Keysight	N5182B	MY59100717	2024.03.09	2025.03.08
Wireless Communication Test Set	R&S	CMW500	137737	2024.03.09	2025.03.08
Power Sensor	R&S	Z11	116184	2024.02.23	2025.02.22
Electronic Temperature hygrometer	N/A	ST-W2318	N/A	2024.03.11	2025.03.10
Temperature hygrometer	N/A	TP101	N/A	2024.03.11	2025.03.10

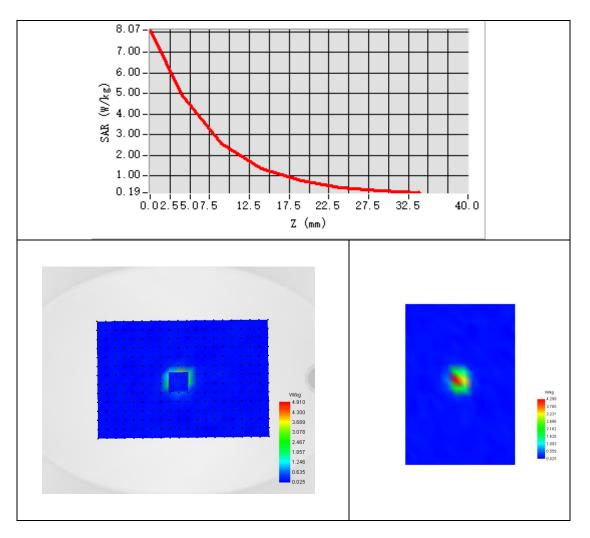

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement:2025-02-16

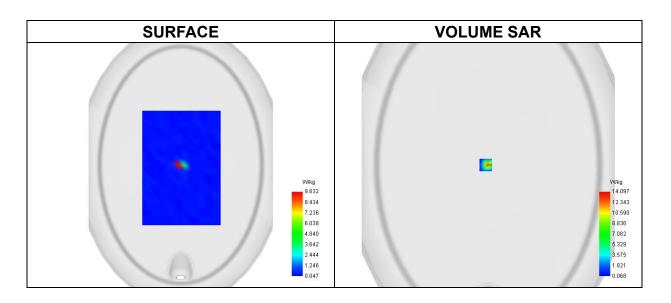
Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW
Frequency (MHz)	2450.000
Relative permittivity	39.91
Conductivity (S/m)	1.77
Probe	SN 04/22 EPGO364
ConvF	2.33
Crest factor:	1:1



Maximum location: X=3.00, Y=0.00 ; SAR Peak: 8.36 W/kg

SAR 10g (W/Kg)	2.330
SAR 1g (W/Kg)	5.439

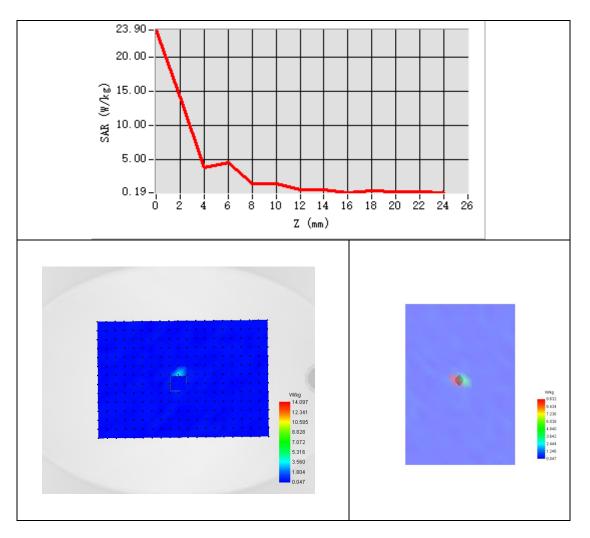


System Performance Check Data (5200MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement:2025-02-21

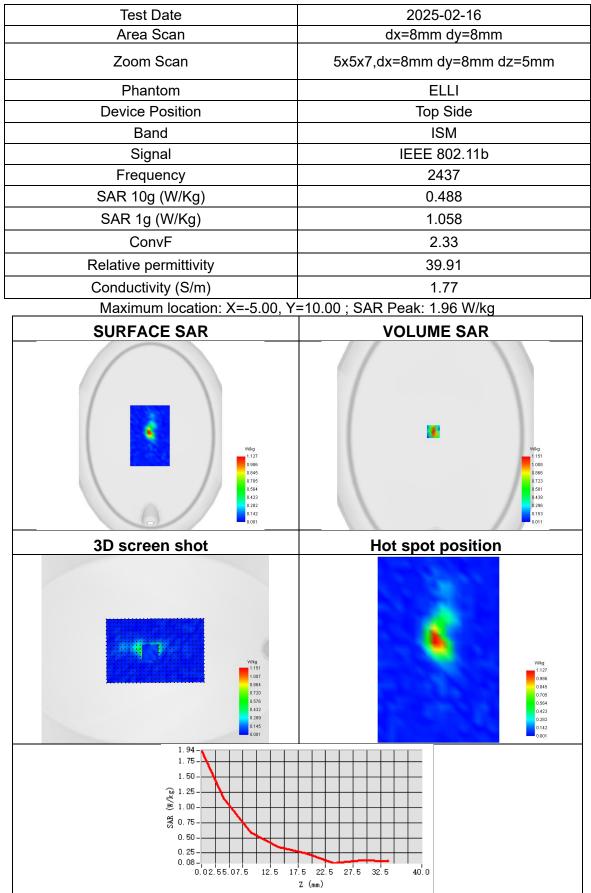
Experimental conditions.

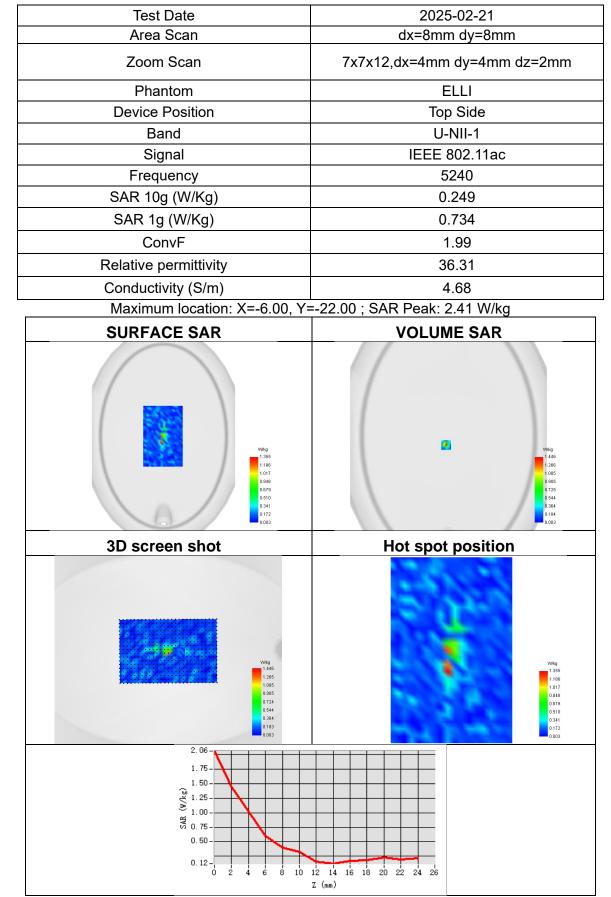
Phantom	Validation plane
Device Position	Dipole
Band	CW5200
Channels	Middle
Signal	CW
Frequency (MHz)	5200.000
Relative permittivity	36.31
Conductivity (S/m)	4.68
Probe	SN 04/22 EPGO364
ConvF	1.99
Crest factor:	1:1



Maximum location: X=5.00, Y=0.00 ; SAR Peak: 23.69 W/kg

SAR 10g (W/Kg)	2.328
SAR 1g (W/Kg)	8.090




Appendix B. SAR Test Plots

Plot 1:

Plot 2:

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT****