

1 Contents

Page

1 CONTENTS			2
2 VERSION			3
3 TEST SUMMARY			4
4 GENERAL INFORMATION		<u>.</u>	5
4.1 CLIENT INFORMATION			
4.2 GENERAL DESCRIPTION OF EUT			
4.3 Test Configuration			
4.4 Test Environment 4.5 Description of Support Units			6
4.5 DESCRIPTION OF SUPPORT UNITS			6
5 TEST RESULTS AND MEASUREMENT DATA			10
5.1 ANTENNA REQUIREMENT			10
5.2 CESSATION TIME			11
5.3 UWB BANDWIDTH (-10DB BANDWIDTH)			
5.4 EIRP (EQUIVALENT ISOTROPIC RADIATED POWER	2)		15
5.5 SPURIOUS EMISSIONS BELOW 1GHZ			
5.6 Spurious Emissions Above 1GHz			
6 PHOTOGRAPHS OF TEST SETUP			
7 PHOTOGRAPHS OF EUT CONSTRUCTIONAL	DETAILS		42

Version No.	Date	Description	0
00	Jan. 09, 2025	Original	
1			1
(c		(67)	(6

Page 4 of 43

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart F Section 15.519(a2) & Section 15.521(b) & Section 15.203	PASS
AC power-line conducted emissions	47 CFR Part 15 Subpart F Section 15.207 & Section 15.505 & Section 15.521(j)	N/A
Cessation Time	47 CFR Part 15 Subpart F Section 15.519(a)(1)	PASS
UWB Bandwidth (-10dB Bandwidth)	47 CFR Part 15 Subpart F Section 15.503 & Section 15.521(e)	PASS
EIRP Equivalent Isotropic Radiated Power)	47 CFR Part 15 Subpart F Section 15.519 (c)&(e) & Section 15.521(g)	PASS
Spurious Emissions Below 1GHz	47 CFR Part 15 Subpart F Section 15.519(c) & Section 15.209 & Section 15.521(c)&(d)&(h)	PASS
Spurious Emissions Above 1GHz	47 CFR Part 15 Subpart F Section 15.519 (c)&(d) & Section 15.521(d)&(h)	PASS

N/A : Only battery supply is supported and this item is not considered.


4 General Information

4.1 Client Information

Applicant:	liwari Tracking Solutions Oy
Address of Applicant:	Kidekuja 2 Vuokatti 88610 Finland
Manufacturer:	KKM Technology Company Limited
Address of Manufacturer:	6A-3CDE, Baoneng Science and Technology Industrial Park, Long Hua district, Shenzhen 518109, Guang Dong, China.
Factory:	KKM Technology Company Limited
Address of Factory:	6A-3CDE, Baoneng Science and Technology Industrial Park, Long Hua district, Shenzhen 518109, Guang Dong, China.

4.2 General Description of EUT

Product Name:	WA02			
Model No.:	WA02			
Trade Mark:	N/A	(\mathbf{c})		(\mathcal{C})
Product Type:	Hand Held UWB systems	\sim		\smile
Operation Frequency:	UWB Channels 2: 3993.6MHz, UWB Channels 5 :6489.6MHz			
Number of Channels (UWB):	2		(\mathbf{c})	
Modulation Type:	BPM,BPSK			
Test software of EUT:	RF Test	~		22.4
Antenna Type:	PCB Antenna			
Antenna gain:	UWB Channels 2: 3.80dBi, UWB Channels 5: 3.93dBi	S		\odot
Power Supply:	Battery DC 3.0V,850mAh			
Test Voltage:	DC 3.0V		1	
Sample Received Date:	Nov. 12, 2024		(\mathcal{L})	
Sample tested Date:	Nov. 12, 2024 to Dec. 03, 2024			

4.3 Test Configuration

	((6))		
EUT Test Software Settin	ngs:		
Software:	RF Test		
EUT Power Grade:	Default (Power lev selected)	vel is built-in set parameter	s and cannot be changed and

4.4 Test Environment

Operating Environmen	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C			(A)	
Humidity:	50~55 % RH	6		0	
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Temperature:	22~25.0 °C				13
Humidity:	50~55 % RH		(\mathcal{O})		6
Atmospheric Pressure:	1010mbar				

4.5 Description of Support Units

The EUT has been tested independently.

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2) 4.7

No.	Item	Measurement Uncertainty
1		0.46dB (30MHz-1GHz)
1	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
2	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
2	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
2	Conduction emission	3.5dB (9kHz to 150kHz)
3	Conduction emission	3.1dB (150kHz to 30MHz)
4	Temperature test	0.64°C
5	Humidity test	3.8%
6	DC power voltages	0.026%
I		

4.8 Equipment List

	3M Semi/full-anechoic Chamber(2#)						
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)		
3M Chamber & Accessory Equipment	ток	SAC-3		05-22-2022	05-21-2025		
Receiver	R&S	ESCI7	100938- 003	09-07-2024	09-06-2025		
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-16-2024	04-15-2025		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-18-2024	05-17-2025		
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-16-2024	04-15-2025		
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07-02-2023	07-01-2026		
Preamplifier	Agilent	11909A	12-1	03-22-2024	03-21-2025		
Preamplifier	EMCI	EMC051845SE	980380	12-14-2023	12-13-2024		
Preamplifier	CD	PAP-1840-60	6041.6042	06-19-2024	06-18-2025		
Cable line	Fulai(7M)	SF106	5219/6A				
Cable line	Fulai(6M)	SF106	5220/6A	(<i>(</i>		
Cable line	Fulai(3M)	SF106	5216/6A	(6	N)		
Cable line	Fulai(3M)	SF106	5217/6A	\	J		
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre				

CTI华测检测 Report No. :EED32Q81825702

Page 9 of 43

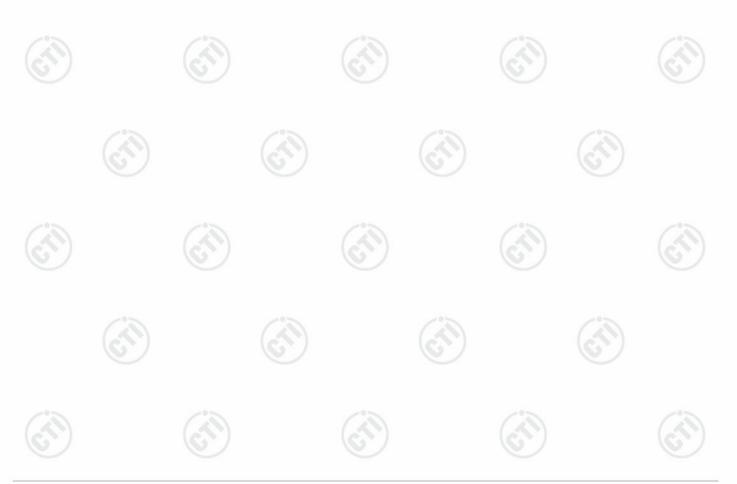
		3M full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS- LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	G	0
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		D
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	() 	
Cable line	Times	EMC104-NMNM- 1000	SN160710	6	@
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	(6)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 Test results and Measurement Data

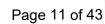
5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15 Subpart F Section 15.519(a2) & Section 15.521(b) &
	Section 15.203


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of 15.211, 15.213, 15.217, 15.219, 15.221, or 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

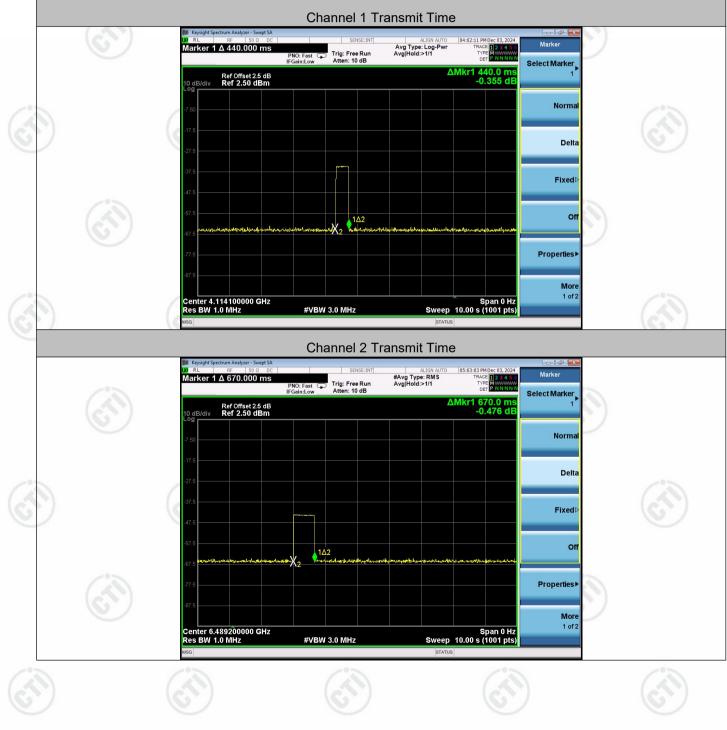
15.519 requirement:


The use of antennas mounted on outdoor structures, e.g., antennas mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.

EUT Antenna:	Please see Internal photos
The antenna is PCB Antenna UWB Channels 5: 3.93dBi	a. The best case gain of the antenna is UWB Channels 2: 3.80dBi,

5.2 Cessation Time

	Test Requirement:	47 CFR Part 15 Subpa	art F Section 15.	519(a)(1)	
	Test Method:	1	J		I
(Test Setup:	Control Computer Power Supply TEMPERATURE CABINET Table	Attenuator	RF test System Instrument	
		Remark: Offset=Cable	e loss+ attenuatio	on factor.	
ŝ	Test Procedure:	EUT and receiving pair a. Set RBW of spectru b. Use a video trigger full pulses. c. Set the center frequ	im analyzer to 1 with the trigger liency on any free	MHz and VBW to level set to enab	3 MHz. ble triggering only on
		frequency span to zer		f	
		d. Measure the maxim	ium time duration	n of one single pu	ISE.
	Limit:	≤10 seconds	6)		
	Test Mode:	Normal			
	Test Results:	Pass			



Test Result

Test Channel	Center Frequency	Transmit Time	Transmit Time	Limit	Results
est channel	(MHz)	(ms)	(s)	(s)	Results
2	4114.1	440	0.44	≤10	pass
5	6489.2	670	0.67	≤10	pass

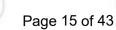
Test Graph

5.3 UWB Bandwidth (-10dB Bandwidth)

	Test Requirement:	47 CFR Part 15 Subpart F Section 15.503 & Section 15.521(e)
	Test Method:	ANSI C63.10:2013 Section 10.1
	Test Setup:	C ortici C ortici C ortici C ortici C ortici P over Svepty Filter Table RF test System Instrument
1		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The frequency at which the maximum power level is measured with the peak detector is designated fM. The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 MHz resolution bandwidth and a video bandwidth of 1 MHz or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 MHz segments above and below fM, where the peak power falls by 10 dB relative to the level at fM, are designated as fH and fL, respectively: b) For the lowest frequency bound fL, the emission is searched from a frequency lower than fM that has, by inspection, a peak power much lower than 10 dB less than the power at fM and increased toward fM until the peak power indicates 10 dB less than the power at fM. The frequency of that segment is recorded. b) This process is repeated for the highest frequency bound fH, beginning at a frequency higher than fM that has, by inspection, a peak power much lower than 10 dB below the power at fM. The frequency of that segment is recorded. c) The two recorded frequencies represent the highest fH and lowest fL bounds of the UWB transmission, and the -10 dB bandwidth (B - 10) is defined as (fH - fL). The center frequency(fc) is mathematically determined from (fH - fL) /2. d) The fractional bandwidth is defined as 2(fH - fL) / (fH + fL).e) Determine whether the -10 dB bandwidth (fH - fL) is ≥ 500 MHz, or whether the fractional bandwidth (fH - fL) is ≥ 0.2.
1		
<u></u>	Limit:	≥ 500MHz
<u> </u>	Limit: Test Mode:	

Test Result

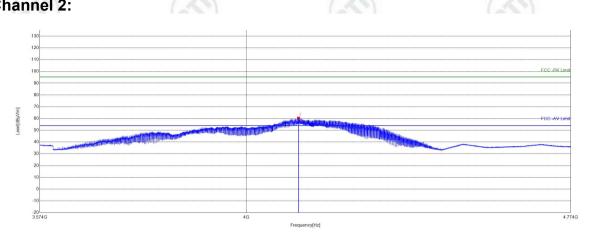
Test Channel FM(M	Hz) FL (MHz)	FH (MHz)	10dB bandwidth(MHz)	(MHz)	Results
2 411	4 3784	4307	523	≥500	pass
5 633	6 6142	6862	720	≧500	pass


Test Graph

5.4 EIRP (Equivalent Isotropic Radiated Power)

J.4	EIRP (Equivalen	it isotropic Radiated Power)
	Test Requirement:	47 CFR Part 15 Subpart F Section 15.519 (c)&(e) & Section 15.521(g)
	Test Method:	ANSI C63.10: 2013 Section 10.3
	Test Setup:	
Ĩ		AE EUT Horn Antenna Tower AE EUT Ground Reference Plane
		Test Receiver Angular Controller
		Remark:
S.		Due to some spectrum analyzer does not support 50MHz RBW setting,
		RBW set to the maximum value, and add a correction factor is allowed for
		Max Peak EIRP measurement. According to ANSI 63.10 Clause 10.3.9,
		the EIRP to field strength at a specified measurement distance of 3 m is below: $\Gamma (dPu)/(m) = \Gamma IPP(dPm) + 05.2$
		E (dBuV/m) = EIRP(dBm) + 95.3 For peak power test, the spectrum anylyzer was set to RBW=8MHz,
		VBW=10MHz, and add a conversion factor of 20*log(50MHz/8MHz)=15.92dB.
	Test Procedure:	1) The EUT was placed on the top of a rotating table 1.5 meters above the
ŝ		 ground at a 3 meter semianechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength.Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the
<u>s</u>		 rotatable table was turned from O degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode for Max Peak EIRP measurement and AV detector for Average EIRP measurement. 6) Test the EUT in the lowest channel, the Highest channel 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was complete. Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
	25	

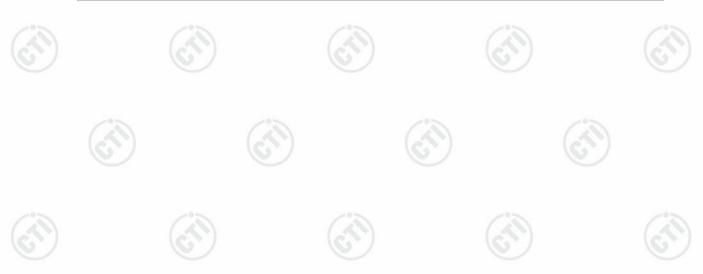
	Limit:	Measurement Distance Limit:	: 3m		
		Frequency	Limit	Detector	Measurement distance (m)
		960MHz-1610MHz	-75.3 dBm (EIRP, RBW=1MHz)	AV	3
		1610MHz-1990MHz	-63.3 dBm (EIRP, RBW=1MHz)	AV	3
		1990MHz-3100MHz	-61.3 dBm (EIRP, RBW=1MHz)	AV	3
		3100MHz-10600MHz	-41.3 dBm (EIRP, RBW=1MHz)	AV	3
		Above 10600MHz	-61.3 dBm (EIRP, RBW=1MHz)	AV	3
		Fundamental	0 dBm (EIRP, RBW=50MHz)	Peak	3
		Thus, the field strength limit f	or the test above 1GHz is below:		
		Frequency	Limit	Detector	Measurement
		Frequency	Field Strength (dBuV/m)	Detector	Distance
		960MHz-1610MHz	20.00	AV	3
		1610MHz-1990MHz	32.00	AV	3
		1990MHz-3100MHz	34.00	AV	3
		3100MHz-10600MHz	54.00	AV	3
		Above 10600MHz	34.00	AV	3
		Fundamental	95.30	Peak	3
	Test Mode:	Continuous Tx Mode,	Keep the EUT Transmitting w	ith Modulatio	n 🔊
	Test Results:	Pass			e e



Page 17 of 43

Test Result (1)Channel 2:

6		(6))	6	621		
	Peak Field S	trength for fundame	ental @ RBW=8MH	Z		
Freq.[MHz]			Level [dBµV/m]	Polarity	Remark	
4115.4761	-11.16	71.53	60.37	Horizontal	PK	
					1	


	Calculated Peak Field Strength of fundamental @ RBW=50MHz										
	Measured Field										
Freq.	Strength of	Strength of	Limit	Margin	Desult	Delevite	13				
[MHz]	fundamental	fundamental	(dBuV/m)	[dB]	Result	Polarity					
	(FSM) (dBuV/m)	(FSc) (dBuV/m)									
4115.4761	60.37	76.29	95.30	19.01	pass	Horizontal					

Note:

FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92,

Margin=Limit-FSc


AV De

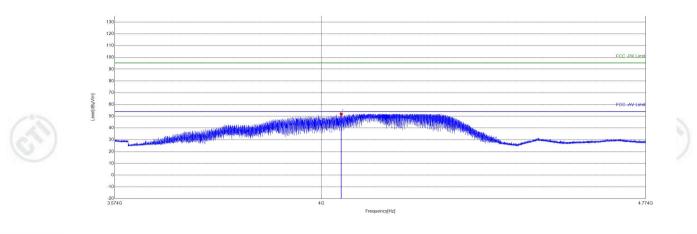
PK Limit — AV Limit — Vertical AV
 AV Detector

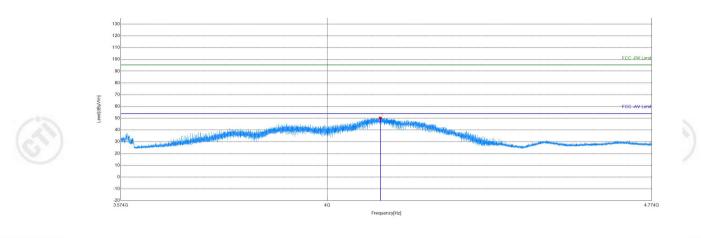
Peak Field Strength for fundamental @ RBW=8MHz										
Freq.[MHz]	Factor[dB]	Reading[dBµV]	Level [dBµV/m]	Polarity	Remark					
4114.1160	-11.11	71.10	59.99	Vertical	PK					

Calculated Peak Field Strength of fundamental @ RBW=50MHz									
	Measured Field	Calculated Field							
Freq. Strength of		Strength of	Strength of Limit Margi		Desult	Dalasita			
[MHz]	fundamental	fundamental	(dBuV/m)	[dB]	Result	Polarity			
	(FSM) (dBuV/m)	(FSc) (dBuV/m)							
4114.1160 59.99		75.91	95.30	19.39	Pass	Vertical			

Note:

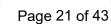
FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92,


Margin=Limit-FSc

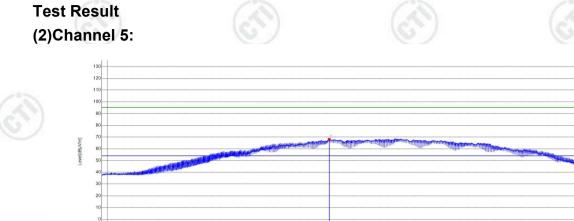


PK Limit AV Limit Horizontal AV
 AV Detector

~			Avera	age Field S	trength for f	undamental	@ RBW=	=1 MHz		
6	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
L	1 Note:N	4043.5513 /argin=Limit-Le	-13.56 evel;	65.51	51.95	54.00	2.05	PASS	Horizontal	AV



PK Limit AV Limit Vertical AV
 AV Detector


~			Avera	age Field S	trength for f	undamental	@ RBW=	=1 MHz		
Ś	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1 Note:	4117.3162 Margin=Limit-Le	-11.23	61.34	50.11	54.00	3.89	PASS	Vertical	AV
	Note.i		5061,							

ECC.PKI

Peak Field Strength for fundamental @ RBW=8MHz										
Freq.[MHz]	Factor[dB]	Reading[dBµV]	Level [dBµV/m]	Polarity	Remark					
6399.0273	-5.30	73.26	67.96	Horizontal	PK					
					1					

Frequency[Hz]

Measured Fie Freq. Strength of [MHz] fundamental (FSM) (dBuV/r		d Limit	Morain		
		(dBuV/m)	Margin [dB]	Result	Polarity
6399.0273 67.96 Note:	83.88	95.30	11.42	pass	Horizontal

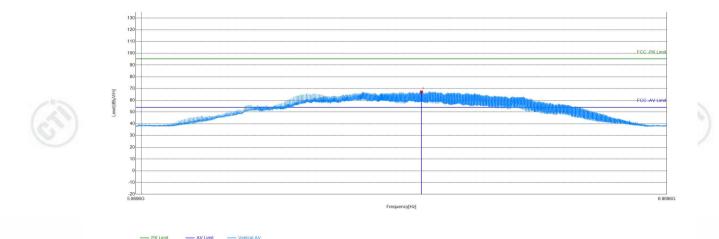
FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92,

Margin=Limit-FSc

- PK Limit

* AV Detector

AV Limit

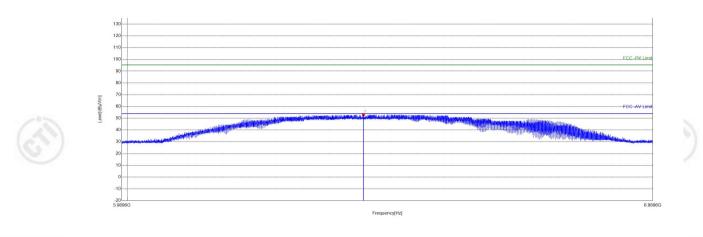


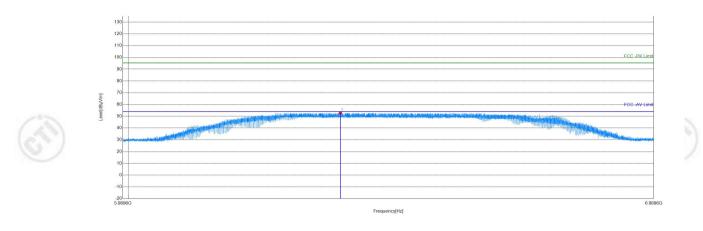
	Peak Field Stre	ength for fundamer	ntal @ RBW=8MHz	<u> </u>	
Freq.[MHz]	Factor[dB]	Reading[dBµV]	Level [dBµV/m]	Polarity	Remark
6508.3679	-6.15	73.31	67.16	Vertical	PK

	Calculated Peak	Field Strength of fur	ndamental @	2 RBW=50	OMHz	1	
	Measured Field	Calculated Field					
Freq.	Strength of	Strength of	Limit	Margin	Decult	Delerity	
[MHz]	fundamental	fundamental	(dBuV/m)	[dB]	Result	Polarity	1.
	(FSM) (dBuV/m)	(FSc) (dBuV/m)					K
6508.3679	67.16	83.08	95.30	12.22	Pass	Vertical	2
Note:							

FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92,

Margin=Limit-FSc


* AV Detecto



PK Limit AV Limit Horizontal AV
 AV Detector

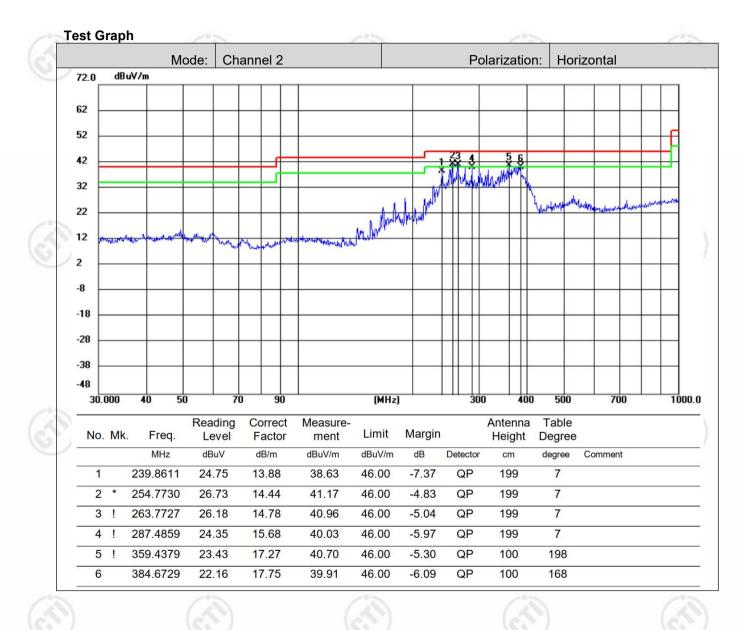
			Avera	age Field S	trength for f	undamental	@ RBW=	=1 MHz		
6	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz] 6425.5624	[dB] -6.20	[dBµV]	[dBµV/m]	[dBµV/m]	[dB] 0.91	PASS	Horizontal	AV
L	1 Note:M	argin=Limit-Le		59.29	53.09	54.00	0.91	PASS	Honzontai	AV

PK Limit AV Limit Vertical AV AV Detector

~			Avera	age Field S	trength for f	undamental	@ RBW=	=1 MHz		
Ś	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1 Noto	6380.8261	-6.14	58.80	52.66	54.00	1.34	PASS	Vertical	AV
	Note:	Margin=Limit-L	ever,							

5.5 Spurious Emissions Below 1GHz

	Test Requirement:	47 CFR Part 15 Subp & Section 15.521(c)&		5.519(c) & S	Section 15.2	09
	Test Method:	ANSI C63.10: 2013 S	Section 10.2			
	Test Setup:	AE EUT (Turntable)	Antenna Jan Sround Reference Plane	Antenna Tower		(TI
2						
2						(U)
	Test Procedure:	 The EUT was plac the ground at a 3 met 360 degrees to deter The EUT was set 3 	ters semi-anech mine the position 3 meters away fi	oic camber n of the hig rom the inte	: The table wheeler the table wheeler table wh	was rotated m. ceiving
		antenna, which was r tower. 3) The antenna heigh			U	
		 ground to determine the horizontal and vertical measurement. 4) For each suspecter and then the antennat the test frequency of meter) and the rotata to find the maximum 	the maximum va I polarizations o d emission, the was tuned to he below 30MHz, the ble table was tu	alue of the f if the anten EUT was a eights from he antenna	ield strength na are set to nranged to it 1 meter to 4 was tuned to	h.Both o make the ts worst case 4 meters (for to heights 1
		5) The test-receiver sMode. And use Quas6) Test the EUT in the recorded worst channel	i-Peak to measu e lowest channe	ure the six l I, the Highe	nighest frequ est channel a	iencies.
3		7) The radiation measurement of the form o	surements are p	erformed in	n X, Y, Z axi	
		8) Repeat above proc completeRemark 1: L Preamp Factor 2. Acc from 9kHz to 40GHz so it's not recorded in	evel= Read Lev cording to FCC I for the EUT. Em	vel+ Cable I Part 15.521	Loss+ Anten (h), test was	ina Factor- s performed
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement
		0.009MHz-0.490MHz	2400/F(kHz)	-		distance (m) 300
		0.490MHz-1.705MHz	24000/F(kHz)		-	30
		1.705MHz-30MHz	30	- 40.0	- Ouasi poak	30
		30MHz-88MHz 88MHz-216MHz	100 150	40.0 43.5	Quasi-peak Quasi-peak	3
5		216MHz-960MHz	200	46.0	Quasi-peak	3

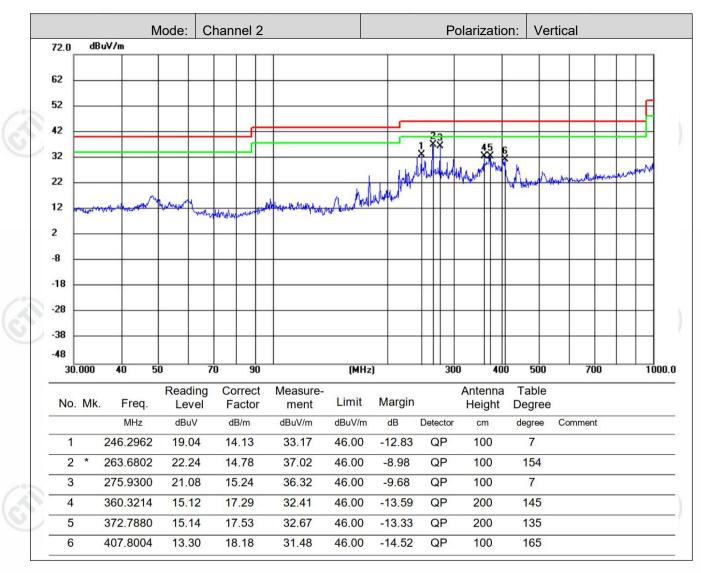


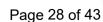
Report No. : EED32Q81825702

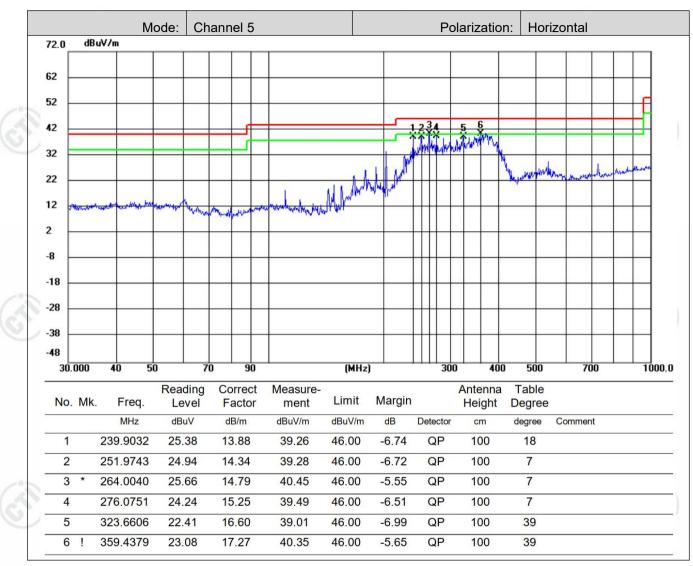
Test Mode:	Continuous Tx	Mode, Keep the EUT Tran	smitting with Modulation
Test Results:	Pass		
67)	(C)	(C)	(C)

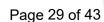
Test Result

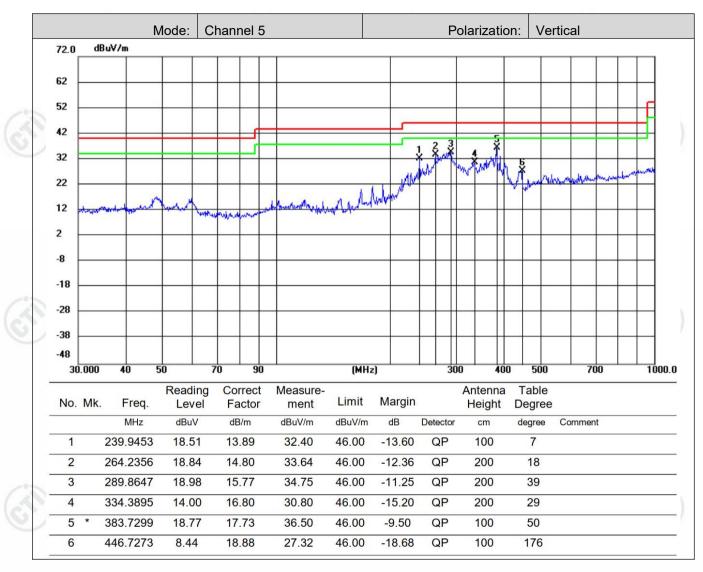
Hotline:400-6788-333

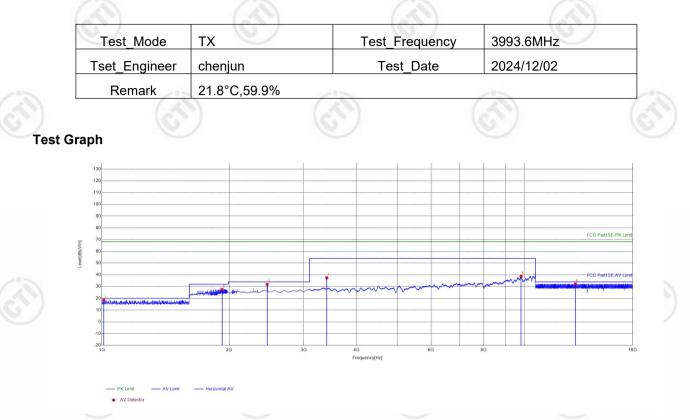











5.6 Spurious Emissions Above 1GHz

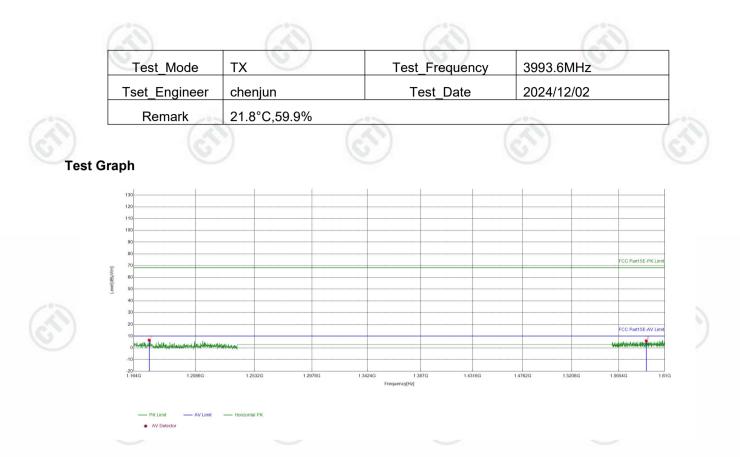
	Test Requirement:	47 CFR Part 15 Subpart	F Section 15.51	9 (c)&(a) &	Section 15	.521(d)&(h)
	Test Method:	ANSI C63.10: 2013 Sect	ion 10.3			
	Test Setup:	Control Computer Power Supply TEMPERATURE CABINET Table		RF test System strumen	ıt D	
- 01		Remark: Offset=Cable lo	ss+ attenuation f	factor.		100
	Test Procedure:	 The EUT was placed ground at a 3 meters ser degrees to determine the The EUT was set 3 m which was mounted on t The antenna height is ground to determine the and vertical polarizations 	ni-anechoic cam e position of the l eters away from he top of a varial varied from one maximum value	ber. The ta highest rad the interfer ole-height a meter to fo of the field	ble was rota iation. ence-receiv antenna tow our meters a strength.Bo	ated 360 ving antenna ver. above the oth horizonta
		 4) For each suspected e and then the antenna wa rotatable table was turne maximum reading. 5) The test-receiver syste Mode. 6) Test the EUT in the lo 	is tuned to heigh id from 0 degree em was set to Pe west channel, th	ts from 1 m s to 360 de eak detecto e Highest c	neter to 4 m grees to fin or with Maxin channel	eters and th d the mum Hold
		 7) The radiation measure Transmitting mode, and 8) Repeat above proceder Remark 1: Level= Read Factor2; As the EUT operate at 6 15.521(h), test was performed by the test report. 	found the X axis ures until all freq Level+ Cable Lo 489.6MHz and 7 prmed at frequen	positioning uencies me ss+ Antenn 987.2MHz, cy up to 40	which it is easured was a Factor- P according t GHz.	worse case s complete reamp to Part
2	Limit:	Frequency	Limit (dBuV/m)	RBW	Detector	Measuremen
			5000 A 20			distance (m)
		1000MHz-1610MHz 1610MHz-1990MHz	20.0 32.0	1MHz 1MHz	AV AV	3
		1990MHz-3100MHz	34.0	1MHz	AV	3
		3100MHz-10600MHz	54.0	1MHz	AV	3
		Above 10600MHz	34.0	1MHz	AV	3
		1164MHz-1240MHz 1559MHz-1610MHz	10.0 10.0	1KHz 1KHz	AV AV	3
	Test Mode:	Continuous Tx Mode, Ke				2000 200
	rest wode:	- Commuous IX Mode Ke	ed the EUT Tran	ารทานเทน WI	u ivoqulati	
	Test Results:	Pass	-	~~~		205

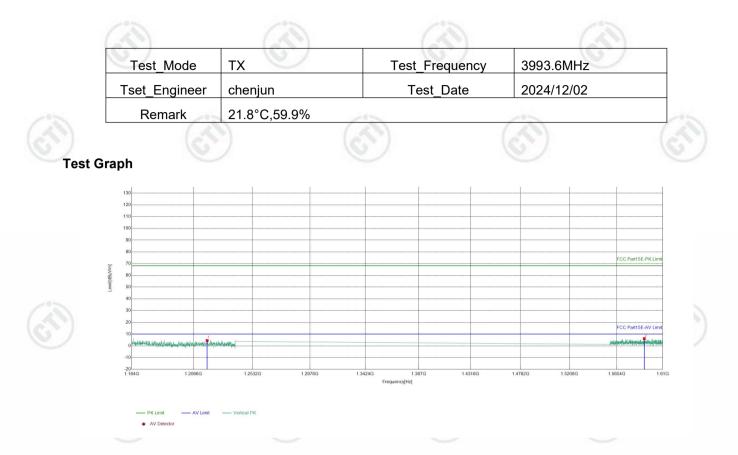
Test Result

	Susp	ected List								
a	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
C		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtooun	rolanty	Roman
	1	1009.7698	-22.20	40.64	18.44	20.00	1.56	PASS	Horizontal	AV
	2	1924.1942	-16.66	44.32	27.66	32.00	4.34	PASS	Horizontal	AV
	3	2460.0000	-16.88	48.81	31.93	34.00	2.07	PASS	Horizontal	AV
	4	3402.2802	-13.71	51.21	37.50	54.00	16.50	PASS	Horizontal	AV
	5	9801.9202	4.33	34.40	38.73	54.00	15.27	PASS	Horizontal	AV
10	6	13169.5370	7.02	25.20	32.22	34.00	1.78	PASS	Horizontal	AV

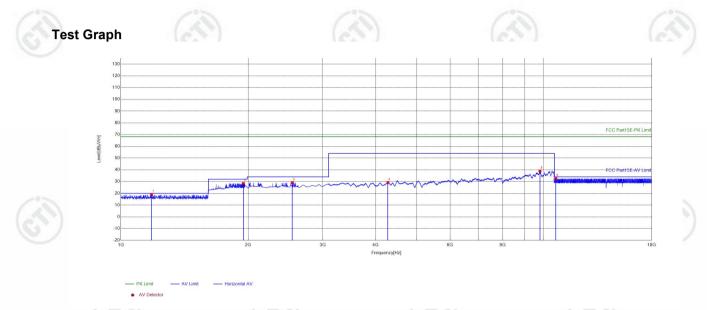


3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1072.0521	-23.31	41.85	18.54	20.00	1.46	PASS	Vertical	AV
	2	1952.3423	-16.02	44.86	28.84	32.00	3.16	PASS	Vertical	AV
	3	2332.2222	-17.99	47.63	29.64	34.00	4.36	PASS	Vertical	AV
	4	3411.2811	-13.59	55.25	41.66	54.00	12.34	PASS	Vertical	AV
	5	10295.4695	4.26	34.74	39.00	54.00	15.00	PASS	Vertical	AV
-01	6	11084.7485	3.92	28.67	32.59	34.00	1.41	PASS	Vertical	AV
2	6	11084.7485	3.92	28.67	32.59	34.00	1.41	PASS	Vertical	6



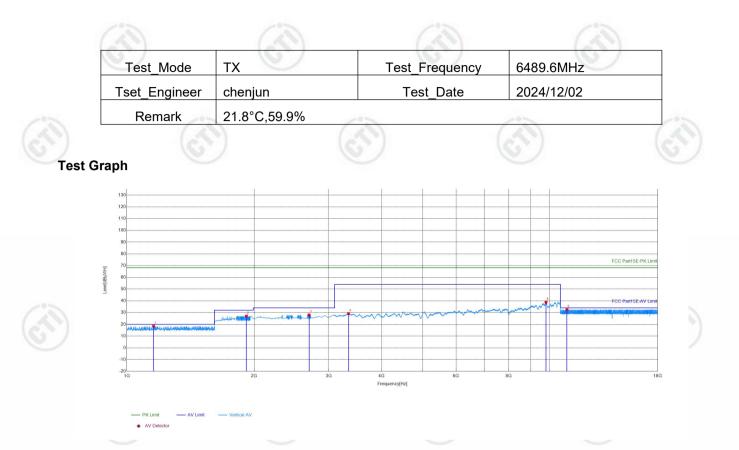


	Suspe	cted List								
S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1174.9550	-23.11	29.71	6.60	10.00	3.40	PASS	Horizontal	AV
	2	1591.9790	-21.94	27.89	5.95	10.00	4.05	PASS	Horizontal	AV
)			

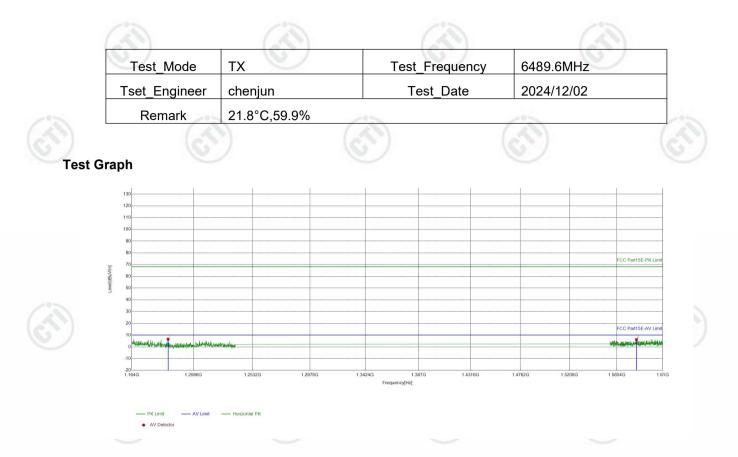

Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1218.7748	-23.69	28.21	4.52	10.00	5.48	PASS	Vertical	AV
2	1591.9790	-21.94	28.10	6.16	10.00	3.84	PASS	Vertical	AV

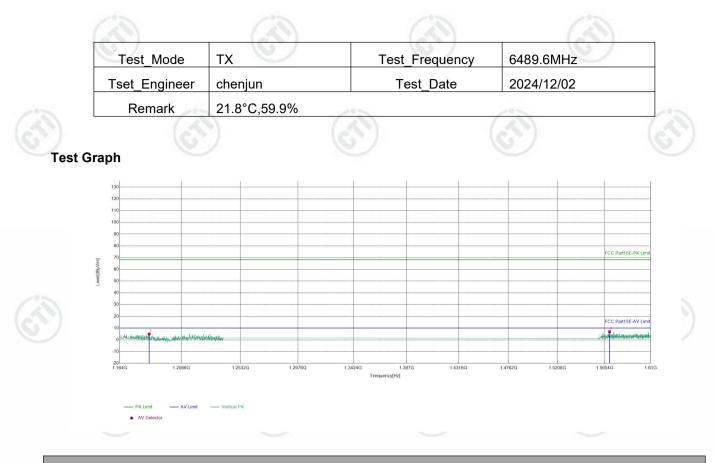
Test_Mode	ТХ	Test_Frequency	6489.6MHz
Tset_Engineer	chenjun	Test_Date	2024/12/02
Remark	21.8°C,59.9%		

	Suspe	ected List								
(Z		Freq.	Factor	Reading	Level	Limit	Margin			-
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Horizontal // Horizontal // Horizontal // Horizontal // Horizontal //	Remark
C	1	1180.7407	-23.22	41.98	18.76	20.00	1.24	PASS	Horizontal	AV
	2	1947.3974	-15.97	44.41	28.44	32.00	3.56	PASS	Horizontal	AV
	3	2543.3333	-16.22	45.24	29.02	34.00	4.98	PASS	Horizontal	AV
	4	4279.8680	-10.27	39.48	29.21	54.00	24.79	PASS	Horizontal	AV
	5	9795.1695	4.14	34.78	38.92	54.00	15.08	PASS	Horizontal	AV
	6	10674.7475	2.91	29.62	32.53	34.00	1.47	PASS	Horizontal	AV

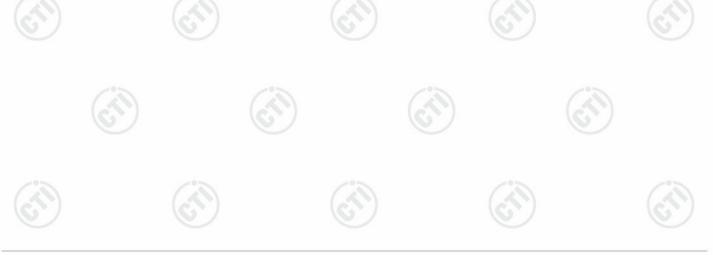


	Susp	ected List								
C	NO	Freq.	Factor	Reading	Level	Limit	Margin	Decult	Delerity	Domork
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Vertical A Vertical A Vertical A Vertical A Vertical A	Remark
	1	1156.3163	-22.76	41.16	18.40	20.00	1.60	PASS	Vertical	AV
	2	1917.3473	-16.87	43.85	26.98	32.00	5.02	PASS	Vertical	AV
	3	2696.6667	-16.13	44.19	28.06	34.00	5.94	PASS	Vertical	AV
	4	3343.0243	-13.12	42.26	29.14	54.00	24.86	PASS	Vertical	AV
	5	9796.6697	4.21	34.60	38.81	54.00	15.19	PASS	Vertical	AV
	6	10984.0984	4.89	27.62	32.51	34.00	1.49	PASS	Vertical	AV





	`	Freq.	Factor	Reading	Level	Limit	Margin	Desuit	Deleritu	Demende
N)	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity Horizontal	Remark
1		1190.0180	-23.39	30.01	6.62	10.00	3.38	PASS	Horizontal	AV
2		1584.3724	-22.02	28.23	6.21	10.00	3.79	PASS	Horizontal	AV



Suspected List

3	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark	
V		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]				
	1	1184.9970	-23.30	28.30	5.00	10.00	5.00	PASS	Vertical	AV	
	2	1569.9760	-22.17	29.11	6.94	10.00	3.06	PASS	Vertical	AV	

Remark:

1) Scan from 9kHz to 40GHz, disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 42 of 43

7 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q81825701 for EUT external and internal photos.

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 43 of 43

声明 Statement

1. 检测报告无批准人签字、"专用章"及报告骑缝章无效; This report is considered invalid without approved signature, special seal and the seal on the perforation;

2. 报告中公司名称及地址、样品及样品信息由申请者提供,申请者应对其真实性负责,CTI 不负责验证其真实性;

The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;

3. 本报告检测结果仅对受测样品负责;

The result(s) shown in this report refer(s) only to the sample(s) tested;

4. 除非另有说明,报告参照 ILAC-G8:09/2019/CNAS-GL015: 2022 使用简单接受判定规则进 行符合性判定;

Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;

5. 未经 CTI 书面同意,不得部分复制本报告;

Without written approval of CTI, this report can't be reproduced except in full;

6. 如检测报告中的英文内容与中文内容有差异,以中文为准。

In case of any discrepancy between the English version and Chinese version of the testing reports (if generated), the Chinese version shall prevail.

报告结束 *** End of Report ***