TEST REPORT				
FCC ID :	2ANMU-2401			
Test Report No:	TCT241118E033	(3	
Date of issue:	Nov. 26, 2024		\bigcirc	
Testing laboratory::	SHENZHEN TONGCE TESTING LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuha Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China			
Applicant's name: :	SHENZHEN YUNJI INTEL	LIGENT TE	CHNOLOGY (CO., LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA, SHENZHEN, 518XXX China			
Manufacturer's name :	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD			
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA, SHENZHEN, 518XXX China			
Standard(s)	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020			
Product Name:	Smart Watch	(C))
Trade Mark:	OUKITEL			
Model/Type reference :	V2, V3, V4, V5, V6, V7, V8	3, BT11, BT	12, BT13, BT1	5, BT16
Rating(s):	Rechargeable Li-ion Batter	ry DC 3.8V		
Date of receipt of test item	Nov. 18, 2024	$\left(\begin{array}{c} c \\ c \end{array} \right)$	(di)
Date (s) of performance of test:	Nov. 18, 2024 ~ Nov. 26, 2	2024		
Tested by (+signature) :	Ronaldo LUO	P.	nald, tayou	E TA
Check by (+signature) :	Beryl ZHAO	Ba	A NETC	T
Approved by (+signature):	Tomsin	(S) /01	nsm 40	3*

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	
1.3. Operation Frequency	3
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	
3.2. Description of Support Units	7
4. Facilities and Accreditations	
4.1. Facilities	8
4.2. Location	8
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	9
5.2. Conducted Emission	
5.3. Conducted Output Power	14
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	19
5.9. Conducted Band Edge Measurement	20
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Smart Watch	
Model/Type reference:	V2	
Sample Number	TCT241118E033-0101	
Bluetooth Version:	V5.2(This report is for BDR+EDR)	9
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	Internal Antenna	
Antenna Gain:	-16.41dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.8V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	V2	\boxtimes
Other models	V3, V4, V5, V6, V7, V8, BT11, BT12, BT13, BT15, BT16	

Note: V2 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names and colors. So the test data of V2 can represent the remaining models.

Page 3 of 88

1.3. Operation Frequency

TCT通测检测 TESTING CENTRE TECHNOLOGY

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
<i></i>		·		·		<u> </u>	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S				S		S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	- 39	2441MHz	- 59	2461MHz		
Remark:	Channel 0, 3	39 & 78 ha	ave been tes	sted for G	GFSK. π/4-D	QPSK. 8	DPSK

Remark: Channel 0, 39 & 78 have been tested for GFSK, π /4-DQPSK, 8DPSk modulation mode.

Page 4 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	24.4 °C	23.1 °C
Humidity:	50 % RH	54 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar

Test Software:

Software Information:	Bluetooth RF Test Tool	
Power Level:	Default	

Test Mode:

Engineer mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

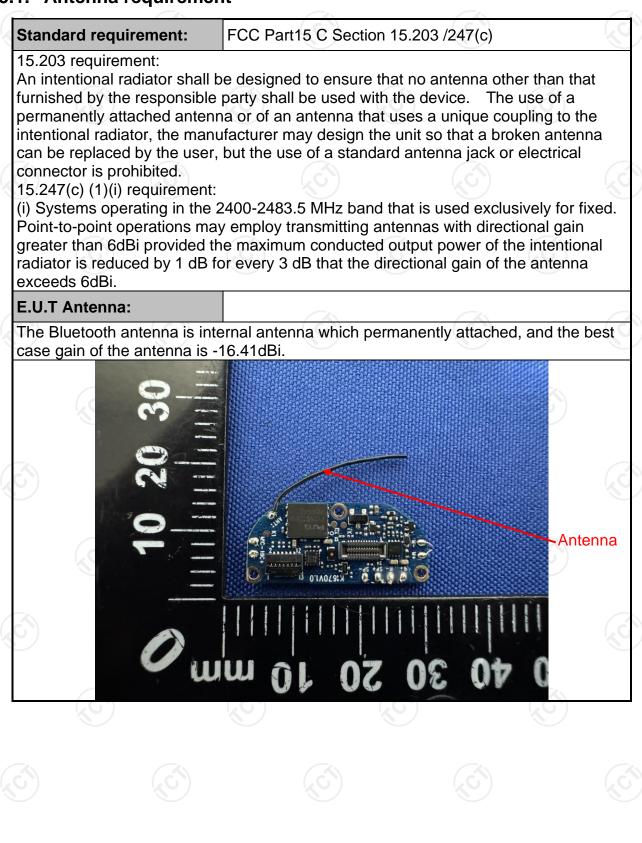
The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

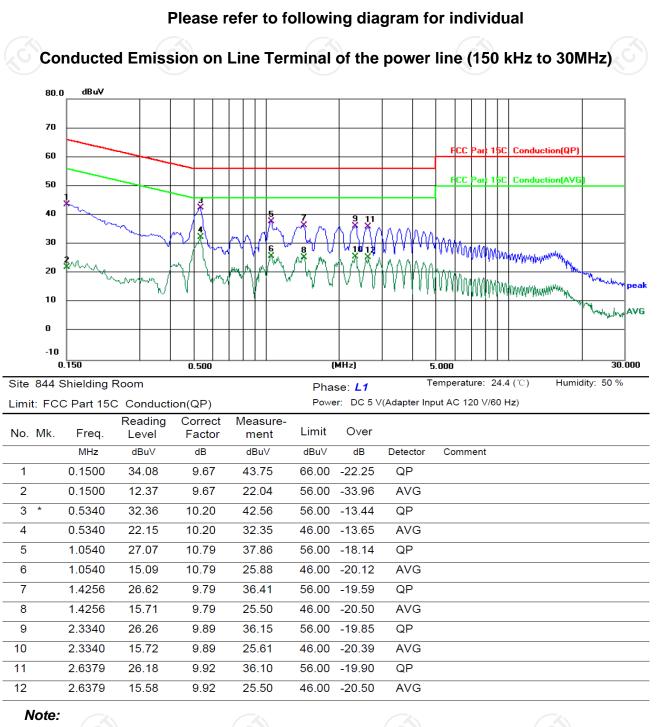
5.1. Antenna requirement

5.2. Conducted Emission

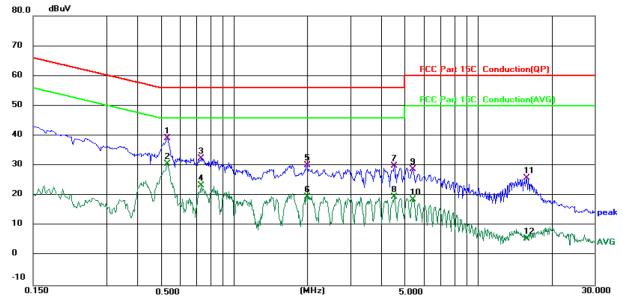

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	No.
Test Method:	ANSI C63.10:2020		
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto		
	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Average
Limits:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	Referenc	e Plane	1.01
Test Setup:	40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m	EMI Receiver	r — AC power
Test Mode:	Charging + Transmitting Mode		
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2020 on conducted measurement. 		
Test Result:	PASS		
	17.00		

Page 10 of 88


5.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Attenuator	N/A	10dB	164080	Jun. 26, 2025
Line-5	тст	CE-05	/	Jun. 26, 2025
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1



Page 11 of 88

5.2.3. Test data

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

				· · ·					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5321	28.95	10.18	39.13	56.00	-16.87	QP	
2	*	0.5321	20.47	10.1 <mark>8</mark>	30.65	46.00	-15.35	AVG	
3		0.7338	22.09	10.39	32.48	56.00	-23.52	QP	
4		0.7338	12.95	10.39	23.34	46.00	-22.66	AVG	
5		1.9939	20.35	9.79	30.14	56.00	-25.86	QP	
6		1.9939	9.86	9.79	19.65	46.00	-26.35	AVG	
7		4.5339	19.81	10.06	29.87	56.00	-26.13	QP	
8		4.5339	9.54	10.06	19.60	46.00	-26.40	AVG	
9		5.3978	18.63	10.12	28.75	60.00	-31.25	QP	
10		5.3978	8.53	10.12	18.65	50.00	-31.35	AVG	
11		15.8100	15.70	10.24	25.94	60.00	-34.06	QP	
12		15.8100	-4.69	10.24	5.55	50.00	-44.45	AVG	

Note1:

Freq. = Emission frequency in MHz

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and GFSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS S

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

		1	20)	
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		/

Page 16 of 88

5.6. Hopping Channel Number

5.6.1. Test Specification

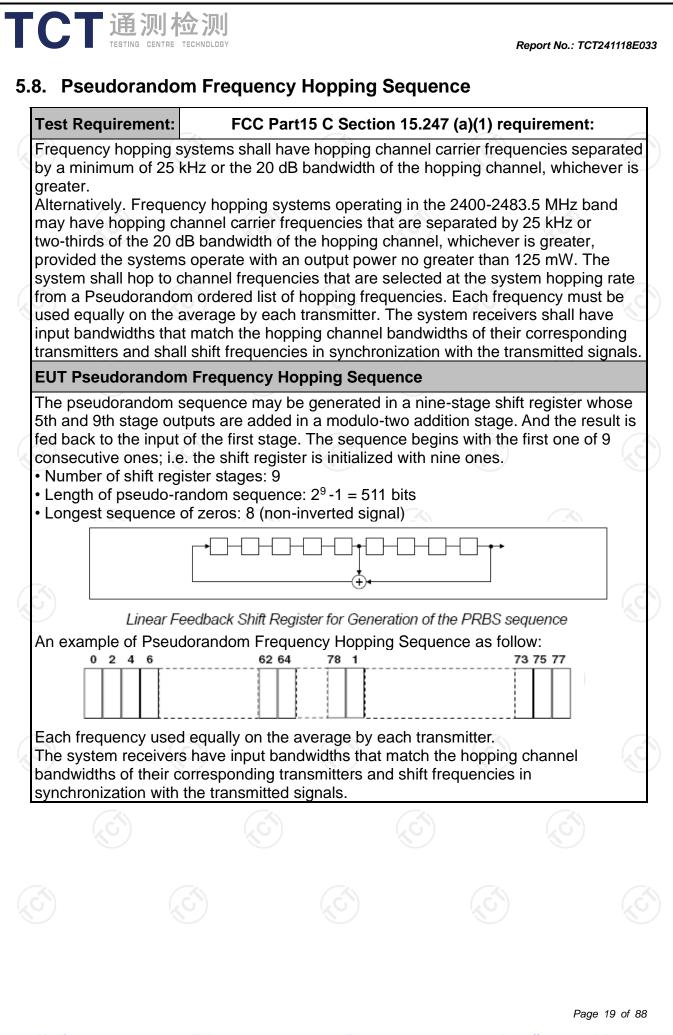
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:				
Test Mode:	Spectrum Analyzer EUT Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 			
Test Result:	PASS			

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	1

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as
	 necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. 5. Measure and record the results in the test report.

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

Page 18 of 88

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	S 1	

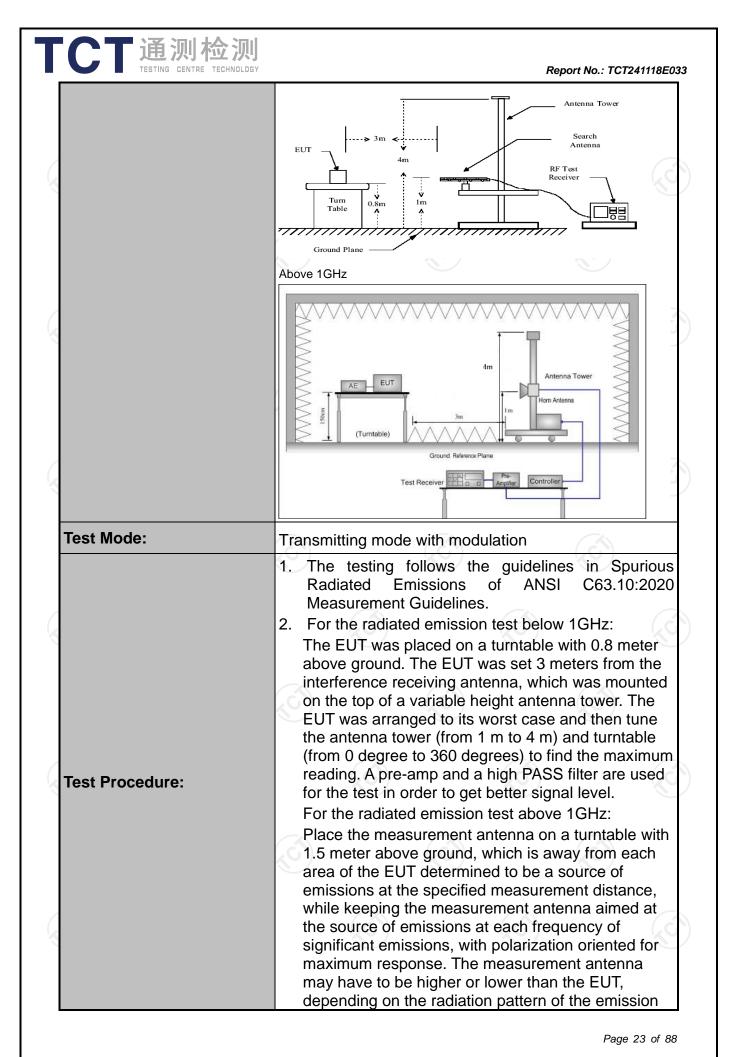
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		



5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

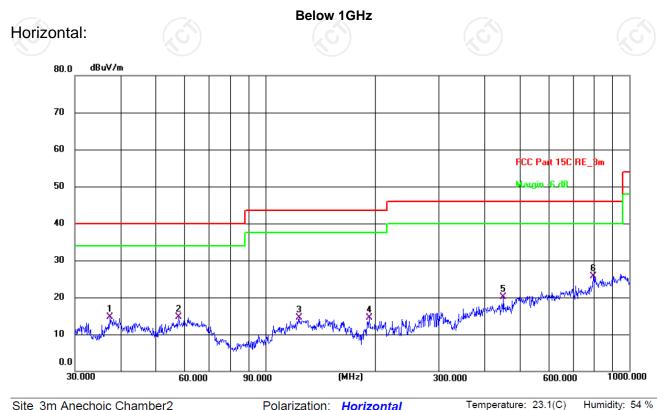
	FCC Part15	C Sectior	15.209			N N
Test Method:	ANSI C63.10):2020				
Frequency Range:	9 kHz to 25 0	GHz	3			
Measurement Distance:	3 m	X			No.	
Antenna Polarization:	Horizontal &	Vertical				
	Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW	VBW 1kHz		Remark si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peal		30kHz	1	si-peak Value
•	30MHz-1GHz Above 1GHz	Quasi-peal Peak	< 120KHz 1MHz	300KHz 3MHz		ii-peak Value eak Value
	Above IGH2	Peak	1MHz	10Hz	Ave	erage Value
	Frequer	ісу	Field Stro (microvolts			asurement nce (meters)
	0.009-0.4		2400/F(I	KHz)		300
	0.490-1.7		24000/F	(KHz)		30
	1.705-3		<u> </u>	1		<u>30</u> 3
	88-216	1	100			3
Limit:	216-96		200		No.	3
	Above 9	60	500	1		3
	Frequency		d Strength ovolts/meter)	Measure Distan (mete	nce	Detector
	Above 1GH	z	500 5000	3		Average Peak
		ssions below	30MHz			
Test setup:		stance = 3m			Comput	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	 and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle) 						
	On time =N1*L1- Where N1 is nu length of type 1 Average Emissi Level + 20*log(I Corrected Readin	+N2*L2++Nn-1*LNn- imber of type 1 pulses, pulses, etc. ion Level = Peak Emise Duty cycle) ing: Antenna Factor + 0	-1+Nn*Li , L1 is sion Cable				
Test results:	On time =N1*L1- Where N1 is nu length of type 1 Average Emissi Level + 20*log(I Corrected Readin	+N2*L2++Nn-1*LNn- Imber of type 1 pulses, pulses, etc. ion Level = Peak Emise Duty cycle)	-1+Nn*Lr , L1 is sion Cable				
Test results:	On time =N1*L1+ Where N1 is nu length of type 1 Average Emissi Level + 20*log(I Corrected Readin Loss + Read Lev	+N2*L2++Nn-1*LNn- imber of type 1 pulses, pulses, etc. ion Level = Peak Emise Duty cycle) ing: Antenna Factor + 0	-1+Nn*Li , L1 is sion Cable				
Test results:	On time =N1*L1+ Where N1 is nu length of type 1 Average Emissi Level + 20*log(I Corrected Readin Loss + Read Lev	+N2*L2++Nn-1*LNn- imber of type 1 pulses, pulses, etc. ion Level = Peak Emise Duty cycle) ing: Antenna Factor + 0	-1+Nn*Li , L1 is sion Cable				
Test results:	On time =N1*L1+ Where N1 is nu length of type 1 Average Emissi Level + 20*log(I Corrected Readin Loss + Read Lev	+N2*L2++Nn-1*LNn- imber of type 1 pulses, pulses, etc. ion Level = Peak Emise Duty cycle) ing: Antenna Factor + 0	-1+Nn*Lı , L1 is sion Cable				

5.11.2. Test Instruments

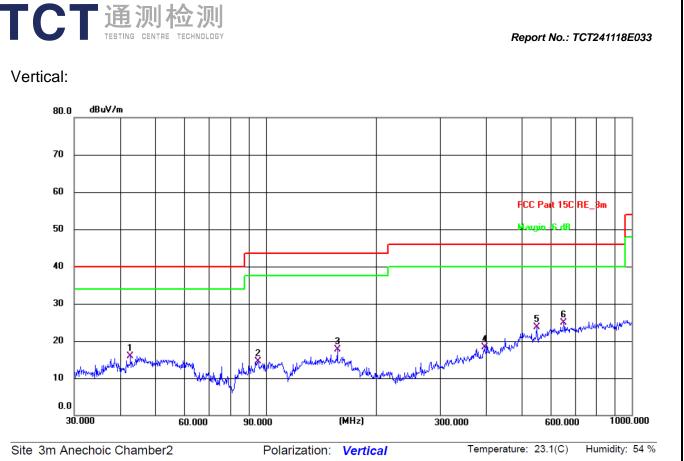
Manufacturer R&S R&S HP	Model ESCI7 FSQ40	Serial Number 100529	Calibration Due Jan. 31, 2025
R&S			Jan. 31, 2025
(<u>G</u>)	FSQ40		
НР		200061	Jun. 26, 2025
	8447D	2727A05017	Jun. 26, 2025
SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Schwarzbeck	VULB9163	340	Jun. 28, 2025
Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
SKET	RE-03-D	/	Jun. 26, 2025
SKET	RE-03-M	1	Jun. 26, 2025
SKET	RE-03-L	/	Jun. 26, 2025
SKET	RE-04-D		Jun. 26, 2025
SKET	RE-04-M		Jun. 26, 2025
SKET	RE-04-L	/	Jun. 26, 2025
Keleto	RE-AM		
EZ_EMC	FA-03A2 RE+	1.1.4.2	/
	SKET Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck SKET SKET SKET SKET SKET SKET SKET Keleto	SKET45SKETLNPA_1840G- 50SchwarzbeckFMZB1519BSchwarzbeckVULB9163SchwarzbeckBBHA 9120DSchwarzbeckBBHA 9170SKETRE-03-DSKETRE-03-MSKETRE-03-LSKETRE-04-DSKETRE-04-LSKETRE-04-LKeletoRE-AM	SKE I 45 2 SKET LNPA_1840G- 50 SK202109203 500 Schwarzbeck FMZB1519B 00191 Schwarzbeck VULB9163 340 Schwarzbeck BBHA 9120D 631 Schwarzbeck BBHA 9170 00956 SKET RE-03-D / SKET RE-03-M / SKET RE-03-L / SKET RE-04-D / SKET RE-04-M /



Page 25 of 88

5.11.3. Test Data

Please refer to following diagram for individual



Site 3m Anechoic Chamber2

Polarization: Horizontal

Limit: F	FCC Part 15C F	RE_3m				Power:	DC 3.8 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.4164	33.45	-18.77	14.68	40.00	-25.32	QP	Ρ	
2	57.7961	33.49	-18.74	14.75	40.00	-25.25	QP	Ρ	
3	123.6984	33.44	-18.94	14.50	43.50	-29.00	QP	Ρ	
4	193.0944	35.33	-20.77	14.56	43.50	-28.94	QP	Ρ	
5	451.1349	33.70	-13.50	20.20	46.00	-25.80	QP	Ρ	
6 *	796.1829	32.48	-6.76	25.72	46.00	-20.28	QP	Ρ	

Page 26 of 88

 Limit:
 FCC Part 15C RE_3m
 Power:
 DC 3.8 V

 Na
 Frequency
 Reading
 Factor
 Level
 Limit
 Margin
 Detector
 Demosty

N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	42.7494	34.46	-18.59	15.87	40.00	-24.13	QP	Ρ	
1	2	95.4269	36.47	-21.89	14.58	43.50	-28.92	QP	Ρ	
	3	157.0072	34.76	-17.08	17.68	43.50	-25.82	QP	Ρ	
4	4	396.2412	33.23	-14.91	18.32	46.00	-27.68	QP	Ρ	
!	5	550.9479	35.01	-11.40	23.61	46.00	-22.39	QP	Ρ	
6	ð *	651.9415	33.53	- <mark>8</mark> .64	24.89	46.00	-21.11	QP	Ρ	

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.
 - 2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and GFSK) was submitted only.
 - 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading \, level (dB\mu V) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss Pre-amplifier$
 - Limit ($dB\mu V/m$) = Limit stated in standard
 - $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
 - * is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 88

TCT通测检测 TEGTING CENTRE TECHNOLOGY Report No.: TCT241118E033 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 ndedge(AV 90 80 70 60 50 40 Why 30 AVG ĸ۸ س (ب) June 20 10.0 2300.000 2311.00 2322.00 2333.00 2366.00 2388.00 2344.00 (MHz) 2377.00 2399.00 2410.00 Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.8(°C) Humidity: 51 % Limit: FCC part 15.247 bandedge(peak) Power:DC 3.8V Frequency Reading Factor Level Limit Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) 2313.475 52.74 -16.87 1 * 35.87 54.00 -18.13 AVG Ρ 2390.000 -16.70 Ρ 2 54.48 37.78 74.00 -36.22 peak 3 2390.000 48.15 -16.70 31.45 54.00 -22.55 Ρ AVG Page 28 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT241118E033 Vertical: 110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 bandedge(AV) 90 80 70 60 50 40 peak di. WWW AVG 3 30 1444 Marshare Carlow 20 10.0 2300.000 2311.00 2322.00 2333.00 2388.00 2399.00 2344.00 (MHz) 2366.00 2377.00 2410.00 Temperature: 24.8(℃) Humidity: 51 % Site: 3m Anechoic Chamber Polarization: Vertical Limit: FCC part 15.247 bandedge(peak) Power:DC 3.8V Limit Frequency Reading Factor Level Margin Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2307.337 53.54 -16.89 Ρ 36.65 54.00 -17.35 AVG -16.70 74.00 2390.000 53.81 37.11 -36.89 Ρ peak 2390.000 47.09 -16.70 30.39 54.00 -23.61 AVG Ρ

No.

1 *

2

3

Page 29 of 88

Report No.: TCT241118E033 Highest channel 2480: Horizontal: 110.0 dBuV/m 100 90 80 FCC part 15.247 t andedge(pea 70 60 FCC part 15.247 bandedge(AV 50 40 Marchand nothing march N.M. and the state de parmin Almarken Him had ŧ٨. JYL. 30 Aavg 20 10.0 2475.000 2478.00 2481.00 2484.00 2487.00 (MHz) 2493.00 2496.00 2499.00 2502.00 2505.00 Site: 3m Anechoic Chamber Temperature: 24.8(°C) Humidity: 51 % Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:DC 3.8V Margin Frequency Reading Factor Level Limit P/F No. Detector Remark (dBuV) (dB/m)(dB) (MHz) (dBuV/m) (dBuV/m) 2483.500 64.51 -16.65 47.86 74.00 -26.14 Ρ 1 peak Ρ 2 * 2483.500 63.65 -16.65 47.00 54.00 -7.00 AVG Page 30 of 88

	IESII		ECHNOLOGY						R	eport No.: T	CT241118E
rtica	d:										
11	0.0 dBuV/m					1					
10	o										
90											
80			N.					FCC	part 15.247	andedge(ne	
70		<u> </u>	4					100	, part 13.241	undedge(pe	
60								FCC	part 15.247	bandedge(AV	
50				4							
40	W AND			Married Married	my the way	munuhap	manthe way	whenry	Warner management	and when when you have	Nuc a growing for the
30	<i>w</i> ′			Murturn	When when yo	proprimend	N/N/MA	and the second s	the work of the second	and the state of t	
20											
10	.0 2475.000 247	78.00 24 8) 1.00 24	84.00 24	87.00 (M	Hz)	2493.00	24	96.00 24	99.00 250	02.00 25
	CC part 15.2 Frequency	Reading	Factor	Level	P Limit	ower:D Margin					
v .	(MHz)	∣(dBuV)∣	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	Remark		
	(MHz) 2483.500	(dBuV) 65.16	(dB/m) -16.65	(dBuV/m) 48.51	(dBuV/m) 74.00	(dB) -25.49	peak	P/F P	Remark		
*	2483.500 2483.500	65.16 63.49	-16.65 -16.65	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P			
* te: N	2483.500	65.16 63.49 s were con	-16.65 -16.65 ducted in	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P		d the worst	t case Moo
* te: N	2483.500 2483.500	65.16 63.49 s were con	-16.65 -16.65 ducted in	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P		d the worst	t case Moo
* te: N	2483.500 2483.500	65.16 63.49 s were con	-16.65 -16.65 ducted in	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P		d the worst	t case Moo
* te: N	2483.500 2483.500	65.16 63.49 s were con	-16.65 -16.65 ducted in	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P		d the worst	t case Moo
* te: N	2483.500 2483.500	65.16 63.49 s were con	-16.65 -16.65 ducted in	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P		d the worst	t case Moo
* te: N	2483.500 2483.500	65.16 63.49 s were con	-16.65 -16.65 ducted in	48.51 46.84	74.00 54.00	(dB) -25.49 -7.16	peak AVG	P P		d the worst	t case Moo

CT 通测检测 TESTING CENTRE TECHNOLOGY

Above 1GHz

Ν	Modulation	Type: 8D	PSK							
L	ow chann	el: 2402 N	1Hz							
F	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4804	Н	54.96		-9.51	45.45		74	54	-8.55
	7206	Н	45.25		-1.41	43.84		74	54	-10.16
		Н								
		G		(JC)		()	G)		(.C)	
	4804	V	56.45		-9.51	46.94		74	54	-7.06
	7206	V	47.01		-1.41	45.60		74	54	-8.40
		V								

Middle cha	nnel: 2441	MHz		N N)				N N
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)		Margin (dB)
4882	Н	55.66	1	-9.36	46.30	<u> </u>	74	54	-7.70
7323	KOĤ)	46.98	-IXO	-1.14	45.84	<u>0</u>	74	54	-8.16
	Ĥ								
1000					17 10	[1	
4882	V	56.11		-9.36	47.16		74	54	-6.84
7323	V	46.02		-1.14	45.85		74	54	-8.15
<u>P</u> /	V				2 /		K.		

High chann	el: 2480 N	ЛНz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	54.16		-9.20	44.96		74	54	-9.04
7440	Н	45.98		-0.96	45.02		74	54	-8.98
	Н	<u> </u>		/	2				
C)		(\mathbf{G})		(.0			(.G)		(.Č
4960	V	54.43		-9.20	45.23		74	54	-8.77
7440	V	45.10		-0.96	44.14		74	54	-9.86
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Condition Induce (MHz) Power (dBm) Li NVNT 1-DH1 2402 4.12 1 NVNT 1-DH1 2441 4.03 1 NVNT 1-DH1 2480 3.55 1 NVNT 2-DH1 2402 2.97 1 NVNT 2-DH1 2441 2.89 1 NVNT 2-DH1 2480 2.35 1 NVNT 2-DH1 2480 2.35 1 NVNT 3-DH1 2402 3.87 1 NVNT 3-DH1 2441 3.45 1 NVNT 3-DH1 2480 2.96 1	30 30 21 21 21 21 21 21 21	Pass Pass Pass Pass Pass Pass Pass Pass
NVNT1-DH124803.55NVNT2-DH124022.97NVNT2-DH124412.89NVNT2-DH124802.35NVNT3-DH124023.87NVNT3-DH124413.45	30 21 21 21 21 21 21 21	Pass Pass Pass Pass Pass Pass
NVNT2-DH124022.97NVNT2-DH124412.89NVNT2-DH124802.35NVNT3-DH124023.87NVNT3-DH124413.45	21 21 21 21 21 21	Pass Pass Pass Pass Pass
NVNT 2-DH1 2441 2.89 NVNT 2-DH1 2480 2.35 NVNT 3-DH1 2402 3.87 NVNT 3-DH1 2441 3.45	21 21 21 21 21	Pass Pass Pass Pass
NVNT 2-DH1 2480 2.35 NVNT 3-DH1 2402 3.87 NVNT 3-DH1 2441 3.45	21 21 21	Pass Pass Pass
NVNT 3-DH1 2402 3.87 NVNT 3-DH1 2441 3.45	21 21	Pass Pass
NVNT 3-DH1 2441 3.45	21	Pass
NVN1 3-DH1 2480 2.96 Image: Constraint of the state	21	

Power NVNT 1-DH1 2441MHz

STATUS

#VBW 6.0 MHz

		latyzer - Swept S	A									
LXI R	RF				SEN:	SE:PULSE SOURC	E OFF A	LIGNAUTO			AMNov 19, 20	
Center Freq 2.402000000 GHz				PNO: Fast • FGain:Low	⊷→ Trig: Free Run #Atten: 30 dB			Avg Type: Log-Pwr Avg Hold: 300/300		TRACE 1234 TYPE MWWW DET PNNN		
10 di Log		⁷ Offset 6.82 dl f 20.00 dBn							M	kr1 2.401 4.	988 GI 122 dB	
10.0							4					
0.00												
-10.0												
-20.0												
-30.0												
-40.0												
-50.0												
-60.0												
-00.0												

Test Graphs Power NVNT 1-DH1 2402MHz

Spectrum Analyze

Center 2.402000 GHz #Res BW 2.0 MHz

Ref Offset 7.14 dB Ref 20.00 dBm

UR.

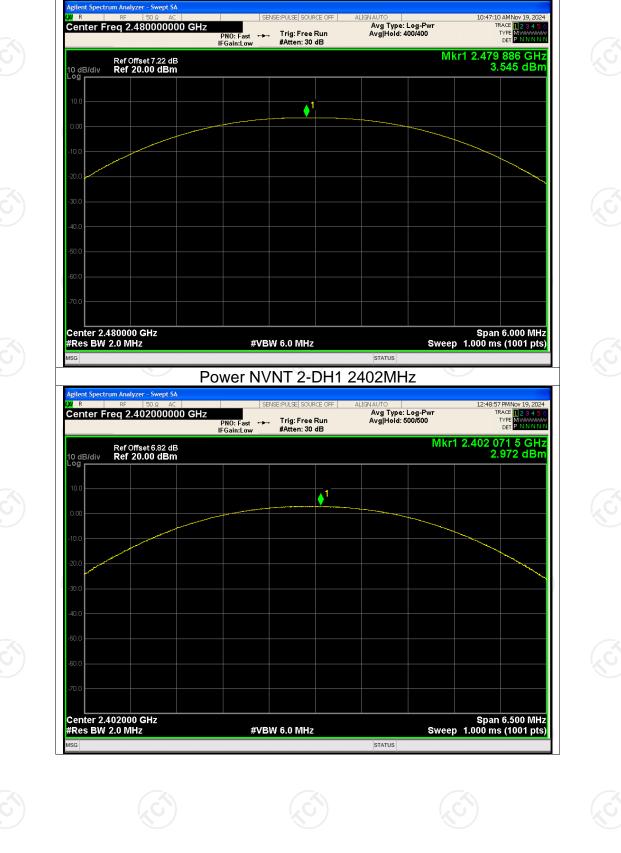
10 dB/div Log

SENSE:PULSE SOURCE OFF Center Freq 2.441000000 GHz Avg Type: Log-Pwr Avg|Hold: 500/500 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

1

Report No.: TCT241118E033

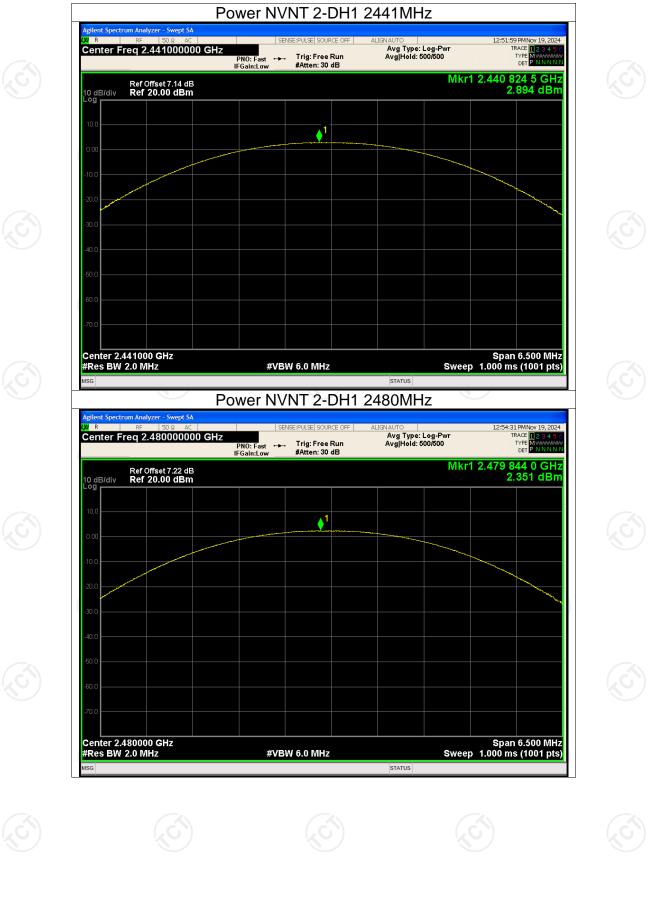
2024


Hz 3m

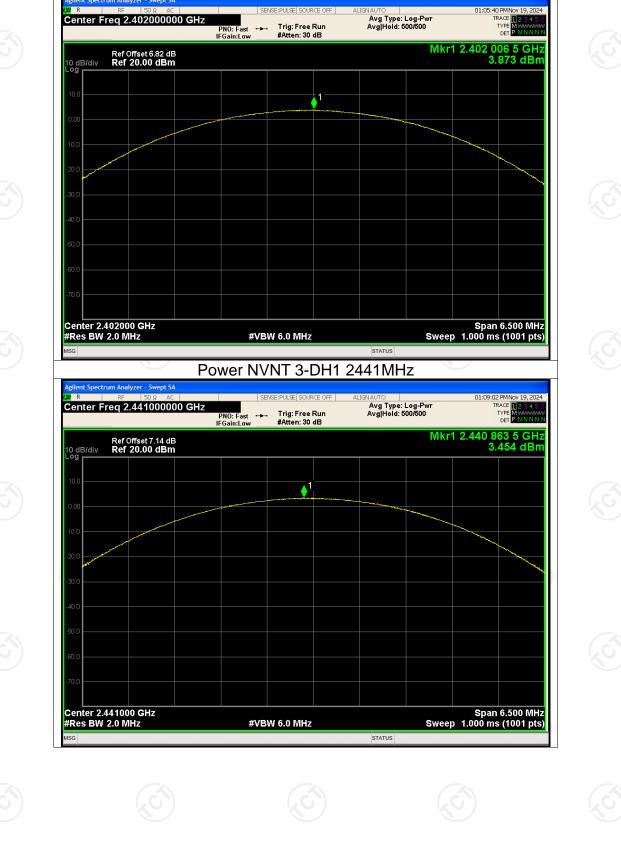
Span 6.000 MHz Sweep 1.000 ms (1001 pts)

Mkr1 2.440 982 GHz 4.031 dBm

10:44:31 AMNov 19, 2024


TRACE 1 2 3 4 TYPE MWWW DET P N N N

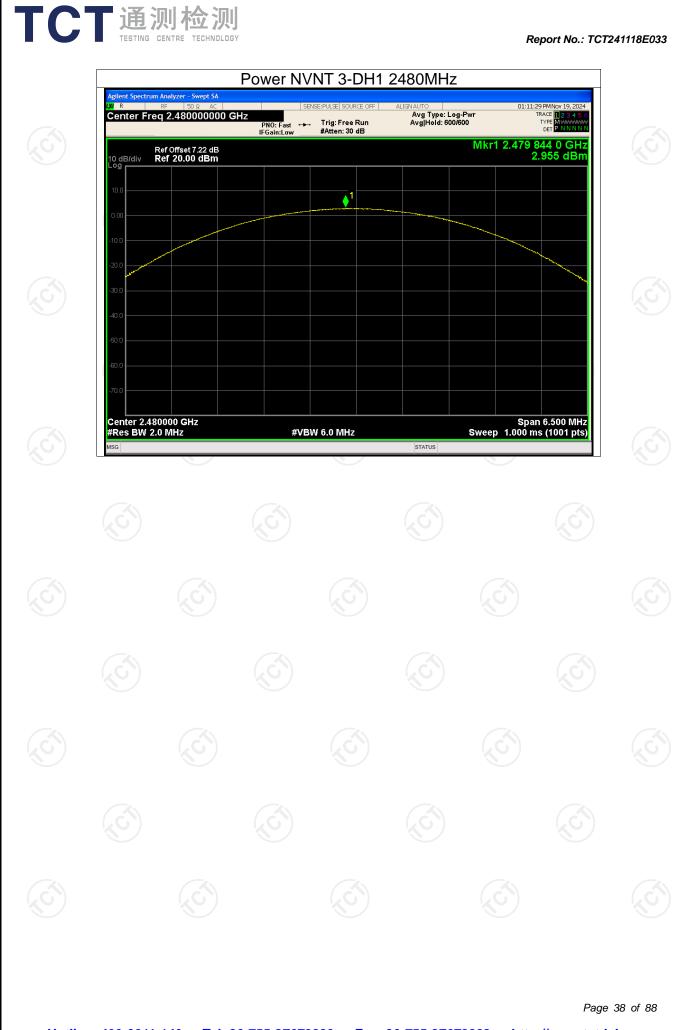
Power NVNT 1-DH1 2480MHz


Report No.: TCT241118E033

Page 35 of 88

Report No.: TCT241118E033

Page 36 of 88


Power NVNT 3-DH1 2402MHz

R

gilent Spectrum Analyzer - Swept SA

Report No.: TCT241118E033

Page 37 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TCT通测检测 TESTING CENTRE TECHNOLOGY

Condition Mode		Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict			
NVNT	1-DH1	2402	0.964	Pass			
NVNT 🚫	1-DH1	2441	0.965	Pass			
NVNT	1-DH1	2480	0.964	Pass			
NVNT	2-DH1	2402	1.370	Pass			
NVNT	2-DH1	2441	1.370	Pass			
NVNT	2-DH1	2480	1.370	Pass			
NVNT	3-DH1	2402	1.353	Pass			
NVNT	3-DH1	2441	1.352	Pass			
NVNT	3-DH1	2480	1.353	Pass			
No.	\mathcal{I}	No.					

-20dB Bandwidth

Page	39	of	88
	~~	•••	~~

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 40 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

OBW Power

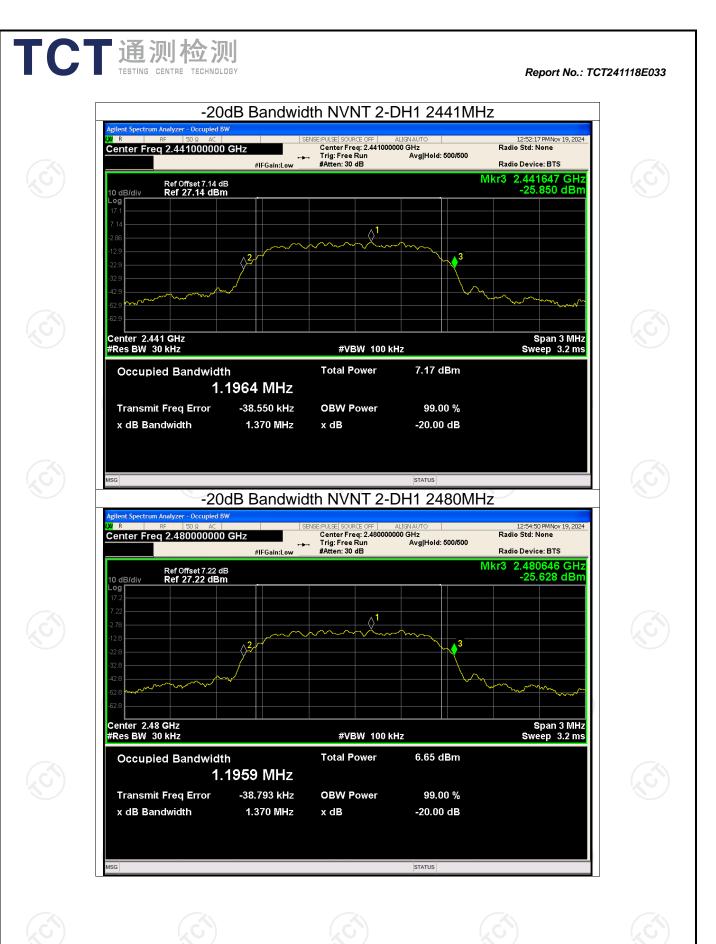
x dB

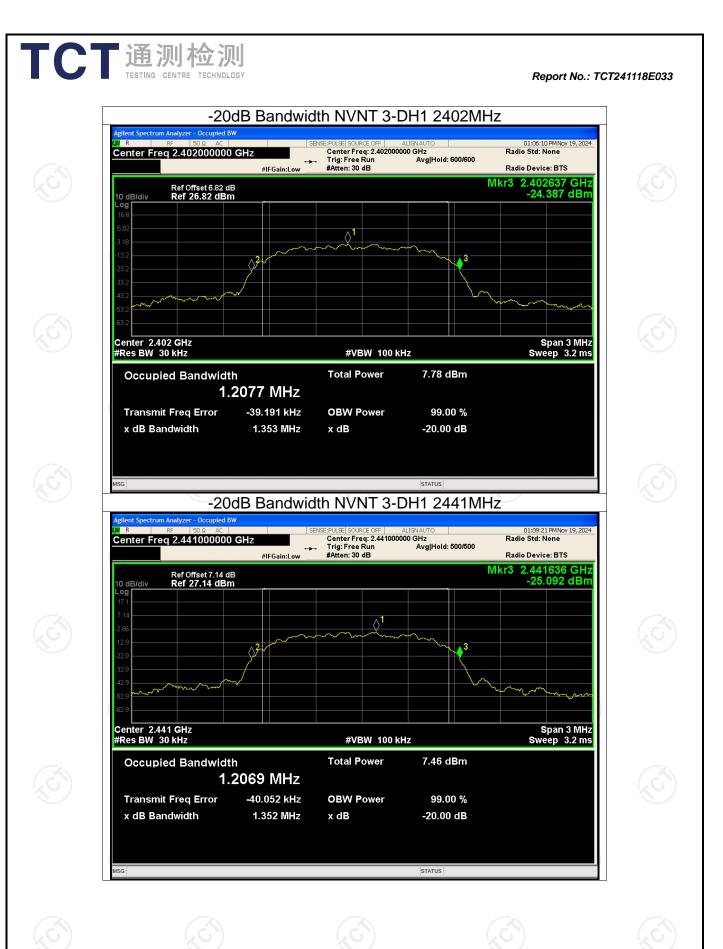
99.00 %

-20.00 dB

STATUS

-34.185 kHz


964.5 kHz


Transmit Freg Error

x dB Bandwidth

Page 41 of 88

Page 43 of 88

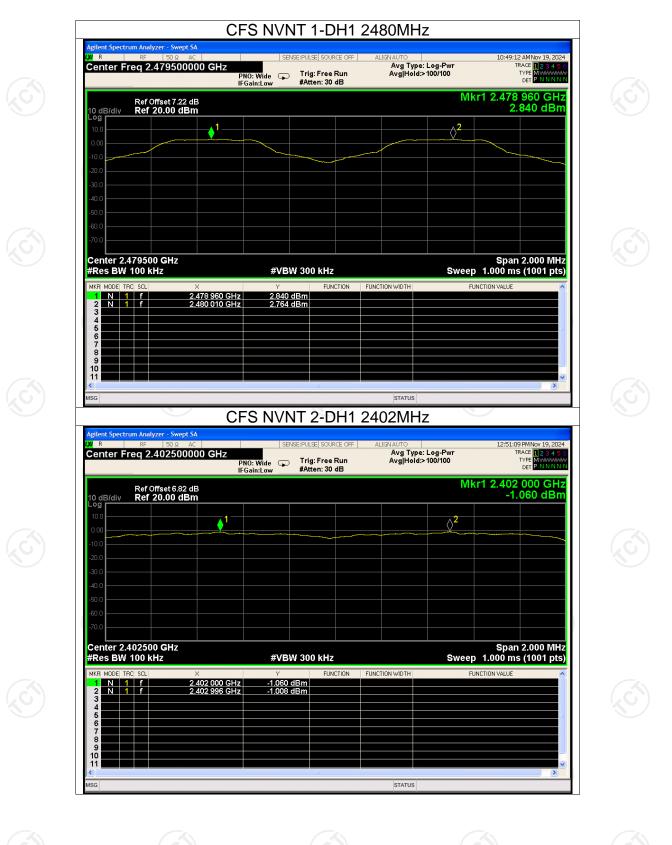
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

		• united inte	gaonoloo oopalaa	•		
Condition	dition Mode Hopping (MH		Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.964	2403.008	1.044	0.965	Pass
NVNT	1-DH1	2440.964	2442.018	1.054	0.965	Pass
NVNT	1-DH1	2478.960	2480.010	1.050	0.965	Pass
NVNT	2-DH1	2402.000	2402.996	0.996	0.913	Pass
NVNT	2-DH1	2440.994	2441.998	1.004	0.913	Pass
NVNT 🐇	2-DH1	2478.996	2479.988	0.992	0.913	Pass
NVNT	3-DH1	2402.052	2403.056	1.004	0.902	Pass
NVNT	3-DH1	2441.060	2442.058	0.998	0.902	Pass
NVNT	3-DH1	2479.054	2480.058	1.004	0.902	Pass
		KO)	KO)	KO)		

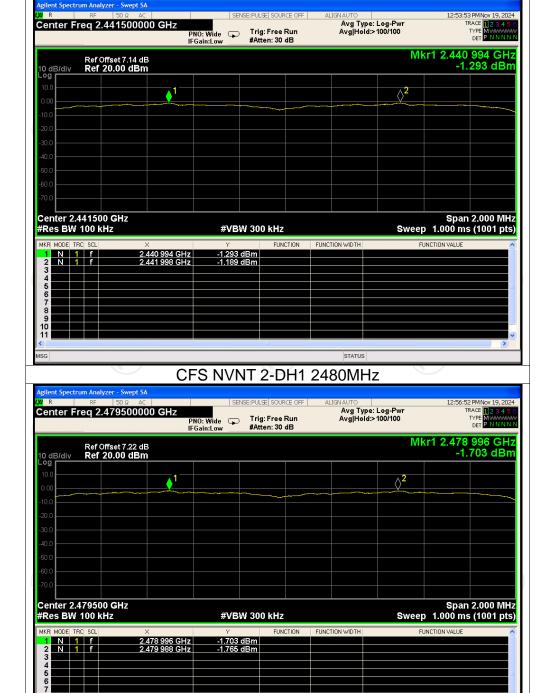
Carrier Frequencies Separation

Page 45 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Mkr1 2.401 964 GHz 3.471 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div ∟og **r** <mark>⊿</mark>1 **∂**² Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION FUNCTION WIDTH FUNCTION VALUE 3.471 dBm 3.528 dBm N 1 f N 1 f 2.401 964 GHz 2.403 008 GHz 5 8 9 10 11 STATUS CFS NVNT 1-DH1 2441MHz 10:46:28 AMNov 19, 2024 l R SENSE:PULSE SOURCE OFF TRACE 1 2 3 4 TYPE MWWW DET P N N N Center Freq 2.441500000 GHz Avg Type: Log-Pwr Avg|Hold>100/100 PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 964 GHz 3.291 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/di Log r 1 **∂**² Span 2.000 MHz Sweep 1.000 ms (1001 pts) Center 2.441500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH 2.440 964 GHz 2.442 018 GHz 3.291 dBm 3.351 dBm N 1 f 1 f 8 10 STATUS

Report No.: TCT241118E033



Page 46 of 88

Report No.: TCT241118E033

CFS NVNT 2-DH1 2441MHz

gilent Spectrum Analyzer - Swept SA

Report No.: TCT241118E033

Nov 19, 2024

CFS NVNT 3-DH1 2402MHz gilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold>100/100 01:08:11 PMNov 19, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Center Freq 2.402500000 GHz PNO: Wide Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 052 GHz -1.090 dBm Ref Offset 6.82 dB Ref 20.00 dBm V $\langle \rangle^2$

FUNCTION FUNCTION WIDTH

10 dB/div Log **r**

Center 2.402500 GHz #Res BW 100 kHz

2.402 052 GHz 2.403 056 GHz

N 1 f N 1 f

MKR MODE

3 5

STATUS

#VBW 300 kHz

-1.090 dBm -1.020 dBm

CFS NVNT 3-DH1 2441MHz

	50 Ω AC		SENSE:	PULSE SOUR	CE OFF	ALIGN AUTO			PMNov 19, 20
enter Freq 2	2.441500000	PNC		Trig: Free F #Atten: 30 d		Avg Type Avg Hold:	e: Log-Pwr ⊳100/100	TR	ACE 1234 TYPE MIAAAA DET PNNN
0 dB/div Re	f Offset 7.14 dB f 20.00 dBm						MI	(r1 2.441 -1.3	060 GI 285 dB
.og 10.0									
0.00							\2 ²		
10.0									
20.0									
30.0									
40.0									
50.0									
50.0									
70.0 Center 2.4415								Span	2.000 M
70.0 Center 2.4415 Res BW 100	kHz			300 kHz				o 1.000 ms	2.000 M (1001 p
Center 2.4415 Res BW 100	kHz	1 060 GHz	Y	FUNC	CTION	FUNCTION WIDTH		Span 5 1.000 ms	2.000 M (1001 p
Center 2.4415 Res BW 100	kHz . × 2.44	1 060 GHz 2 058 GHz		FUNC	TION	FUNCTION WIDTH		o 1.000 ms	2.000 M (1001 p
Center 2.4415 Res BW 100 KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4	kHz . × 2.44	1 060 GHz 2 058 GHz	۲ -1.285 dB	FUNC	TION	FUNCTION WIDTH		o 1.000 ms	2.000 M (1001 p
70.0 Center 2.4415 Res BW 100 IKR MODE TRC SCL 1 N 1 f 2 N 1 f	kHz . × 2.44	1 060 GHz 2 058 GHz	۲ -1.285 dB	FUNC	CTION	FUNCTION WIDTH		o 1.000 ms	2.000 M (1001 p
Conter 2.4415 Res BW 100 IKR MODE TRC SCI 1 N 1 f 2 N 1 f 3 4 5 6 7	kHz . × 2.44	1 060 GHz 2 058 GHz	۲ -1.285 dB	FUNC	TION	FUNCTION WIDTH		o 1.000 ms	2.000 M (1001 p
70 0 Center 2.4415 Res BW 100 KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5 5 6 7 5 8 9	kHz . × 2.44	1 060 GHz 2 058 GHz	۲ -1.285 dB	FUNC	CTION	FUNCTION WIDTH		o 1.000 ms	2.000 M (1001 p
ZO 0 Center 2.4415 Res BW 100 KR MODE TRC ScL 1 N 1 2 N 1 3 - - 5 - - 6 - - 7 - - 8 - -	kHz . × 2.44	1 060 GHz 2 058 GHz	۲ -1.285 dB	FUNC	TION	FUNCTION WIDTH		o 1.000 ms	2.000 M (1001 p

Report No.: TCT241118E033

Span 2.000 MHz Sweep 1.000 ms (1001 pts)

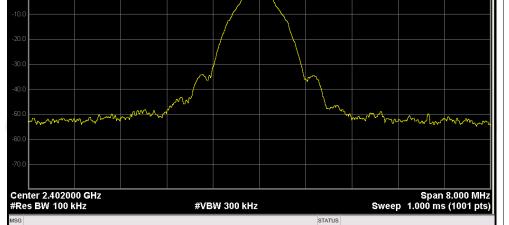
FUNCTION VALUE

Agilent Spectrum Analyzer - Swept SA	
W R S0 Q AC SENSE:PULSE SOURCE OFF ALIGN AUTO 01:13:59 PM/Nov 19, 20: Center Freq 2.479500000 GHz FR0: Wide IFGainLow Frig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg]Hold>100/100 Trace II 2 3 4 4	24 5 6 N N
Ref Offset 7.22 dB 10 dB/div Ref 20.00 dBm -1.844 dBr 10 0	m C
-30 0 -40 0 -60 0	
-60 0 -70 0	
Center 2.479500 GHz Span 2.000 MH #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pt: MKR MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 2.479 054 GHz -1.844 dBm FUNCTION VALUE	12 S)
1 N 1 f 2.479 054 GHz -1.844 dBm 2 N 1 f 2.480 058 GHz -1.887 dBm 3 - <t< td=""><td></td></t<>	
7	×
MISG STATUS	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-54.57	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-53.47	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-50.01	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-48.71	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-50.32	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-48.81	-20	Pass


Report No.: TCT241118E033

K

Page 51 of 88

Test Graphs Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref 0:41:09 AMNov 19, 2024 TRACE 123456 TYPE MWWWW DET PNNNNN PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 1000/1000 Mkr1 2.402 016 GHz 3.692 dBm

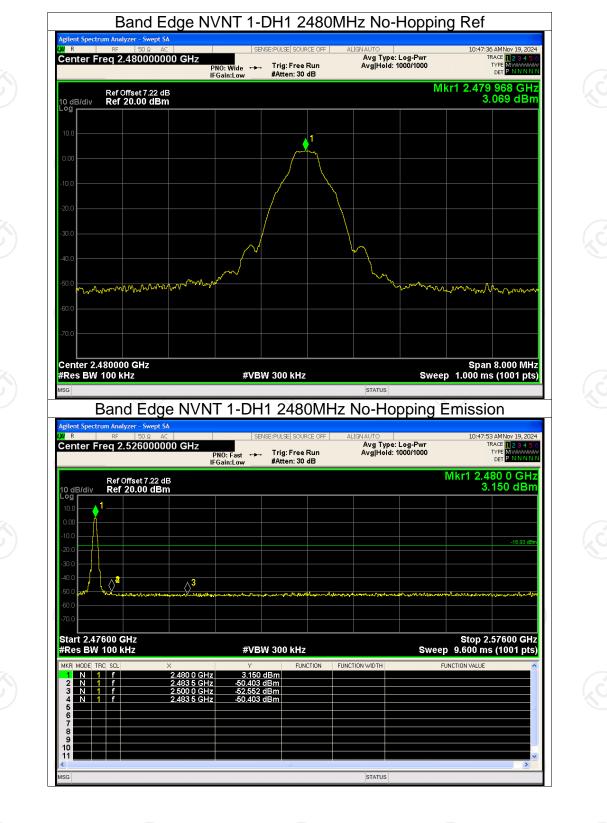
TCT通测检测 TESTING CENTRE TECHNOLOGY

<mark>u</mark> R

10 dB/div Log

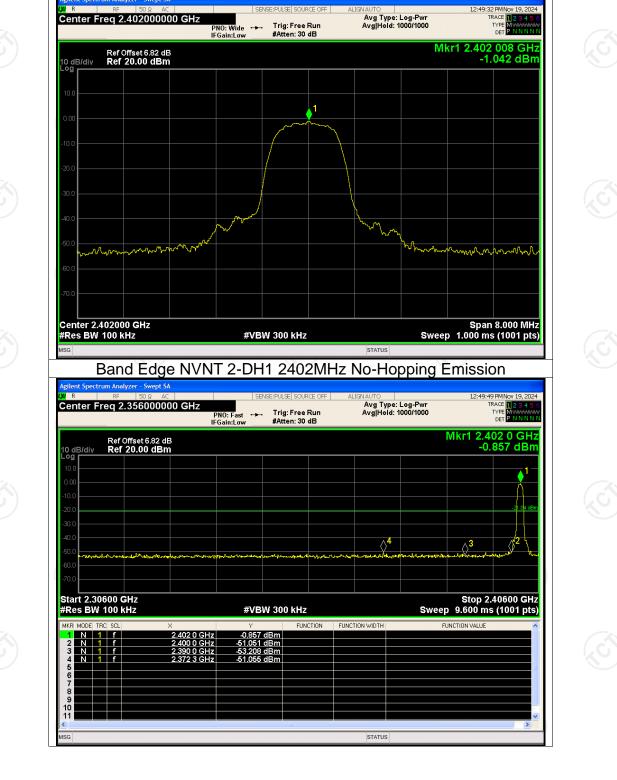
gilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz


Ref Offset 6.82 dB Ref 20.00 dBm

Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission

		lyzer - Swept S/								
R enter F	_R ⊧ req 2	50 Ω AC .3560000	00 GHz	S⊟ NO: Fast Gain:Low	NSE:PULSE SOU Trig: Free #Atten: 30	Run		/pe: Log-Pwr Id: 1000/1000		26 AMNov 19, 20 TRACE 1 2 3 4 TYPE MWWWW DET P N N N
) dB/div og r		Offset 6.82 dl 20.00 dBn							Mkr1 2.4 3	102 0 GH .916 dB
0.0										 1
.00 3.0										-16,31
D.0 D.0										
0.0										² }
3.0 <mark>Aurren</mark> 3.0	Nantas	mannahanaa	<mark>ℎ℠ℊ℩ՠֈսՑ</mark> ԼՈւս-ԻսԻԳՐՔՆ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	alto-radionarada	NC4914-49	and the second	orangeseprendelse A	mark	and the second
tart 2.30 Res BW				#VB	W 300 kHz	-		Swe	ep 9.600 m	2.40600 G Is (1001 p
KR MODE TH	RC SCL		× 2.402 0 GHz	۲ 3.916		ICTION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 1 3 N 1 4 N 1	f f f		2.400 0 GHz 2.390 0 GHz 2.388 9 GHz	-48.768 -52.896 -50.882	dBm dBm					
5 6 7										
8 9 0										
1										
					ш					>


Report No.: TCT241118E033

Page 52 of 88

Report No.: TCT241118E033

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Report No.: TCT241118E033

Page 54 of 88

Mkr1 2.480 000 GHz -1.660 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div M mm www mmuly m man Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 2-DH1 2480MHz No-Hopping Emission 16 PMNov 19, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N l R SENSE:PULSE SOURCE OFF Center Freq 2.526000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.480 0 GHz -1.589 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/di _og **[** \wedge^2 \wedge^4 \Diamond^3 Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE N 1 f N 1 f N 1 f

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

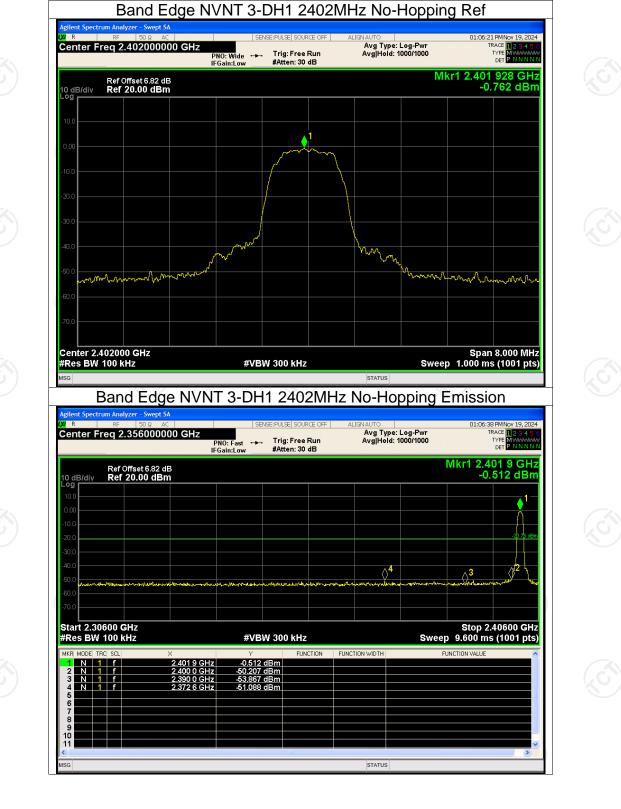
Report No.: TCT241118E033

12:54:59 PMNov 19, -TRACE 1 2 3 4 TYPE MWWW DET P N NN

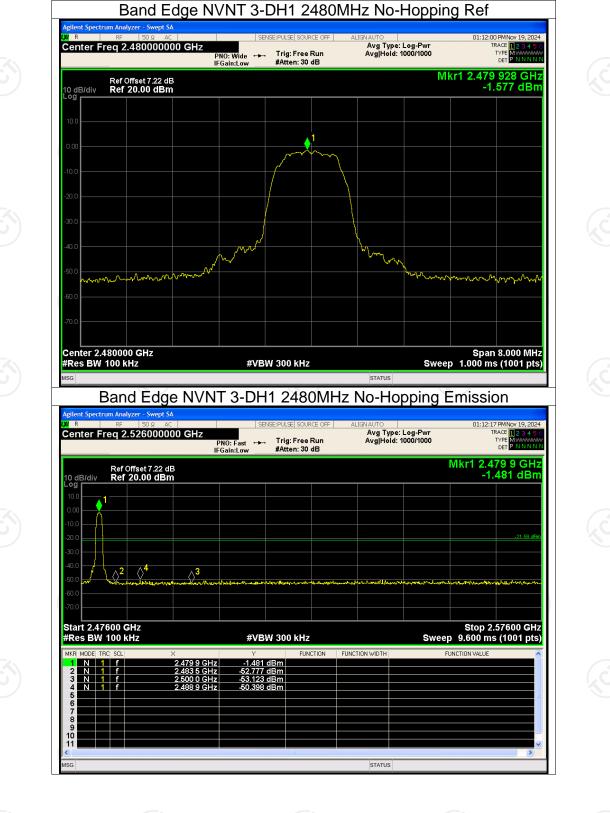
Nov 19, 2024

2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.487 7 GHz -52.140 dBm -52.455 dBm -50.374 dBm STATUS

Center Freq 2.480000000 GHz



10 11 ISG



Page 55 of 88

Report No.: TCT241118E033

Page 56 of 88

Report No.: TCT241118E033

Page 57 of 88

Band Edge(Hopping)									
Condition Mode		Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict			
NVNT	1-DH1	2402	Hopping	-54.65	-20	Pass			
NVNT	1-DH1	2480	Hopping	-54.54	-20	Pass			
NVNT	2-DH1	2402	Hopping	-52.44	-20	Pass			
NVNT	2-DH1	2480	Hopping	-51.61	-20	Pass			
NVNT	3-DH1	2402	Hopping	-52.84	-20	Pass			
NVNT 🖔	3-DH1	2480	Hopping	-52.12	-20	Pass			

Band Edge(Hopping)

TCT 通测检测 TESTING CENTRE TECHNOLOGY

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.405 960 GHz 4.422 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission l R SENSE:PULSE SOURCE OFF 10:51:56 AMNov 19. 2024 Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 TRACE PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.402 0 GHz 4.576 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log r $\langle \rangle^4$ \Diamond^3 Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH -47.002 dBn -52.611 dBn -50.234 dBn 2.400NN 10

Test Graphs Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 5000/5000

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

Report No.: TCT241118E033

Page 59 of 88

36 AMNov 19, 2024

TYPE MUNICIPACE

Page 60 of 88

Page 61 of 88

Page 64 of 88

Verdict

Pass

Pass

Pass Pass

Pass

Pass

Pass

Pass

Pass

Limit (dBc)

-20

-20

-20

-20

-20

-20

-20

-20

-20

Condition Mode Frequency (MHz) **NVNT** 1-DH1 NVNT 1-DH1 NVNT 1-DH1 NVNT 2-DH1 **NVNT** 2-DH1 **NVNT** 2-DH1 **NVNT** 3-DH1 **NVNT** 3-DH1 **NVNT** 3-DH1

Conducted RF Spurious Emission

2402

2441

2480

2402

2441

2480

2402

2441

2480

Max Value (dBc)

-43.59

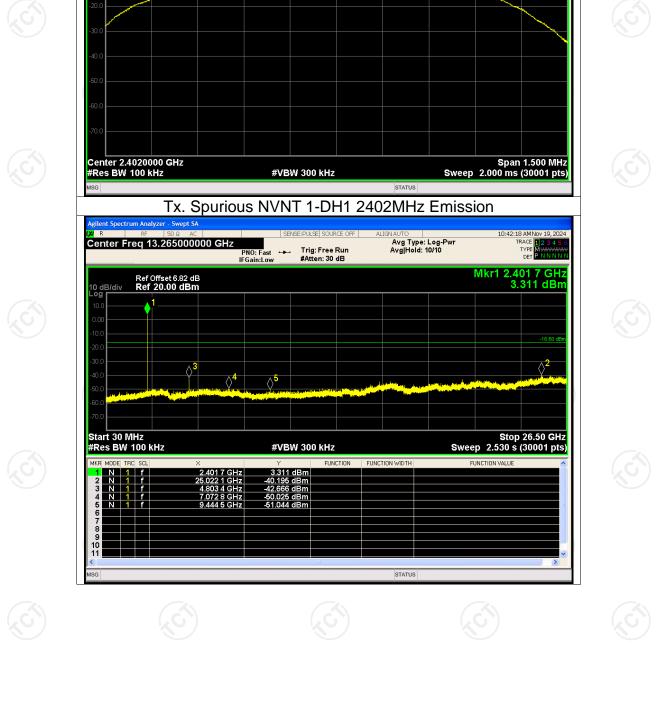
-43.44

-42.46

-39.19

-47.02

-37.47


-38.80

-38.84

-38.03

Page 65 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Test Graphs Tx. Spurious NVNT 1-DH1 2402MHz Ref

♦¹

Avg Type: Log-Pwr Avg|Hold: 1000/1000

SENSE:PULSE SOURCE

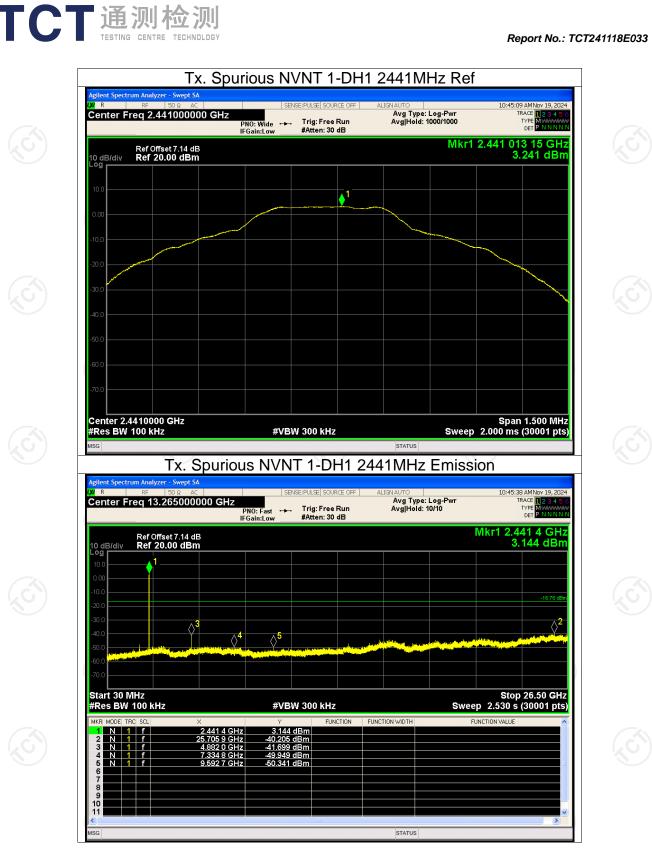
PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

Center Freq 2.402000000 GHz 10 dB/div Log

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA


Ref Offset 6.82 dB Ref 20.00 dBm

Report No.: TCT241118E033

10:41:47 AMNov 19, 2024 TRACE 123456 TYPE MWWWWW DET PNNNNN

Mkr1 2.401 961 65 GHz 3.399 dBm

Page 66 of 88

Report No.: TCT241118E033

 Applient Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Spectrum Analyzer - Swept SA
 Image: Spectrum Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA

 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Swept SA
 Image: Spectrum Analyzer - Spectrum Anal

Tx. Spurious NVNT 1-DH1 2480MHz Ref

Tx. Spurious NVNT 1-DH1 2480MHz Emission

Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Page 68 of 88

Report No.: TCT241118E033

1:44 AMNov 19, 2024 TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N

 δ^2

Mkr1 2.480 2 GHz 2.838 dBm

U F

10 dB/di Log

Center Freq 13.265000000 GHz

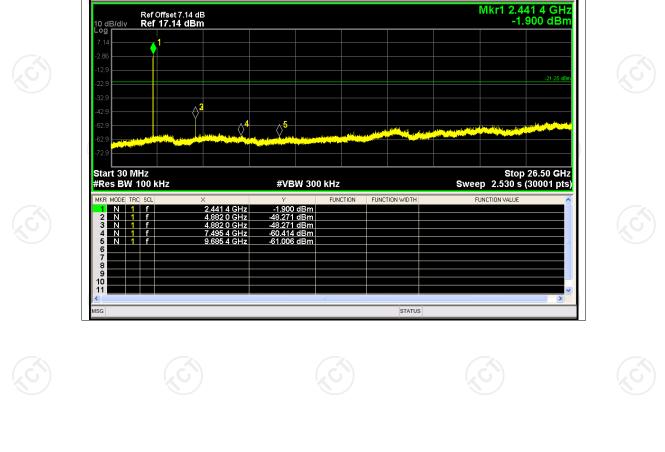
Ref Offset 7.22 dB Ref 20.00 dBm

SENSE:PULSE SOURCE OFF ALIGN AUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 12:50:10 PM Nov 19, 20 TRACE 1 2 3 4 TYPE MWWWW DET P N N N Center Freq 2.402000000 GHz PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 995 20 GHz -1.122 dBm Ref Offset 6.82 dB Ref 20.00 dBm Center 2.4020000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT 2-DH1 2402MHz Emission 12:50:40 PMNov 19, 2024 TRACE 1 2 3 4 5 6 SENSE:PULSE SOURCE OFF ALIG Center Freq 13.265000000 GHz Avg Type: Log-Pwr

Tx. Spurious NVNT 2-DH1 2402MHz Ref

gilent Spect

R


10 dB/div Log

U F

dB/div Ref 2	fset 6.82 dB 0.00 dBm							Mkr1 2.	401 7 G 3.799 di
g									
).0									
┉┝──────────────────									
.0									
.0									-21.1
.0									
.0	<mark>3</mark>								(
		\Diamond^{+}	5				a ha all the same of the state	in de little de las de	a state of the second second
			an des stilles and						
0.0									
									- 00 50
art 30 MHz	lz		#VBW :	300 kHz			Sw	Sto eep 2.530	p 26.50 (s (30001
art 30 MHz tes BW 100 kH	lz ×		#VBW :	300 kHz	ION FUN		Sw	Sto eep 2.530 s	s (30001
art 30 MHz Res BW 100 kH R MODE TRC SCL N 1 f	× 2.401 7		۲ -3.799 dBi	FUNCT	ION FUM	ICTION WIDTH	Sw	eep 2.530	s (30001
art 30 MHz Res BW 100 kH R MODE TRC SCL N 1 f N 1 f	× 2.401 7 25.627 4	GHz	√ -3.799 dB -40.311 dB	FUNCT	ION FUN	ICTION WIDTH	Sw	eep 2.530	s (30001
art 30 MHz Res BW 100 kH R MODE TRC SCL N 1 f	× 2.401 7 25.627 4 4.804 3	GHz GHz	√ -3.799 dB -40.311 dB -47.119 dB	FUNCT m m m	ion fun	ICTION WIDTH	Sw	eep 2.530	s (30001
art 30 MHz tes BW 100 kH R MODE TRC SCL N 1 f N 1 f N 1 f N 1 f N 1 f	× 2.401 7 25.627 4	GHz GHz GHz	√ -3.799 dB -40.311 dB	FUNCT m m m m	ION FUN	ICTION WIDTH	Sw	eep 2.530	
art 30 MHz tes BW 100 kH R MODE TRC SCL N 1 f N 1 f N 1 f	× 2.401 7 25.627 4 4.804 3 7.181 3	GHz GHz GHz	-3.799 dB -40.311 dB -47.119 dB -49.275 dB	FUNCT m m m m	ION FUN	ICTION WIDTH	Sw	eep 2.530	s (30001
art 30 MHz tes BW 100 kH R MODE TRC SCL N 1 f N 1 f N 1 f N 1 f N 1 f	× 2.401 7 25.627 4 4.804 3 7.181 3	GHz GHz GHz	-3.799 dB -40.311 dB -47.119 dB -49.275 dB	FUNCT m m m m	ION FUN	ICTION WIDTH	Sw	eep 2.530	s (30001
art 30 MHz tes BW 100 kH R MODEI TRC SCL N 1 f N 1 f N 1 f N 1 f	× 2.401 7 25.627 4 4.804 3 7.181 3	GHz GHz GHz	-3.799 dB -40.311 dB -47.119 dB -49.275 dB	FUNCT m m m m	ION FUN	ICTION WIDTH .	Sw	eep 2.530	s (30001
art 30 MHz tes BW 100 kH n Model TRC SCL N 1 f N 1 f N 1 f N 1 f N 1 f	× 2.401 7 25.627 4 4.804 3 7.181 3	GHz GHz GHz	-3.799 dB -40.311 dB -47.119 dB -49.275 dB	FUNCT m m m m	ION FUN	ICTION WIDTH	Sw	eep 2.530	s (30001

Report No.: TCT241118E033

lov 19, 2024

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 12:52:39 PM Nov 19, 20 TRACE 1 2 3 4 TYPE MMMMM DET P N N N Vov 19, 2024 Center Freq 2.441000000 GHz PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.440 996 55 GHz -1.248 dBm Ref Offset 7.14 dB Ref 17.14 dBm 10 dB/div 1 Center 2.4410000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT 2-DH1 2441MHz Ref

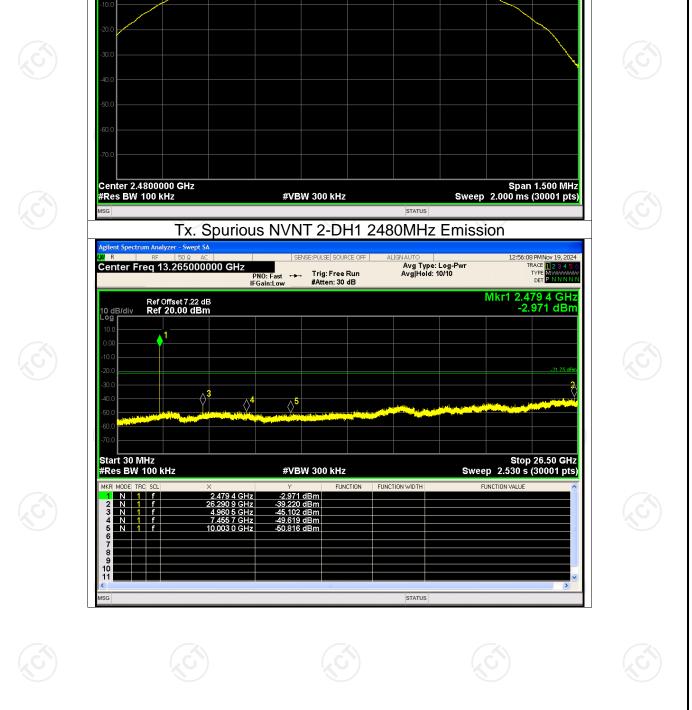
gilent Spect

R

l R

Center Freq 13.265000000 GHz

Tx. Spurious NVNT 2-DH1 2441MHz Emission


Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast ↔→ Trig: Free Run IFGain:Low #Atten: 20 dB

Report No.: TCT241118E033

08 PMNov 19, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N

Tx. Spurious NVNT 2-DH1 2480MHz Ref

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

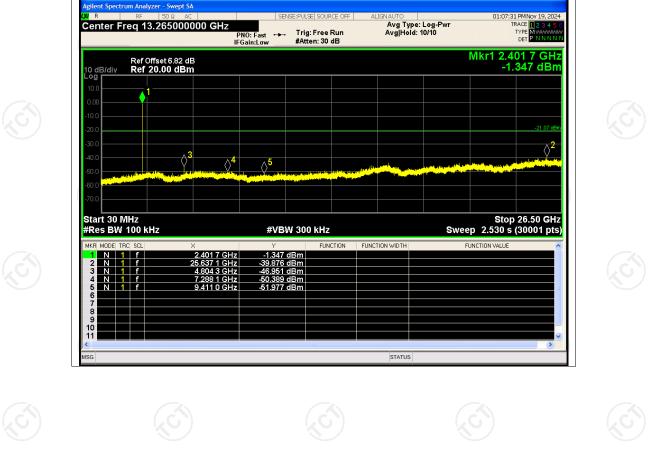
gilent Spect

10 dB/div

Center Freq 2.480000000 GHz

Ref Offset 7.22 dB Ref 20.00 dBm

R

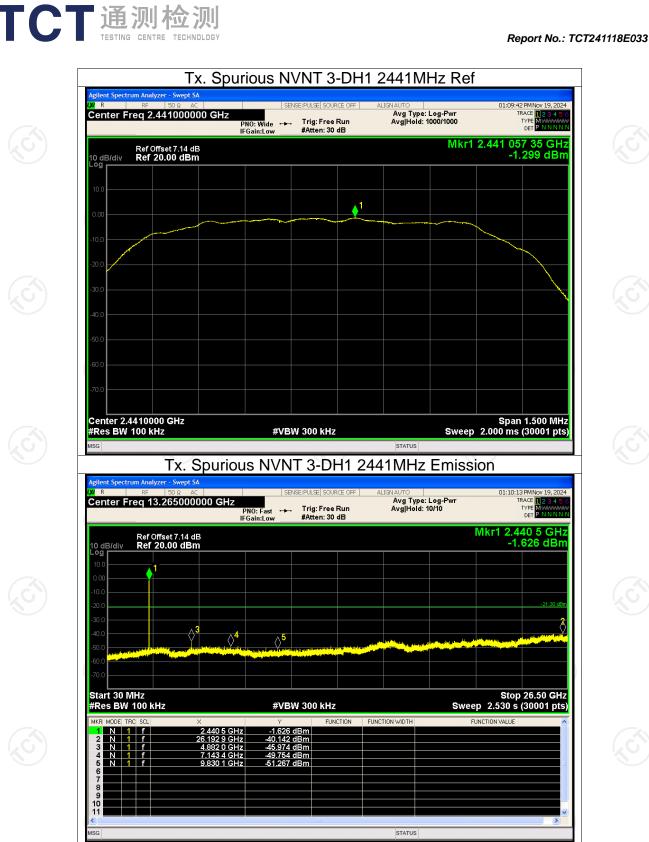

Report No.: TCT241118E033

Nov 19, 2024

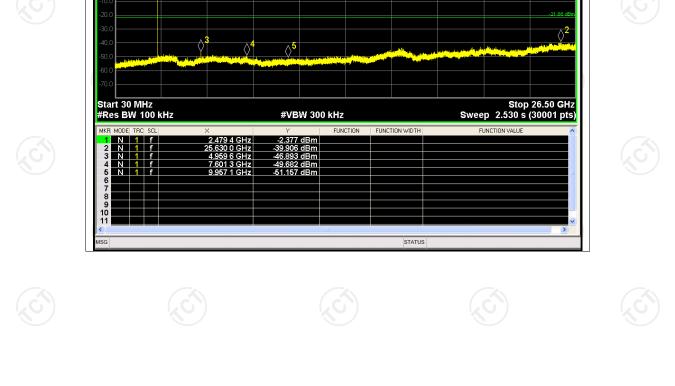
12:55:37 PMNov 19, 20 TRACE 1234 TYPE MWWW DET PNNN

Mkr1 2.479 991 25 GHz -1.754 dBm

Page 71 of 88


 Rest
 Source
 Output of swape.Swip

Tx. Spurious NVNT 3-DH1 2402MHz Ref


gilent Spect

Tx. Spurious NVNT 3-DH1 2402MHz Emission

Report No.: TCT241118E033

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 R 01:12:38 PMNov 19, 20 TRACE 1234 TYPE MMMMM DET PNNN Nov 19, 2024 Center Freq 2.480000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.480 056 75 GHz -1.875 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div ▲1 Center 2.4800000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT 3-DH1 2480MHz Ref

Tx. Spurious NVNT 3-DH1 2480MHz Emission

Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

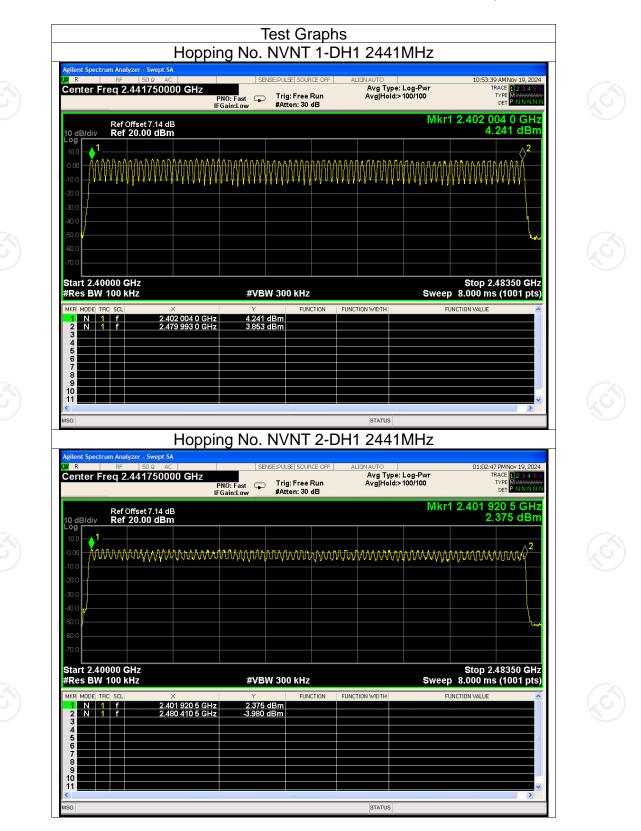
Page 74 of 88

Report No.: TCT241118E033

01:13:09 PMNov 19, 2024 TRACE 1 2 3 4 5 1 TYPE MWWWW DET P N N N N

TYPE DET Mkr1 2.479 4 GHz -2.377 dBm

gilent Spect


l R

10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 7.22 dB Ref 20.00 dBm

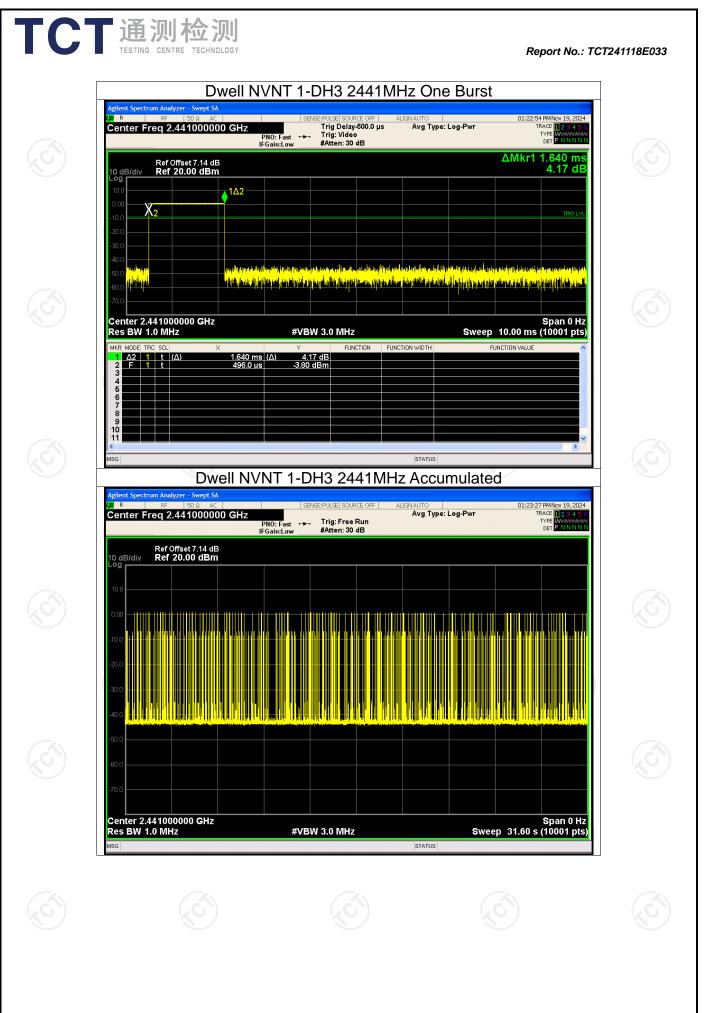
TC	TESTING	测检测 CENTRE TECHNOL	IJ DGY			Re	port No.: TCT2	241118E033
		Condition	Number Mode H	of Hopping lopping Nu	g Channe Imber L	l imit Verdio	:t	
	_	NVNT NVNT NVNT	1-DH1 2-DH1 3-DH1	79 79 79 79		15 Pass 15 Pass 15 Pass		
<u>Hotlin</u>	e: 400-661	1-140 Tel:	<u>86-755-2767</u>	<u>3339 Fax:</u>	<u>86-755-276</u>	<u>73332 http:</u>	Page //www.tct-la	75 of 88 1 b.com

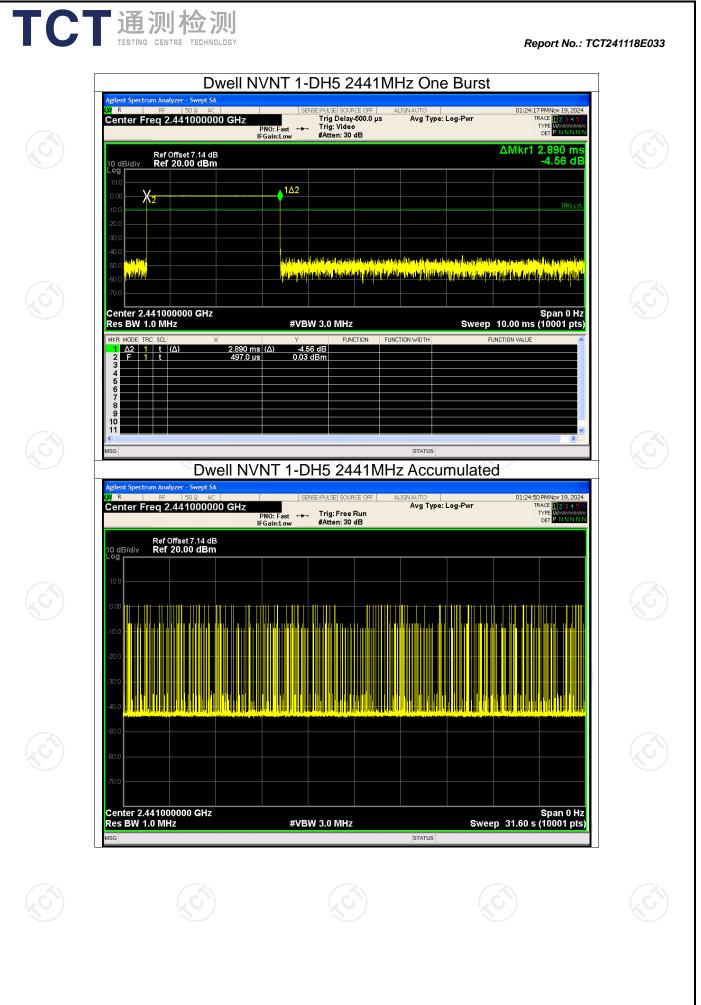
	Hopping No. NVNT 3-DH1 2441MHz								
50 PMNov 19, 2024 TRACE 123456 TYPE MWWWWW DET P N N N N	pe: Log-Pwr Id≫100/100	ALIGN AUTO Avg Type: Lo Avg Hold:>10	NSE:PULSE SOURCE OFF	Hz PNO: Fast IFGain:Low	RF 50 Ω AC q 2.441750000 G	LXI R			
920 5 GHz 2.042 dBm	Mkr1 2.401				Ref Offset 7.14 dB Ref 20.00 dBm	10 dB/div			
MMM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ᢧᡗᡏᠮᡐᡬᡗᢕᡗᢌᡐᡗᡐ	MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	᠈᠈᠋ᡟᠰᠰᠰᠮ	᠋᠋᠕ᡗᠰ᠈ᡀᠰᡘᡰᡐᡘᡟ	0.00 - ////// -10.0 -			
						-20.0 -30.0 -40.0			
						-50.0			
	Stop 2 Sweep 8.000 m	FUNCTION WIDTH	W 300 KHz	#VB	10 kHz	Start 2.4000 #Res BW 10			
			dBm		f 2.401 92	1 N 1 2 N 1 3 4 5			
						6 7 8 9 10			
		STATUS	ш			AT A A A A A A A A A A A A A A A A A A			

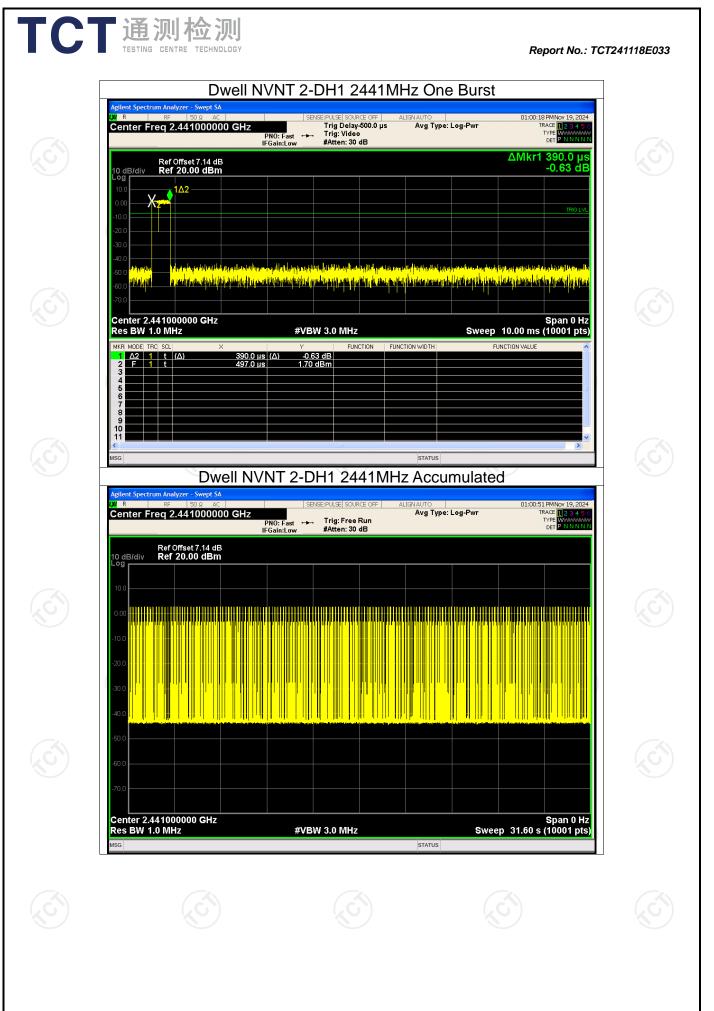
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ГСТ	通测检测
	TESTING CENTRE TECHNOLOGY

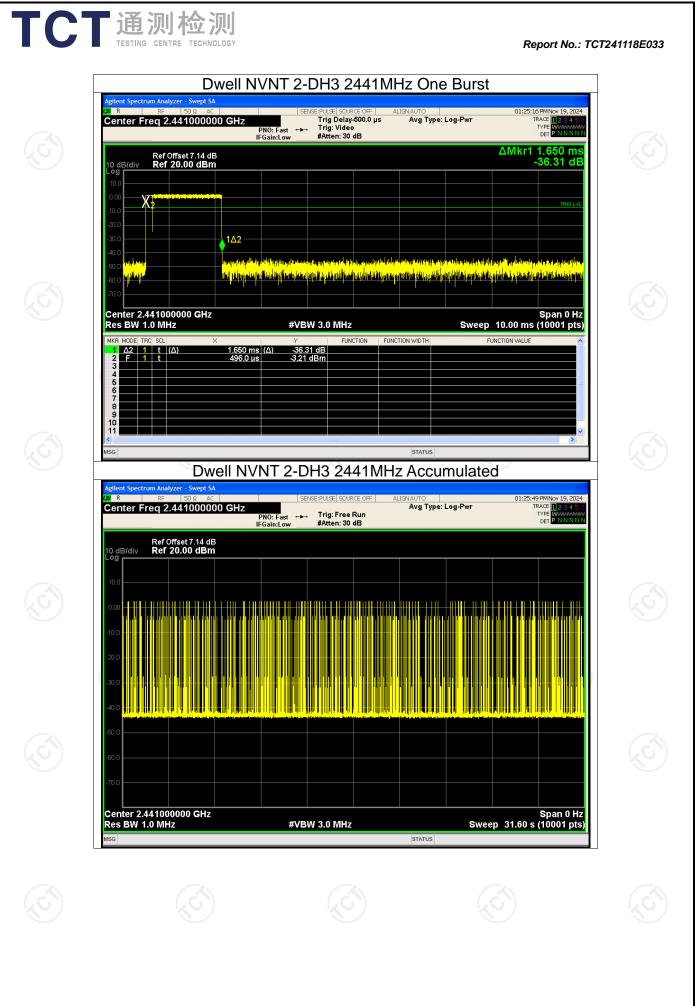
Report No.: TCT241118E033

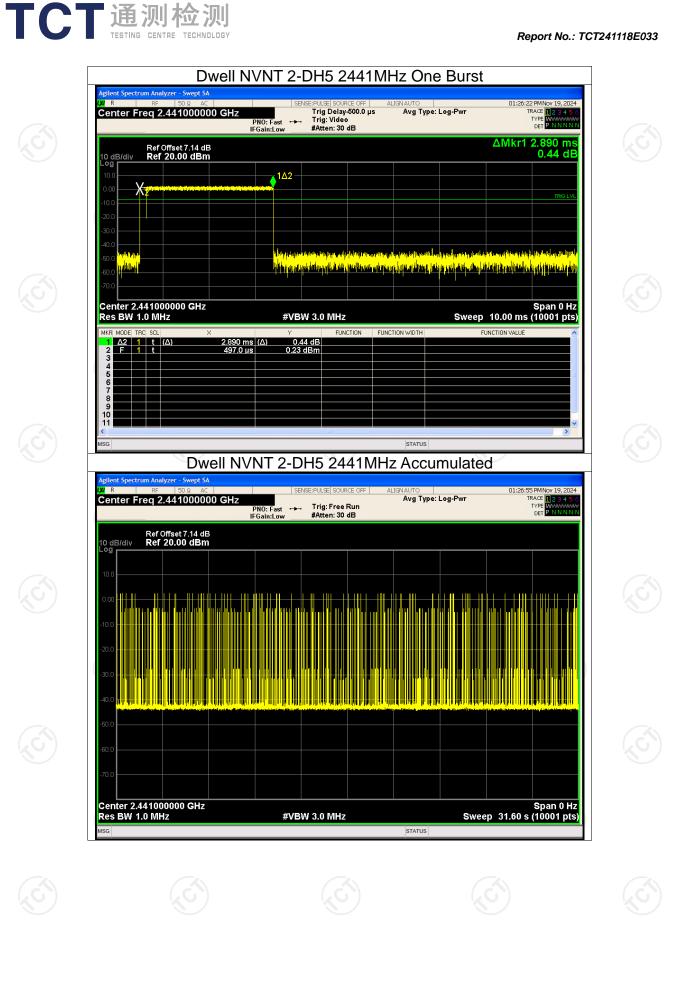

Dwell Time									
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict	
NVNT	1-DH1	2441	0.39	124.41	319	31600	400	Pass	
NVNT	1-DH3	2441	1.64	264.04	161	31600	400	Pass	
NVNT	1-DH5	2441	2.89	312.12	108	31600	400	Pass	
NVNT 🐇	2-DH1	2441	0.39	124.41	319	31600	400	Pass	
NVNT	2-DH3	2441	1.65	260.70	158	31600	400	Pass	
NVNT	2-DH5	2441	2.89	300.56	104	31600	400	Pass	
NVNT	3-DH1	2441	0.40	126.40	316	31600	400	Pass	
NVNT	3-DH3	2441	1.65	260.70	158	31600	400	Pass	
NVNT	3-DH5	2441	2.90	321.90	111	31600	400	Pass	

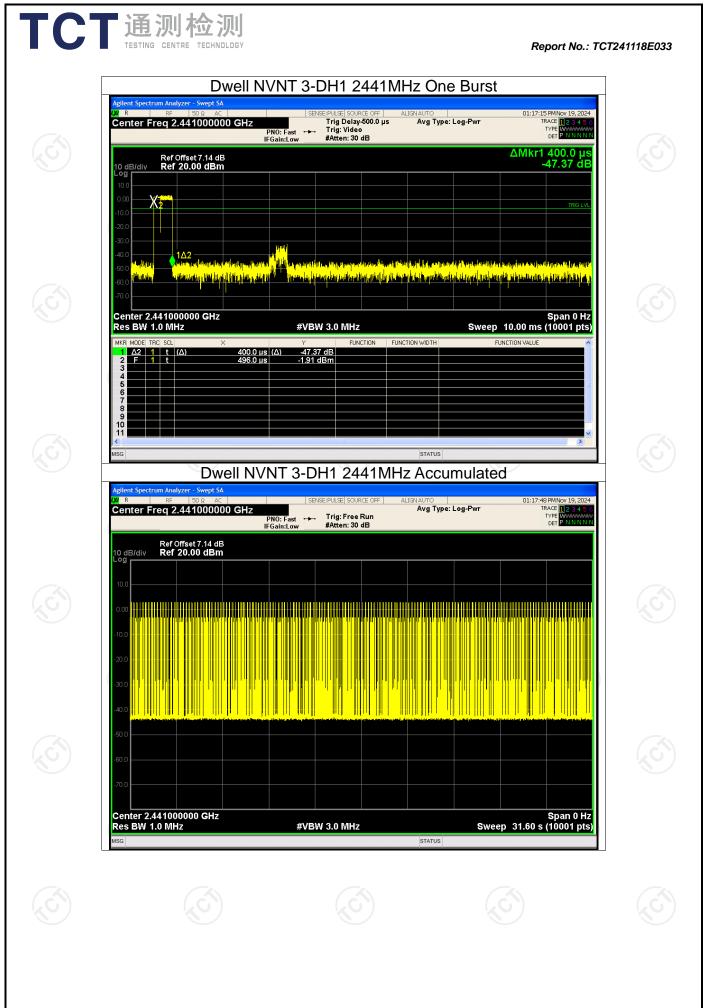


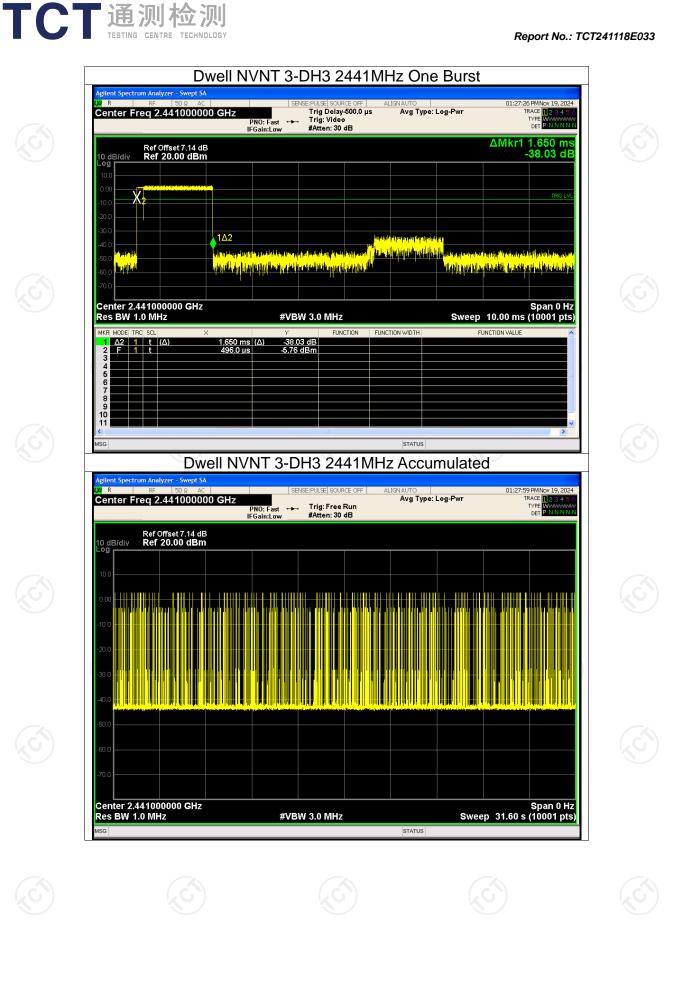

Report No.: TCT241118E033

Page 79 of 88

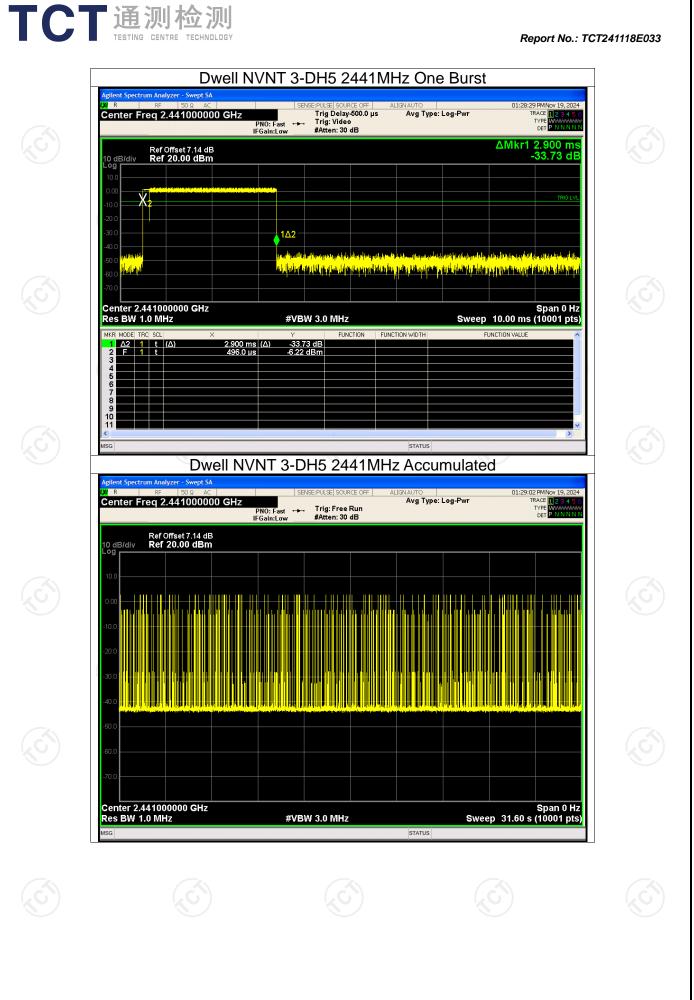



Page 81 of 88

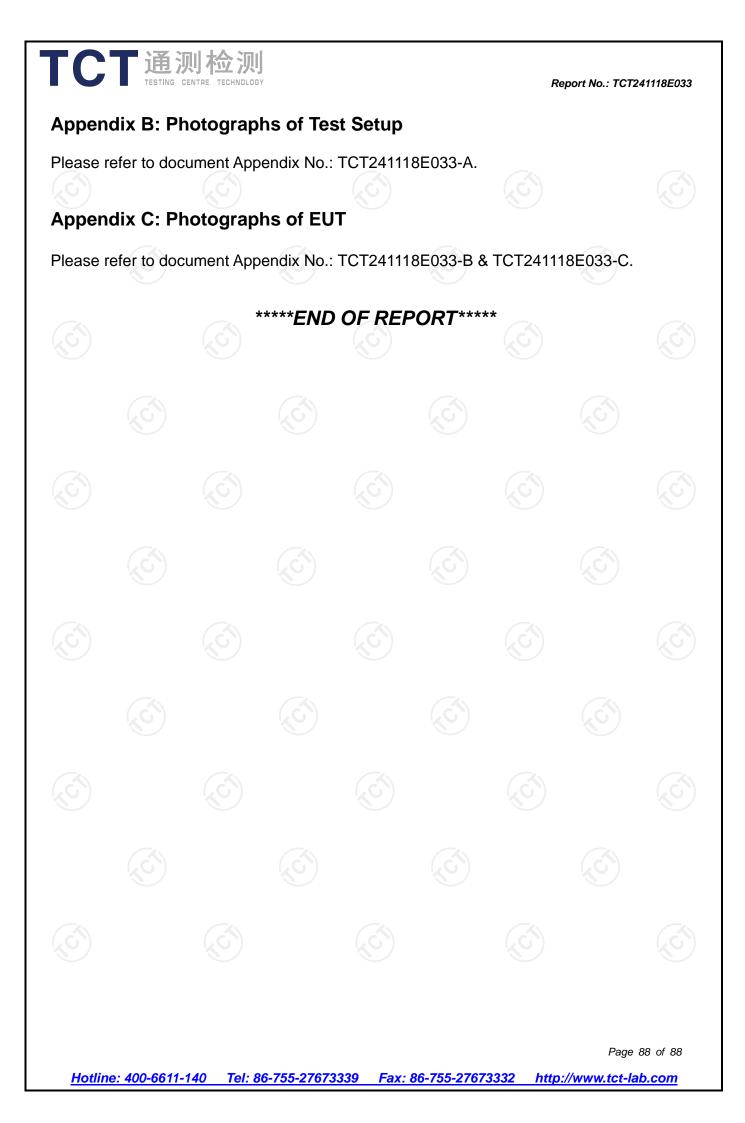

Page 82 of 88



Page 83 of 88



Page 84 of 88



Page 86 of 88

Page 87 of 88

