

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

RADIATED EMISSIONS TEST REPORT

ACCORDING TO: FCC 47CFR part 27

FOR:

SuperCom LTD PureBeacon Model: PureBeacon3.0 P/N: PRF-PUREBEACON3.0 FCC ID: 2BAX3-PUREBEACON3 IC: 22778-PUREBEACON3

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Applicant information Equipment under test attributes	
3	Manufacturer information	
4	Test details	
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in the EUT	5
7	Transmitter tests according to 47CFR part 27	6
7.1	Radiated out of band emission measurements at BLE and LTE module simultaneous transmitting mode	6
8	APPENDIX A Test equipment and ancillaries used for tests	21
9	APPENDIX B Test equipment correction factors	22
10	APPENDIX C Measurement uncertainties	25
11	APPENDIX D Test laboratory description	26
12	APPENDIX E Specification references	26
13	APPENDIX F Abbreviations and acronyms	27

1 Applicant information

Manufacturer name:	SuperCom LTD
Address:	3 Rothschild St, Tel Aviv,6688106, Israel 6713412
Telephone:	+972-9-8890880
E-Mail:	Sanny.raviv@megger.com
Contact name:	Mr. Sanny Raviv

2 Equipment under test attributes

Product name:	PureBeacon	
Product type:	Transceiver	
Model(s):	PureBeacon3.0	
Part number:	PRF-PUREBEACON3.0	
Hardware version:	3.2	
Software release:	1.0.0.34.40	
Receipt date	06-Aug-24	

3 Manufacturer information

Manufacturer name:	SuperCom LTD
Address:	3 Rothschild St, Tel Aviv,6688106, Israel 6713412
Telephone:	+972-9-8890880
E-Mail:	Sanny.raviv@megger.com
Contact name:	Mr. Sanny Raviv

4 Test details

Project ID:	54670
Location:	Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel
Test conducted:	28-Aug-24
Test specification(s):	FCC 47CFR part 27

5 Tests summary

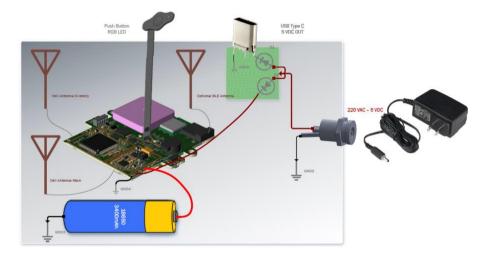
Test	Status
Transmitter characteristics	
Section 27.53(m)(2), Radiated out of band emission	Pass*

The relevant test was done to support operation of LTE radio module approved by FCC under FCC ID: RI7LE910CXWWX simultaneously transmitting with PureBeacon3.0 radio and submit Application for certification PureBeacon3.0 under FCC ID: 2BAX3-PUREBEACON3 following FCC 15.31(k) and FCC 2.947(f) requirements.

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. N. Lenkina, test engineer, EMC & Radio	28-Aug-24	Alead
Reviewed by:	Mrs. S. Peysahov Sheynin, certification specialist, EMC & Radio	25-Sep-24	1 m
Approved by:	Mr. M. Nikishin, group leader, EMC & Radio	22-Oct-24	ft 5


6 EUT description

6.1 General information

The PureBeacon home unit is an optional accessory which enables indoor surveillance of Offenders when GPS is either not available or when the PureTrack/PureOne devices have low GPS signal reception. The PureBeacon communicates with the PureTrack/PureOne device to indicate that the Offender is currently in a pre-defined zone. The PureBeacon is AC powered and contains an internal battery backup capable of providing approximately 75 hours of operation. The AC/DC adapter manufactured by SuperCom, model PRF-QBEACON3.0-CR was used during the testing.

It incorporates a quick charging station for the PureOne's portable charger and contains an LED interface and physical Button Press for multiple added functionalities.

6.2 Test configuration

6.3 Changes made in the EUT

No changes were implemented in the EUT during testing.

Test specification:	st specification: Section 27.53, Radiated spurious emissions			
Test procedure:	47 CFR, Section 2.1053			
Test mode:	Compliance	Verdict: PASS		
Date(s):	30-Jul-23			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz	
Remarks:				

7 Transmitter tests according to 47CFR part 27

7.1 Radiated out of band emission measurements at BLE and LTE module simultaneous transmitting mode

7.1.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Radiated spurious emission test limits

Frequency,	Attenuation below carrier, dBc	ERP of spurious,	Equivalent field strength limit @ 3m,
MHz		dBm	dB(µV/m)***
0.009 – 10 th harmonic*	43+10logP**	-13	84.4

* - Excluding the band emission

** - P is transmitter output power in Watts

*** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows:

E=sqrt(30xPx1.64)/r,

where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.1.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

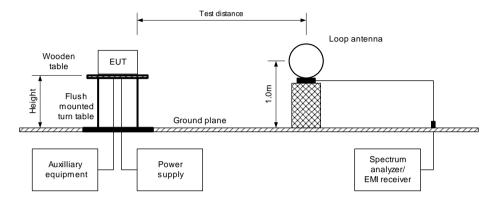
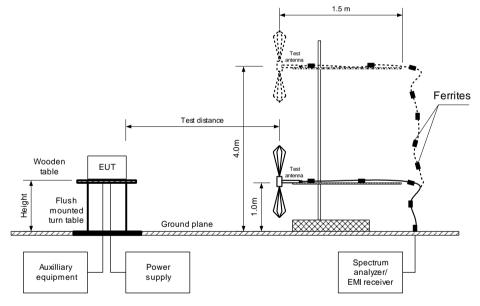
- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.
- **7.1.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis.
- 7.1.2.3 The worst test results (the lowest margins) were recorded in Table 7.1.2 and shown in the associated plots.

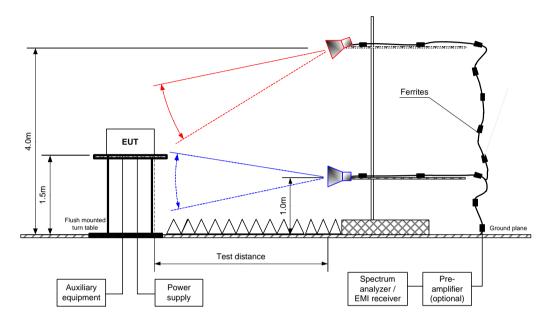
7.1.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.1.3.1 The EUT was set up as shown in Figure 7.1.2, energized and the performance check was conducted.
- **7.1.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360° and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- **7.1.3.3** The worst test results (the lowest margins) were recorded in Table 7.1.2 and Table 7.1.3 and shown in the associated plots.

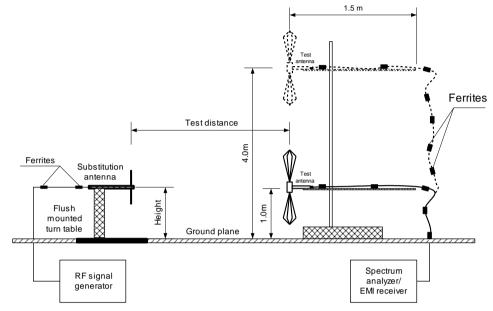
Test specification:	cification: Section 27.53, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053				
Test mode:	Compliance	Vardiate	DASS		
Date(s):	30-Jul-23	Verdict: PASS			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz		
Remarks:					

Figure 7.1.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band


Figure 7.1.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	tion: Section 27.53, Radiated spurious emissions			
Test procedure:	47 CFR, Section 2.1053			
Test mode:	Compliance	Vardiate		
Date(s):	30-Jul-23	Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz	
Remarks:	-			


Figure 7.1.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 27.53, Radiated spurious emissions			
Test procedure:	47 CFR, Section 2.1053			
Test mode:	Compliance	Verdict: PASS		
Date(s):	30-Jul-23			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz	
Remarks:				

Test specification:	Section 27.53, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	30-Jul-23	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz		
Remarks:					

Table 7.1.2 Field strength of spurious emissions below 1 GHz

TEST DISTA MODULATIO DUTY CYCL	NCE: DN: E: ER OUTPU DN BANDWII	IENCY RANGE: T POWER SETTINGS DTH:	000 MHz 9 kHz – 150 kl 150 kHz – 30 l 30 MHz – 100 ion bandwidth pp (9 kHz – 30 (30 MHz – 10	MHz) 00 MHz) 1 MHz)					
Frequency, MHz	Peak emission,	Measured emission,	isi-peak Limit,	Margin, dB*	Antenna	Antenna height, m	Turn-table position**,	Verdict	
	dB(μV/m)	dB(μV/m)	dB(μV/m)		P		degrees		
With LTE LF	(700 MHz)***								
		9	Spurious not f	ounded				Pass	
With LTE MF	= (900 MHz)**	*							
Spurious not founded							Pass		
With LTE HE	With LTE HF (2100 MHz)***								
Spurious not founded									

*- Margin = Measured emission - specification limit.
**- EUT front panel refer to 0 degrees position of turntable.
***-The simultaneous operation was performed for 3 groups of LTE band under one worst case condition

Test specification:	Section 27.53, Radiated spurious emissions					
Test procedure:	47 CFR, Section 2.1053					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	30-Jul-23	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz			
Remarks:						

Table 7.1.3 Spurious emission field strength test results

DETECTOR RESOLUTION VIDEO BAN TEST ANTE MODULATI DUTY CYC	TED FREQI VISED: ON BANDW DWIDTH: ENNA TYPE ON:	IDTH:	-	NGS:	10 Pe 100 > I Do GF 10	emi anecho 00 – 2500 eak 00 kHz	bandwidth	-			
Frequency, MHz	Anteni Polarization	na Height, m	Azimuth, degrees	Peak Measured, dB(μV/m)	field streng Limit, dB(u)(/m)	Margin,		Average field Calculated, dB(μV/m)		Margin, dB**	Verdict
With LTE L	.F (700 MHz)*			αΒ(μν/ιιι)	αΒ(μν/ιι)	uБ	αΒ(μν/Π)	αΒ(μν/Π)	αΒ(μν/Π)	uв	
No emissions were found											
With LTE M	/IF (900 MHz) [;]	**									
				No	emissions	were found					
With LTE H	IF (2100 MHz)**	-						-	-	
3898.4432	Horizontal	1.5	-170	81.69	84.40	-2.71	N/A	N/A	N/A	N/A	Pass

*- Margin = Field strength of spurious – calculated field strength limit. **-The simultaneous operation was performed for 3 groups of LTE band under one worst case condition

Table 7.1.4 ERP of spurious emissions test results

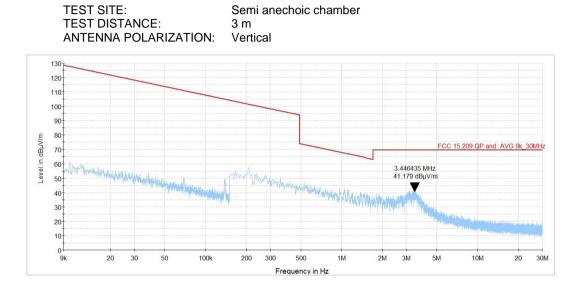
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
SUBSTITUTION ANTENNA HEIGHT:	1.5 m
TEST ANTENNA HEIGHTS RANGE:	1.0 – 4.0 m
DETECTOR USED:	Peak
RESOLUTION BANDWIDTH:	1000 kHz
VIDEO BANDWIDTH:	3000 kHz
VIDEO BANDWIDTH:	3000 kHz
SUBSTITUTION ANTENNA TYPE:	Double ridged guide (above 1000 MHz)

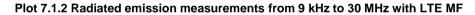
Frequency, MHz	Field strength, dB(μV/m)	RBW, kHz	Antenna polarization	RF generator output, dBm	Ant gain, dBi	Cable loss, dB	Spurious emission, dBm	Limit, dBm	Margin, dB*	Verdict
With LTE HF(2100 MHz)**										
3898.4432	81.69	1000	Horizontal	-20.39	9.043	2.08	-13.43	-13.00	-0.43	Pass

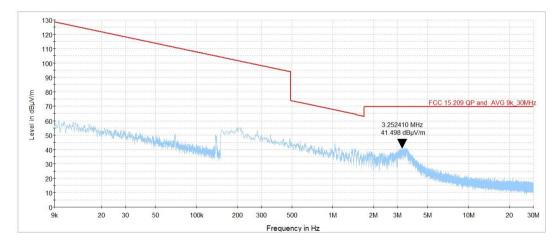
*- Margin = Field strength of spurious – calculated field strength limit.

**-The simultaneous operation was performed for 3 groups of LTE band under one worst case condition

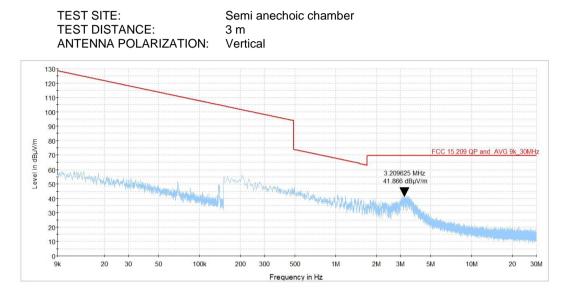
Reference numbers of test equipment used


HL 5288	HL 0446	HL 4956	HL 3903	HL 5902	HL 7585	HL 5112	HL 4933
HL 4339	HL 4917	HL 5673	HL 4114	HL 5942			


Full description is given in Appendix A.

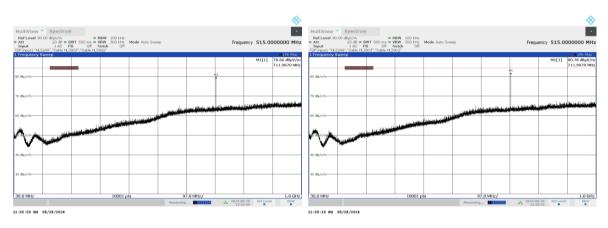

Test specification:	Section 27.53, Radiated spurious emissions					
Test procedure:	47 CFR, Section 2.1053					
Test mode:	Compliance	Vardiate	PASS			
Date(s):	30-Jul-23	Verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz			
Remarks:						

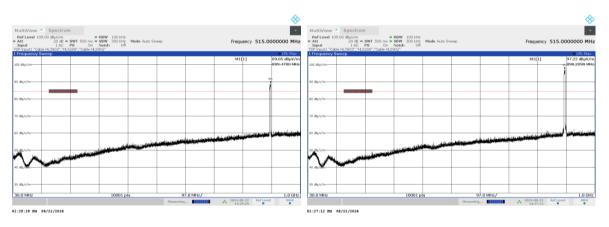
Plot 7.1.1 Radiated emission measurements from 9 kHz to 30 MHz with LTE LF


TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical

Test specification:	Section 27.53, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	30-Jul-23	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz		
Remarks:					

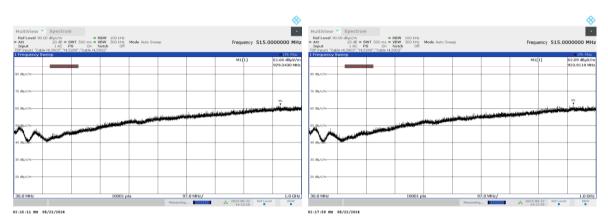
Plot 7.1.3 Radiated emission measurements from 9 kHz to 30 MHz with LTE HF




Test specification:	Section 27.53, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	30-Jul-23	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz		
Remarks:					

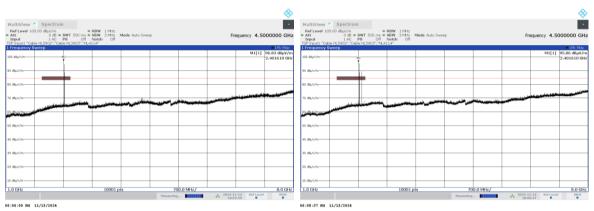
Plot 7.1.4 Radiated emission measurements from 30 to 1000 MHz with LTE LF

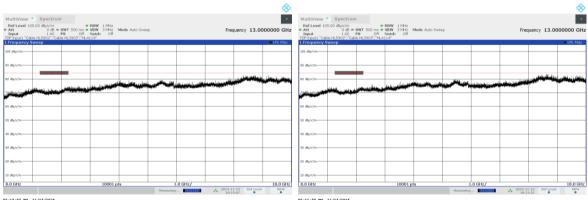
TEST SITE:Semi anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal



Test specification:	Section 27.53, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053				
Test mode:	Compliance	Vardiate	PASS		
Date(s):	30-Jul-23	Verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz		
Remarks:	-				

Plot 7.1.6 Radiated emission measurements from 30 to 1000 MHz with LTE HF

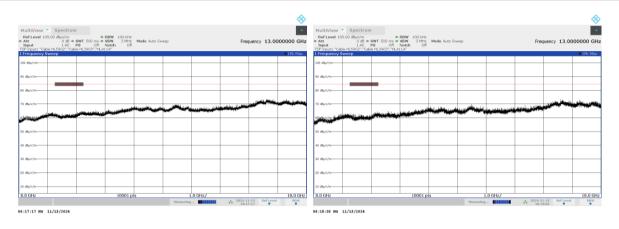



Test specification:	Section 27.53, Radiated spurious emissions						
Test procedure:	47 CFR, Section 2.1053						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	30-Jul-23	verdict.	FA33				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz				
Remarks:							

Plot 7.1.7 Radiated emission measurements from 1000 to 18000 MHz with LTE LF

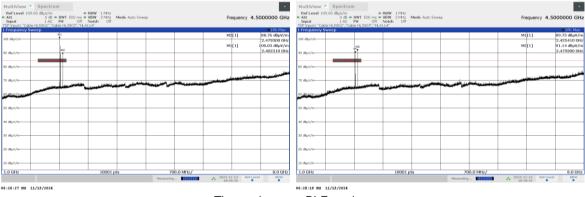
TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical and Horizontal

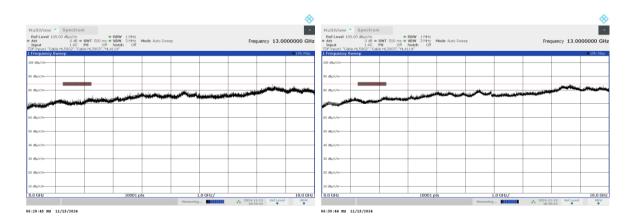
The markers are BLE carriers


06:13:07 PH 11/13/2024

06:11:33 PH 11/13/2024

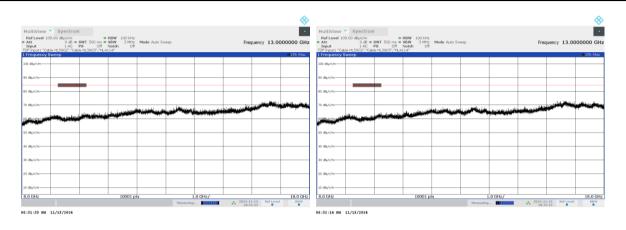
a


Test specification:	Section 27.53, Radiated spurious emissions						
Test procedure:	47 CFR, Section 2.1053						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	30-Jul-23	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz				
Remarks:							

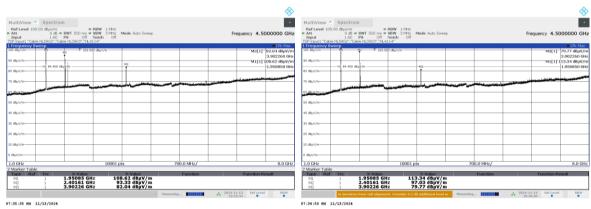


TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

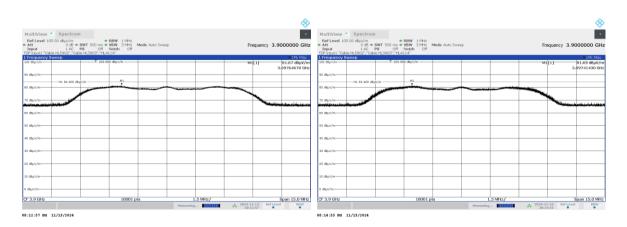
Mode Add Streep Mode A



The markers are BLE carriers

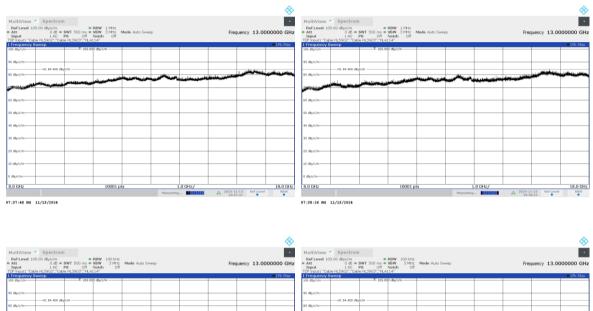


Test specification:	Section 27.53, Radiated spurious emissions						
Test procedure:	47 CFR, Section 2.1053						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	30-Jul-23	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz				
Remarks:							



Plot 7.1.9 Radiated emission measurements from 1000 to 18000 MHz with LTE HF

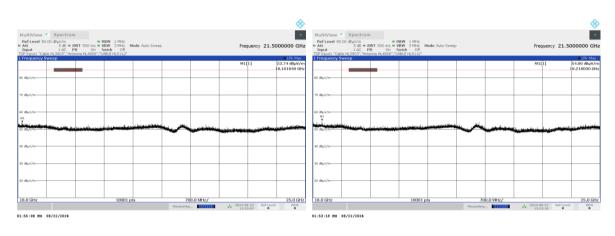
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal



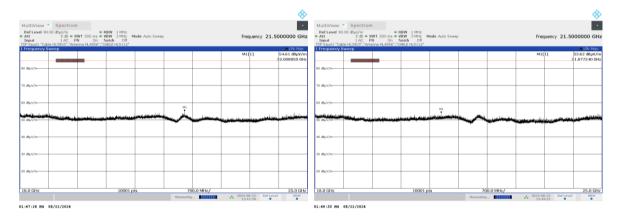
The markers are BLE and LTE 2100 MHz carriers

Test specification:	Section 27.53, Radiated spurious emissions								
Test procedure:	47 CFR, Section 2.1053	47 CFR, Section 2.1053							
Test mode:	Compliance	Verdict:	PASS						
Date(s):	30-Jul-23	verdict:	PASS						
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz						
Remarks:	-								

100 dB	µv/m			o deµv/m							10	a aphi/um		105.0	io asµv/m						
90 ditu	N/m	H1 84.400 dBu									9:	d8µ///m	H1 84.400 dB								
00 d8µ	N/m	AT 64.400 080	4/11								01	d8µ///m	A1 84.400 089								
									and stated to											والمالع ومرور	data in the
70 dēµ	//m				للوقورير ويرفظ فالداريقة	وأنداء فأفدده	ويتعدد والمردية	an Robert William	a line water		70	d8µV/m			فليهاد	بالمربع والمتحد والم		والمتحاد والمتحد	المستنب وادداء		
.00 48 6	ure built	باستندين فأتج	بن محطورة الذكر		and the second second	With	Contra States	and the second s			6	disk/math		ويتدادون والمراجع	Statistics of the second	And sold and the second second		and the second second	and the second sec		
****	referen										۲										
so day	///////////////////////////////////////										50	d8µ///m									
40 dtu	N/m										40	d8µ///m									
30 d8µ	///////////////////////////////////////										31	d8µV/m									
20 ditu	11 hm											d8µ///m									
10 dBµ	v/m										10	dBµV/m									
0.084/												68./V/m									
8.0 G	Hz			10001 pt	ts	1	.0 GHz/			18.0 GHz	8	.0 GHz			10001 p	ts	1	1.0 GHz/			18.0 GHz
		*				·· Measuring.		* 2024-1 19:3	1-13 Ref Level 9:10 •	RBW			· •				- Measuring		* 2024-11 19:39	1-13 Ref Level 9:53 •	RBW


07:39:11 PH 11/13/2024

07:39:54 PH 11/13/2024



Test specification:	Section 27.53, Radiated spurious emissions							
Test procedure:	47 CFR, Section 2.1053							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	30-Jul-23	verdict:	PASS					
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 230 VAC, 50 Hz					
Remarks:								

Plot 7.1.10 Radiated emission measurements from 18000 to 25000 MHz with LTE LF

Ref Level 90 Att Input TDF Input1 "Cab	5 dB = S 1 AC P ble HL3903","Anti	SWT 500 ms	VBW 3 MHz N Notch Off	fode Auto Sweep			Free	quency 21.5	• 000000 GHz	Ref Level 90 Att Input TDF Input1 *Cab	5 dB • S1 1 AC Pt le HL3903","Ante	WT 500 ms • V	BW 1 MHz BW 3 MHz M letch Off 48LE HL5112*	lode Auto Sweep	>		Free	quency 21.50	000000 GHz
1 Frequency S	Sweep 01.8c #Crd8						MI		●1Fk Max 54.29 dBµV/m 18.214530 GHz	1 Frequency S	WEED						M1[615k Max 53.98 dBµV/m 21.449610 GHz
70 d8µ///m										70 d8µV/m									
60 d8µ//m M1 50 d8µ//m	-	-	بەرلىمىيەتەتىتىرىمىلىدۇ.	والم المعالم الم		والداد وأدوداني		والمرود والمراجع والمراجع	-	60 d8µ//m		قونابه واحتيامون	فيعتملها	-	~~~~				ويقادن ورواني والمراجع
40 d8µV/m										40 d8µV/m									
30 d8µV/m										30 dBµV/m									
18.0 GHz			10001 p	ts		0.0 MHz/	. 2024-0	k-22 Refleve	25.0 GHz	18.0 GHz			10001 p	ts		D.0 MHz/	. 2024-0	8-22 Refievel	25.0 GHz
01:58:33 PM	08/22/2024				Measuring		13:5	8-22 Ref Leve 8:33 ©	•	02:00:14 FM	08/22/2024				- Measuring.		14:0	8-22 Ref Lovel 0:13 0	•

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	29-Feb-24	28-Feb-25
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1226/2A	06-May-24	06-May-25
4114	Antenna, Double-Ridged Waveguide Horn, 1 to 18 GHz	ETS Lindgren	3117	00123515	08-Nov-23	08-Nov-24
4338	Reject Band Filter, 50 Ohm, 0 to 2170 and 3000 to 18000 MHz,SMA-FM / SMA- M	Micro-Tronics	BRM 50702-02	023	10-Jul-24	10-Jul-26
4339	High pass Filter, 50 Ohm, 1000 to 18000 MHz, SMA-FM / SMA-M	Micro-Tronics	HPM5011 5-02	001	21-Jun-23	21-Jun-25
4917	High Pass Filter, 50 Ohm, 3150 to 6500 MHz, SMA-FM / SMA-M	Mini-Circuits	VHF- 2700+	NA	22-Jun-23	22-Jun-25
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATIO N	AHA-118	701046	20-Feb-24	20-Feb-25
4956	Active horn antenna, 18 to 40 GHz	COM-POWER CORPORATIO N	AHA-840	105004	03-Mar-24	03-Mar-25
5112	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/ 11SK/11S K/5500M M	502494/2E A	02-Jun-24	02-Jun-25
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	24-Mar-22	24-Mar-25
5601	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18000 MHz	Mini Circuits	BW- N10W5+	NA	14-Aug-24	14-Aug-25
5622	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini Circuits	BW- N20W5+	NA	14-Aug-24	14-Aug-25
5673	Cable SF126EA/11N(x2)/2M, 18GHz	Huber-Suhner	SF126EA	506756/12 6EA	19-May-24	19-May-25
5902	RF cable, 18 GHz, 6.0m, N-type	Huber-Suhner	SF126EA/ 11N/11N/ 6000	NA	19-Nov-23	19-Nov-24
5942	Signal Generator, 8.0 kHz to 6.0 GHz	Rohde & Schwarz	SMB- 100B	102327	14-Jan-24	14-Jan-25
7585	EMI Test Receiver, 1 Hz to 44 GHz	Rohde & Schwarz	ESW44	103130	21-Sep-23	21-Sep-24

Test equipment correction factors 9 APPENDIX B

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 <u>30</u>-1000 MHz

	30
Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$. above 1000 MHz

above	1

	abo
Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$.

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB	Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0	2000	-41.4	±1.0
20	-37.8	±1.0	3000	-41.4	±1.0
50	-40.5	±1.0	4000	-41.5	±1.0
75	-41.0	±1.0	5000	-41.5	±1.0
100	-41.2	±1.0	10000	-41.7	±1.0
150	-41.2	±1.0	15000	-42.1	±1.0
250	-41.1	±1.0	20000	-42.7	±1.0
500	-41.2	±1.0	25000	-44.2	±1.0
750	-41.3	±1.0	30000	-45.8	±1.0
1000	-41.3	±1.0			

The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµA/m.

HL 4933: Active Horn Antenna
COM-POWER CORPORATION, model: AHA-118, s/n 701046

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m.

10 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty	
Transmitter tests		
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB	

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:	P.O. Box 23, Binyamina 3055001, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 APPENDIX E Specification references

47CFR part 27: 2022	Private land mobile radio services
47CFR part 2: 2023	Frequency allocations and radio treaty matters; general rules and regulations
ANSI/TIA/EIA-603-E:2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

13 APPENDIX F Abbreviations and acronyms

A AC	ampere alternating current
A/m	ampere per meter
AM	amplitude modulation
AVRG	average (detector)
BB	broad band
cm	centimeter
dB dDre	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(μV/r	
dB(μA)	•
dBΩ DC	decibel referred to one Ohm
EIRP	direct current
ERP	equivalent isotropically radiated power effective radiated power
EUT	equipment under test
F	frequency
GHz	gigahertz
GND	ground
H	height
HL	Hermon laboratories
Hz	hertz
ITE	information technology equipment
k	kilo
kHz	kilohertz
LISN	line impedance stabilization network
LO	local oscillator
m	meter
MHz	megahertz
min	minute millimeter
mm ms	millisecond
μS	microsecond
μ3 NA	not applicable
NB	narrow band
NT	not tested
OATS	open area test site
Ω	Ohm
QP	quasi-peak
PM	pulse modulation
PS	power supply
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
S T	second
T Tv	temperature transmit
Tx V	volt
V VA	volt-ampere
vл	voit ampere

END OF DOCUMENT