

RRA-EMIESS23G756WAT-03Av0

Distribution: Mr LEFORT

(Company: WATTECO)

Number of pages: 17 with 1 appendix

Ed.	Date	Modified	Technical Verification and Quality Approval	
		Page(s)	Name and Function	Visa
0	13-Jan-25	Creation	S. LOUIS, Radio Technician	

Duplication of this document is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above. This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

Information in italics are declared by the manufacturer/customer and are under his responsibility

Siège Social : Emitech - 3, rue des Coudriers - Z.A. de l'Observatoire - 78180 MONTIGNY LE BX - France Siret : 344 545 645 00022 - Tél. : 33 (0)1 30 57 55 55 - Fax : 33 (0)1 30 43 74 48 - E-mail : contact@emitech-group.com - URL : www.emitech.fr SAS au capital de 1 560 000 € - R.C.S. VERSAILLES 344 545 645 - APE 7112B

TESTING ACCREDITATIONS N° 1-0826, 1-0827, 1-1925 1-2069, 1-2070, 1-2206, 1-2376 & 1-6086 LIST OF ACCREDITED SITES AND SCOPE AVALAIBLE ON WWW.COFRAC.FR

DESIGNATION OF PRODUCT:	Toran'O	
Serial number (S/N):	Adresse MAC (DevEUI) = 70B	3D5E75E017189
MPN:	50-70-252-000	
Model:	Toran'O Product Line	
Software version:	v3.5.2.6404	
MANUFACTURER:	WATTECO	
COMPANY SUBMITTING THE PRODU	ICT:	
Company:	WATTECO	
Address:	POLE DE TECHNELLYS BATIMENT H – BOITE AUX LI 165 RUE DE LA MONTAGNE 56600 - LANESTER FRANCE	ETTRE N°60 DY SALUT
Responsible:	Mr LEFORT	
Person(s) present during the tests:	1	
DATES OF TEST:	From 2-Sep-24 to 6-Sep-24	
TESTING LOCATION:	EMITECH ANGERS laboratory	y at JUIGNE SUR LOIRE (49) FRANCE
	FCC Accredited under US-EU Test Firm Registration Number	MRA Designation Number: FR0009 r: 873677
	ISED Accredited under CANAI Industry Canada Registration N	DA-EU MRA Designation Number: FR0001 Number: 4452A
TESTED BY:	B. VOVARD	VISA:
WRITTEN BY:	B. VOVARD	Bilovard

Page 2/17

CONTENTS

TITLE

PAGE

1.	INTRODUCTION	4
2.	PRODUCT DESCRIPTION	4
3.	NORMATIVE REFERENCE	5
4.	TEST METHODOLOGY	6
5.	TEST EQUIPMENT CALIBRATION DATES	6
6.	TESTS RESULTS SUMMARY	. 7
7.	MEASUREMENT UNCERTAINTY	8
8.	ANTENNA GAIN CALCULATION - LoRa RADIO PART	9
APPE	ENDIX 1: TEST EQUIPMENT LIST	17

REVISIONS HISTORY

Revision	Date	Modified pages	Modifications
0	10-Sep-24		Creation

1. INTRODUCTION

This report presents the results of radio test carried out on the following radio equipment: **Toran'O**, in accordance with normative reference.

The device under test integrates a LoRa not certified function.

This report is a justification statement for antenna as stated in 'Timco' newsletter for Part 15 applications with equipment classes DTS, DSS, NII, 6ID, etc. which require the antenna gain for compliance with EIRP limits.

This report concerns only antenna gain calculation of LoRa Radio parts in 902-928 MHz Band.

2.	PRODUCT DESCRIPTION	

Category of equipment (ISED): I

Class:	В
Utilization:	Residential
Antenna type and gain:	Integral antenna (Maximum Gain : 5.92 dBi)
Operating frequency range:	From 902 MHz to 928 MHz
Frequency tested:	902.3 MHz, 908.7 MHz, 914.9 MHz for transmission

Frequencies plan detailed transmitter:

Channel frequencies	LoRa bandwidth (KHz)	Number of channel	Channel width (KHz)
902,3+i*0,2MHz (i=0 à 63)	125	64	200
Number of channels:	64		
Channel spacing:	200 kHz		
Modulation:	LoRa with spread factor 7	to 10	
Power source:	3.6 Vdc LS17500 battery 3	3.6 Ah	

During test the output power was adjusted at the maximal level with the following setting (13 dB).

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below. They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2024)	Radio Frequency Devices
ANSI C63.10	2013 Procedures for ComplianceTesting of Unlicensed Wireless Devices.
558074 D01 15.247 Meas Guid	ance v05r02 Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
RSS-247	Issue 3, August 2023 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

4. TEST METHODOLOGY

Justification statement:

For antenna as stated in '<u>Timco</u>' newsletter for Part 15 applications with equipment classes DTS, which require the antenna gain for compliance with EIRP limits.

Radio performance tests procedures given in CFR 47 part 15:

Subpart C – Intentional Radiators

Paragraph 247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Radio performance tests procedures given in RSS-247:

Paragraph 5 - Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Emitech Number	Model	Туре	Last calibration	Calibration interval (years)	Next calibration due
0	BAT-EMC V3.18.0.26	Software	/	/	/
8549	Midwest Microwave 20dB	Attenuator	07/03/2022	3	06/03/2025
8750	La Crosse Technology WS-9232	Meteo station	20/11/2023	1	19/11/2024
8775	Fontaine FTN 2515B	Power source	(1)	(1)	(1)
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	1	/	/
10759	COMTEST Cage 3	Anechoic chamber	/	/	/
10789	MATURO	Turntable and mat controller NCD	1	/	1
14903	Fluke 177	Multimeter	22/12/2023	2	21/12/2025
15666	R&S FSV40	Spectrum Analyzer	27/09/2022	2	26/09/2024

5. TEST EQUIPMENT CALIBRATION DATES

(1) The equipment is not verified; instead, the output voltage is checked before each measurement with the calibrated multimeter.

6. TESTS RESULTS SUMMARY

6.1 CFR 47 part 15 requirements

Test	Description of test	Respected criteria?				Comment
procedure		Yes	No	NAp	NAs	
FCC Part 15.247	OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz					
	(b) Maximum peak output power(c) Operation with directional antenna gains > 6 dBi	X		X		Note 1
NAp: Not Applicat	ble NAs: Not Asked			• •	• •	

<u>Note 1:</u> First, a measurement was performed using the radiated method and the results found in radio test report referenced <u>**RRA-EMIESS23G756WAT-01Av0**</u>, then a conducted measurement was performed with the same sample replacing the integral antenna by a R-SMA connector.

Gain antenna is calculated by subtracting conducted power measurement from radiated power measurement.

6.2 RSS-247 requirements

Va			Criteria respected ?			
10	es No	NAp	NAs			
vecifications for frequency tem and digital n systems operating in the 928 MHz, 2400-2483.5 '25-5850 MHz						
output power and sotropically radiated power X uirements	κ			Note 1		
	ecifications for frequency em and digital systems operating in the 28 MHz, 2400-2483.5 25-5850 MHz butput power and otropically radiated power irements	ecifications for frequency em and digital systems operating in the 28 MHz, 2400-2483.5 25-5850 MHz butput power and otropically radiated power X irements	ecifications for frequency em and digital systems operating in the 28 MHz, 2400-2483.5 25-5850 MHz butput power and otropically radiated power X irements	ecifications for frequency em and digital systems operating in the 28 MHz, 2400-2483.5 25-5850 MHz putput power and otropically radiated power X irements		

NAp: Not Applicable NAs: Not Asked

<u>Note 1:</u> First, a measurement was performed using the radiated method and the results found in radio test report referenced <u>**RRA-EMIESS23G756WAT-01Av0**</u>, then a conducted measurement was performed with the same sample replacing the integral antenna by a R-SMA connector.

Gain antenna is calculated by subtracting conducted power measurement from radiated power measurement.

7. MEASUREMENT UNCERTAINTY

To declare, or not, the compliance with the specifications, it was not explicitly taken into account of uncertainty associated with the result(s)

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%.

Parameter	Emitech Uncertainty
RF power, conducted	\pm 0.8dB
Radiated emission valid to 26 GHz 9kHz – 30MHz 30MHz – 1GHz 1GHz – 18GHz 18GHz – 40GHz	\pm 4.3 dB \pm 5.9 dB \pm 4.8 dB \pm 5.9 dB
AC Power Lines conducted emissions	\pm 3.7 dB
Temperature	± 0.95 °C
Humidity	± 4.6 %

8. ANTENNA GAIN CALCULATION – LoRa RADIO PART

Temperature (°C) : 23 Technician : B. VOVARD Humidity (%HR): 54

Date : December 6, 2023

Standard: FCC Part 15 RSS-247

Test procedure:

For FCC Part 15: paragraph 15.247 (b) For RSS-247: paragraph 5.4

<u>Radiated Method Measurement:</u> (Refer **RRA-EMIESS23G756WAT-01Av0**) Method of paragraph 7.8.5 of ANSI C63.10

First an exploratory radiated measurement was performed.

During this phase the product is oriented in these two normal positions.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See test setup in appendix 2

Distance of antenna: 10 meters (in open area test site)

Antenna height: 1 to 4 meters (in open area test site)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

The measurement of the radiated electro-magnetic field is realized with an analyser and peak detector. The resolution bandwidth is adjusted at 1 MHz and video bandwidth at 3 MHz.

Finally the radiated electro-magnetic field is converted in dBm with the following formula: $EIRP(dBm) = E (dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna with a Gain (unit in dBi) different following the frequencies used.

Conducted Method Measurement:

Method of paragraph 7.8.5 of ANSI C63.10

Conducted test

The measure is realized in conducted mode.

The power meter is replaced with an spectrum analyser and peak detector. The resolution bandwidth is adjusted at >20 dB bandwidth (1 MHz) and VBW≥RBW (3 MHz) (7.8.5 of ANSI C63.10).

Equipment under test operating condition:

The equipment is blocked in continuous modulated transmission mode by an internal data signal at the highest power level at which the transmitter is intended to operate.

P Software adjusted to +13dBm

Power source: 3.6 Vdc by an external power supply Percentage of voltage variation during the test (%):

±1

Results:

Sample N° 1 Low Channel (F = 902.3 MHz) – SF7

	Radiated Output power measured at 10 meters (dBµV/m):	Conducted Output Power computed (1) (dBm)	Conducted Output Power measured (dBm)	Antenna Gain calculation (dBi)
Nominal supply voltage: 3.6 Vdc	103.33	18.53	12.61	5.92
olonimotion of toot on		(haight 115 and)		•

Polarization of test antenna: Horizontal Position of equipment: Position 2 (height: 115 cm) (azimuth: 20 degrees)

(1) Conducted output power computed :

EIRP(dBm) = E ($dB\mu V/m$) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 0dBi (considered)

Sample N° 1 Central Channel (F = 908.7 MHz) – SF7

	Radiated Output power measured at 10 meters (dBµV/m):	Conducted Output Power computed (1) (dBm)	Conducted Output Power measured (dBm)	Antenna Gain calculation (dBi)
Nominal supply voltage: 3.6 Vdc	102.78	17.98	12.56	5.42

Polarization of test antenna: Horizontal Position of equipment: Position 2 (height: 114 cm) (azimuth: 20 degrees)

(1) <u>Conducted output power computed :</u>

EIRP(dBm) = E ($dB\mu V/m$) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 0dBi (considered)

Sample N° 1 High Channel (F = 914.9 MHz) – SF7

	Radiated Output power measured at 10 meters (dBµV/m):	Conducted Output Power computed (1) (dBm)	Conducted Output Power measured (dBm)	Antenna Gain calculation (dBi)
Nominal supply voltage: 3.6 Vdc	102.37	17.57	12.52	5.05

Polarization of test antenna: Horizontal Position of equipment: Position 2 (height: 114 cm) (azimuth: 20 degrees)

(1) <u>Conducted output power computed :</u>

 $EIRP(dBm) = E (dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 0dBi (considered)

Sample N° 1 Low Channel (F = 902.3 MHz) – SF10

	Radiated Output power measured at 10 meters (dBµV/m):	Conducted Output Power computed (1) (dBm)	Conducted Output Power measured (dBm)	Antenna Gain calculation (dBi)
Nominal supply voltage: 3.6 Vdc	103.31	18.51	12.64	5.87

Polarization of test antenna: Horizontal Position of equipment: Position 2 (height: 115 cm) (azimuth: 20 degrees)

(1) <u>Conducted output power computed :</u>

EIRP(dBm) = E ($dB\mu V/m$) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 0dBi (considered)

<u>Sample N° 1</u> Central Channel (F = 908.7 MHz) – SF10

	Radiated Output power measured at 10 meters (dBµV/m):	Conducted Output Power computed (1) (dBm)	Conducted Output Power measured (dBm)	Antenna Gain calculation (dBi)
Nominal supply voltage: 3.6 Vdc	102.93	18.13	12.55	5.58

Polarization of test antenna: Horizontal Position of equipment: Position 2 (height: 114 cm) (azimuth: 20 degrees)

(1) <u>Conducted output power computed :</u>

EIRP(dBm) = E ($dB\mu V/m$) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 0dBi (considered)

Sample N° 1 High Channel (F = 914.9 MHz) – SF10

	Radiated Output power measured at 10 meters (dBµV/m):	Conducted Output Power computed (1) (dBm)	Conducted Output Power measured (dBm)	Antenna Gain calculation (dBi)
Nominal supply voltage: 3.6 Vdc	102.63	17.83	12.52	5.31

Polarization of test antenna: Horizontal Position of equipment: Position 2 (height: 114 cm) (azimuth: 20 degrees)

(1) <u>Conducted output power computed :</u>

 $EIRP(dBm) = E (dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 0dBi (considered)

Conducted result $(dB\mu V)$:

□□□ End of report, 1 appendix to be forwarded □□□

APPENDIX 1: Test equipment list

Antenna Gain Calculation

ТҮРЕ	MANUFACTURER	EMITECH NUMBER
Full anechoic chamber	EMITECH	10759
Turntable and mat controller NCD	MATURO	10789
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Attenuator 20dB	Midwest Microwave	8549
Power source FTN 2515B	Fontaine	8775
Multimeter 177	Fluke	14903
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.18.0.26	0000