Report No: 709502229106-00B



# **RF Exposure Estimation**

## 1. Introduction

| Applicant:               | ZHEJIANG JIECANG LINEAR MOTION TECHNOLOGY CO., LTD.                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Address:                 | No.19 XinTao Road, Provincial High Tech Park XinChang county,ZheJiang ProvinceP.O. Box 312500, XINCHANG COUNTY, 312500 China       |
| Product:                 | Remote controller                                                                                                                  |
| FCC ID:                  | 2ANKDJCHR35W3A                                                                                                                     |
| Model No.:               | JCHR35W3A, JCHR35W3A1, JCHR35W3A2, JCHR35W3A3, JCHR35W3A4, JCHR35W3A5, JCHR35W3A6, JCHR35W3A7, JCHR35W3A8, JCHR35W3A9, JCHR35W3A10 |
| Reference<br>RF report # | 709502229106-00A                                                                                                                   |

# 2. RF Exposure Evaluation

Per the test report included herein, for 433.925MHz

According to ANSI C63.10-2013 (9.5 Equations to calculate EIRP),

### Calculated Data:

According to C63.10 Annex G EIRP =  $p_t \times g_t = (E \times d)^2/30$ , so  $p_t = (E \times d)^2/30^* g_t$ 

#### where

 $p_t$  is the transmitter output power in watts  $g_t$  is the numeric gain of the transmitting antenna (dimensionless) E is the electric field strength in V/m d is the measurement distance in meters (m) transmitter output power for 433.925MHz Function

| Field strength (E):                          | 85.19 (dBuV/m) = 0.0182 (V/m) |  |
|----------------------------------------------|-------------------------------|--|
| Measurement distance (D):                    | 3 (m)                         |  |
| Antenna Gain, typical (dBi):                 | -13.50                        |  |
| Numerical gain of the transmit antenna (gt): | 0.04                          |  |
| Transmitter output power (TP):               | 0.002219(W)                   |  |
| Transmitter output power (TP):               | 2.219(mW)                     |  |

The worst case test separation distance is 5mm.

The product belongs to standalone portable device base the FCC rule part 2.1091&2.1093. The transmission frequencies of the device are between 100 MHz and 6 GHz. In KDB 447498 D01 v06: 4.3.1 Standalone SAR test exclusion considerations: The SAR Test Exclusion Threshold is calculated from: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\cdot [\sqrt{f(GHz)}] \le 3.0$  for 1-g SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation 17
- The result is rounded to one decimal place for comparison The Max Conducted Output Power and SAR Test Exclusion Threshold (mW) are listed below:

Report No: 709502229106-00B



| Transmit Frequency (MHz) | Output power (mW) | SAR Test Exclusion Threshold (mW) |
|--------------------------|-------------------|-----------------------------------|
| 433.925                  | 2.219             | 22.77                             |

According to SAR Exclusion Threshold in KDB 447498 (D01) General RF Exposure Guidance v06, the SAR report is not required.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

| Reviewed by:                                     | Prepared by:                                         | Tested by:                                              |
|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| Hui Torq                                         | Wengiang LLI                                         | Cheng Huali                                             |
| Hui TONG EMC Section Manager Date: Dec. 02, 2022 | Wenqiang LU EMC Project Engineer Date: Dec. 02, 2022 | Huili CHENG<br>EMC Test Engineer<br>Date: Dec. 02, 2022 |