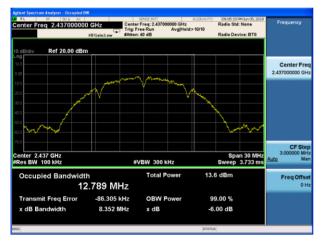


7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	LAVA LE9830
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Mode	Channel	Frequency	6dB bandwidth	Limit	Result	
WOUE	Channer	(MHz)	(MHz)	(kHz)	Nesun	
	Low	2412	7.434	≥500	Pass	
802.11b	Middle	2437	8.352	≥500	Pass	
	High	2462	8.105	≥500	Pass	
802.11g	Low	2412	16.44	≥500	Pass	
	Middle	2437	16.41	≥500	Pass	
	High	2462	16.44	≥500	Pass	
	Low	2412	17.72	≥500	Pass	
802.11n20	Middle	2437	17.58	≥500	Pass	
	High	2462	17.66	≥500	Pass	
802.11n40	Low	2422	29.79	≥500	Pass	
	Middle	2437	34.10	≥500	Pass	
	High	2452	36.38	≥500	Pass	



Test plot

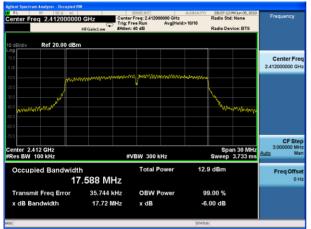
(802.11b) 6dB Bandwidth plot on channel 1

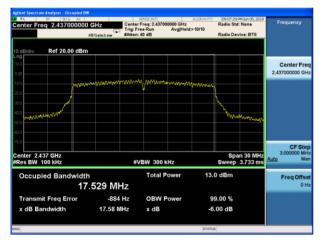
(802.11b) 6dB Bandwidth plot on channel 6


(802.11b) 6dB Bandwidth plot on channel 11

(802.11g) 6dB Bandwidth plot on channel 1

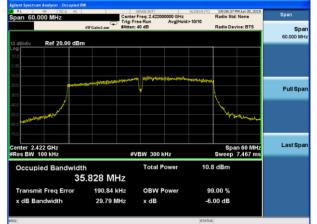
(802.11g) 6dB Bandwidth plot on channel 6


(802.11g) 6dB Bandwidth plot on channel 11



Test plot


(802.11 N20) 6dB Bandwidth plot on channel 1


(802.11 N20) 6dB Bandwidth plot on channel 6

(802.11N20) 6dB Bandwidth plot on channel 11

(802.11 N40) 6dB Bandwidth plot on channel 1

(802.11 N40) 6dB Bandwidth plot on channel 6

(802.11N40) 6dB Bandwidth plot on channel 11

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	LAVA LE9830	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu	
			Duty	

Mode	Data rate	Channel	T _{on}	T _{total}	Duty Cycle	Cycle Factor (dB)	VBW Setting
802.11b	1Mbps	6	-	-	100%	0	10Hz
802.11g	6Mbps	6	-	-	100%	0	1KHz
802.11n HT20	MCS0	6	-	-	100%	0	1KHz
802.11n HT40	MCS0	6	-	-	100%	0	3KHz

Note: All the modulation modes were tested, the data of the worst mode are described in the following table.

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	Peak

7.5.4 Test Setup

7.5.5 Test Procedure

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the *DTS bandwidth* and shall utilize a fast-responding diode detector.

7.5.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	Mobile Phone		Model No.:	LAVA LE98	LAVA LE9830		
Temperature:	20	°C		Relative Humidity: 48%			
Test Mode:	80	2.11b/g/n20/n4	10	Test By: Allen Liu			
				,			
Test Channel	Frequenc (MHz)	cy Power Setting	Duty Cycle Factor (dB)	Peak Output Power (dBm)	Maximum Output Power(dBm)	LIMIT (dBm)	Verdict
				802.11b		•	
1	2412	Default	0	13.19	13.19	30	PASS
6	2437	Default	0	13.56	13.56	30	PASS
11	2462	Default	0	13.26	13.26	30	PASS
	802.11g						
1	2412	Default	0	12.94	12.94	30	PASS
6	2437	Default	0	13.23	13.23	30	PASS
11	2462	Default	0	12.87	12.87	30	PASS
				802.11n HT20			
1	2412	Default	0	12.87	12.87	30	PASS
6	2437	Default	0	13.15	13.15	30	PASS
11	2462	Default	0	12.83	12.83	30	PASS
				802.11n HT40			
3	2422	Default	0	10.87	10.87	30	PASS
6	2437	Default	0	11.15	11.15	30	PASS
9	2452	Default	0	10.86	10.86	30	PASS

ACCREDITED

Certificate #4298.01

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 *RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

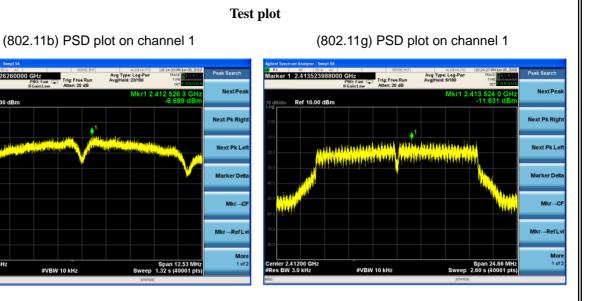
7.6.6 Test Results

UT:	Mobile Phone		Model No.:	LAVA LE9830	LAVA LE9830	
emperature:	20 ℃		Relative Humidi	ty: 48%	48%	
Fest Mode:	802.11b/g/n20/n40		Test By:	Allen Liu	Allen Liu	
Test Channel	Frequency (MHz)	Duty Cycle Factor(dB)	Peak Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Verdict	
			802.11b			
1	2412	0	-8.689	8	PASS	
6	2437	0	-8.436	8	PASS	
11	2462	0	-9.230	8	PASS	
			802.11g			
1	2412	0	-11.631	8	PASS	
6	2437	0	-11.218	8	PASS	
11	2462	0	-11.150	8	PASS	
			802.11n HT20			
1	2412	0	-11.475	8	PASS	
6	2437	0	-11.722	8	PASS	
11	2462	0	-12.328	8	PASS	
			802.11n HT40			
3	2422	0	-16.038	8	PASS	
6	2437	0	-17.671	8	PASS	
9	2452	0	-18.229	8	PASS	

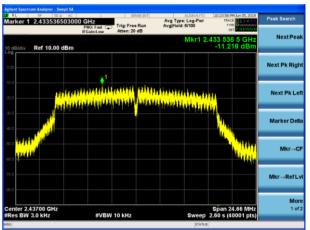
ACCREDITED

Certificate #4298.01

Report No.:STR190523002003E

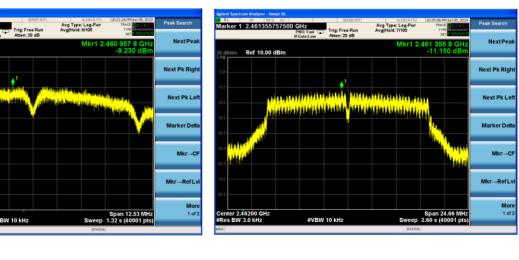

Avg Type: Log-Pw Avg|Hold: 23/100

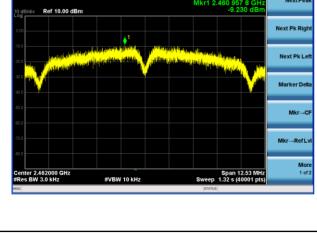
RL RF 50 & AC arker 1 2.412526260000 GHz PN0: Fast C Trig: Free Run


#VBW 10 kH

Ref 10.00 dBn

enter 2.412000 GI Res BW 3.0 kHz


(802.11g) PSD plot on channel 6


(802.11g) PSD plot on channel 11

(802.11b) PSD plot on channel 6

(802.11b) PSD plot on channel 11

arker 1 2.460957817250 GHz

#VBW 10 kHz

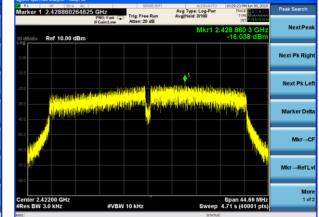
nter 2.41200 GHz es BW 3.0 kHz

Test plot

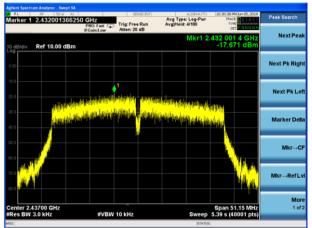
Next Pk Le

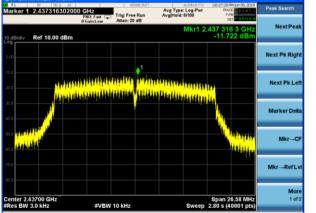
Marker De

Mkr→C


Mkr→RefL

Span 26.58 M 2.80 s (40001 p 1 of


(802.11n40) PSD plot on channel 1

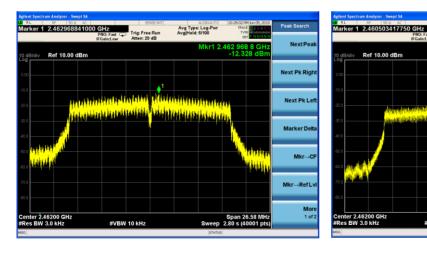


(802.11n20) PSD plot on channel 1

(802.11n40) PSD plot on channel 6

(802.11n20) PSD plot on channel 11

(802.11n20) PSD plot on channel 6


Avg Type: Log-Pw Avg|Hold: 16/100

18.22

Span 54.57 MH 5.75 s (40001 nt

Trig: Free Run

#VBW 10 kH;

ak Caa

NextPe

Next Pk Rig

Next Pk Le

Marker Del

Mkr→C

Mkr→Ref Ly

More 1 of 2

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

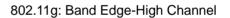
Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	LAVA LE9830
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Allen Liu

Test plot For


802.11b: Band Edge-Low Channel

802.11b: Band Edge-High Channel

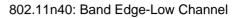
Avg Type: Log-Pv Avg[Hold>100/100

> Stop 2.45000 GHz Sweep 13.4 ms (1001 pts)

Grati

Display Line

System Display Settings


Test plot For

v Line -24,77 d

Ref 20.00 dB

Start 2.31000 GH

802.11n20: Band Edge-Low Channel

Trig: Free Run

#VBW 300 kHz

-4.767 dBm -42.604 dBm

2.426 76 GHz 2.400 00 GHz

802.11n20: Band Edge-High Channel

