

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2401170

FCC RF Test Report

Report No.: JYTSZ-R12-2401170

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE Smart phone

Model No.: S6514L, N13, NUU N13

Trade Mark: NUU

FCC ID: 2ADINS6514L

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Manager

Date of Sample Receipt: 18 Sep., 2024

Date of Test: 19 Sep., to 17 Oct., 2024

Date of Report Issued: 18 Oct., 2024

Test Result: PASS

Project by: Date: 18 Oct., 2024

Reviewed by: 2024 Date: 18 Oct., 2024

Approved by: Date: 18 Oct., 2024

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	18 Oct., 2024	Original

2 Contents

		Page
Cove	r Page	1
1 '	Version	2
2	Contents	3
3 (General Information	4
3.1	Client Information	4
3.2	General Description of E.U.T.	4
3.3	Test Mode and Test Environment	5
3.4	Description of Test Auxiliary Equipment	5
3.5	Measurement Uncertainty	5
3.6	Additions to, Deviations, or Exclusions from the Method	5
3.7	Zaboratory Facility	6
3.8	B Laboratory Location	6
3.9	Test Instruments List	6
4	Measurement Setup and Procedure	8
4.1	Test Channel	8
4.2	Part Setup	8
4.3	3 Test Procedure	10
5	Test Results	11
5.1	Summary	11
	5.1.1 Clause and Data Summary	11
	5.1.2 Test Limit	12
5.2	2 Antenna requirement	13
5.3	AC Power Line Conducted Emission	14
5.4	Emissions in Restricted Frequency Bands	16
5.5	Emissions in Non-restricted Fraguency Bands	20

3 General Information

3.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer:	Suncupid (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.
Factory:	Suncupid (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

3.2 General Description of E.U.T.

3.2 General Descrip	tion of E.G.T.
Product Name:	LTE Smart phone
Model No.:	S6514L, N13, NUU N13
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	1MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	-1.38dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.85V, 3850mAh
AC Adapter:	Model: CG10A0502000UU
	Input: AC100-240V, 50/60Hz, 0.5A
	Output: DC 5.0V, 2.0A 10.0W
Remark:	Model No.: S6514L, N13, NUU N13 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:		
Transmitting mode	Keep the EUT in continuous transmitting with modulation	
Remark:		

- 1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.
- 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

15℃ ~ 35℃
20 % ~ 75 % RH
1008 mbar
Nominal: 3.85Vdc, Extreme: Low 3.00Vdc, High 4.40Vdc
Logan Li (Conducted measurement) Real Chen (Radiated measurement)

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	3.57 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	3.14 dB
Radiated Emission (30MHz ~ 200MHz) (3m SAC)	4.6 dB
Radiated Emission (200MHz ~ 1000MHz) (3m SAC)	5.8 dB
Radiated Emission (1GHz ~ 6GHz) (3m FAR)	4.95 dB
Radiated Emission (6GHz ~ 18GHz) (3m FAR)	5.23 dB
Radiated Emission (18GHz ~ 40GHz) (3m FAR)	5.32 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Test Equipment Manufacturer		Model No. Manage No.		Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2026	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	01-05-2024	01-04-2025	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	01-09-2024	01-08-2025	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	01-05-2024	01-04-2025	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	12-28-2023	12-27-2024	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	12-27-2023	12-26-2024	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	12-27-2023	12-26-2024	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	12-28-2023	12-27-2024	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	12-27-2023	12-26-2024	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	12-27-2023	12-26-2024	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	09-25-2023	09-24-2024	
Spectrum Analyzei	KETSIGITI	1190100	VV //JUU4-2	09-09-2024	09-08-2025	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-17-2024	01-16-2025	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-17-2024	01-16-2025	
Coaxial Cable (18GHz ~ 40GHz)	Coaxial Cable		WXG001-7	01-17-2024	01-16-2025	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+	Version: 3.0.0.1			

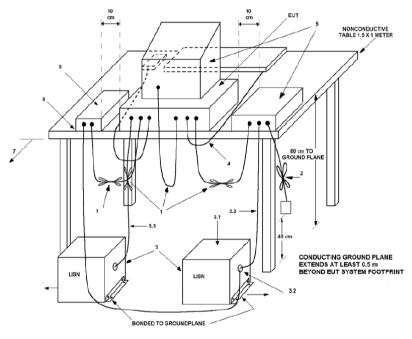
JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Radiated Emission(3m FAR):						
Test Equipment	Test Equipment Manufacturer		del No. Manage No.		Cal. Due date (mm-dd-yy)	
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	07-01-2024	06-30-2025	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-01-2024	06-30-2027	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	06-16-2024	06-15-2025	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	12-28-2023	12-27-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	12-28-2023	12-27-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	12-28-2023	12-27-2024	
Pre-amplifier (30MHz ~ 1GHz)	YUNYI	PAM-310N	WXJ097-5	04-24-2024	04-23-2025	
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	04-24-2024	04-23-2025	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	12-28-2023	12-27-2024	
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	12-27-2023	12-26-2024	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	12-27-2023	12-26-2024	
Spectrum Analyzer	KEYSIGHT	N9020B	WXJ081-1	06-11-2024	06-10-2025	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-13M	WXG097-1	07-30-2024	07-29-2025	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	07-30-2024	07-29-2025	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	07-30-2024	07-29-2025	
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	I/A	
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	N/A		
Test Software	Tonscend	TS+		Version: 5.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	06-11-2024	06-10-2025	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	12-27-2023	12-26-2024	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	12-27-2023	12-26-2024	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	01-17-2024	01-16-2025	
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A	
Test Software	AUDIX	E3	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	11-01-2023	10-31-2024	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025	
Davis Datasta Davi	MWRFTEST	MW100-PSB WXJ007	WXJ007-4	09-25-2023	09-24-2024	
Power Detector Box	IVIVVRFIESI	WXJ007-4		09-10-2024	09-09-2025	
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			

4 Measurement Setup and Procedure


4.1 Test Channel

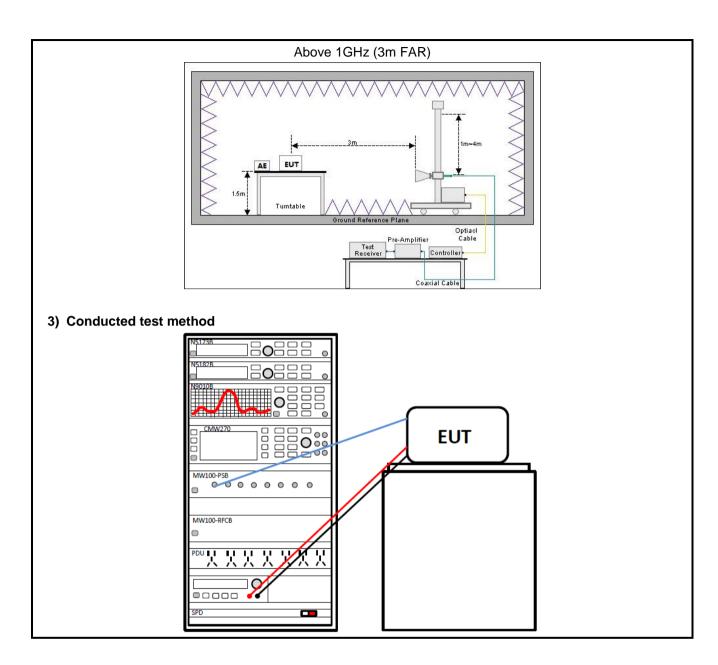
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
0	2402	20	2442	39	2480	

4.2 Test Setup

1) Conducted emission measurement:

Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.


2) Radiated emission measurement:

Below 1GHz (3m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.3 Test Procedure

4.3 Test Procedure	
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
Conducted test method	The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE 1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE 1M PHY	Pass
Power Spectral Density	15.247 (e) Appendix A – BLE 1M PHY		Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE 1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items	Limit						
		Frequency		Limit (d	BμV)		
		(MHz)	Quas	i-Peak	Average		
AC Power Line Conducted		0.15 – 0.5	66 to 5	56 Note 1	56 to 46 Note 1		
Emission		0.5 – 5	5	56	46		
Zimeelen		5 – 30		80	50		
		Note 1: The limit level in dBµV Note 2: The more stringent lim			m of frequency.		
Conducted Output Power		systems using digital m I 5725-5850 MHz bands		he 902-928 l	MHz, 2400-2483.5 MH	łz,	
6dB Emission Bandwidth	The	e minimum 6 dB bandwi	dth shall be a	t least 500 k	Hz.		
99% Occupied Bandwidth	N/A						
Power Spectral Density	inte	digitally modulated systemational radiator to the and during any time interv	ntenna shall r	not be greate	er than 8 dBm in any 3		
	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply					st 20	
Band-edge Emission Conduction Spurious Emission	rad the pov per this limi whi	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 ots specified in §15.209(a	power, based vided the translimits. If the truse of RMS at (b)(3) of this dB instead of a) is not requirends, as defi	d on either an amitter demoransmitter coveraging over section, the analysis of dB. Attendired. In additioned in §15.2	n RF conducted or a constrates compliance omplies with the conduct a time interval, as attenuation required unuation below the general on, radiated emission 05(a), must also comp	with octed nder eral s	
Conduction Spurious	rad the pov per this limi whi	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 of the specified in §15.209(a) of fall in the restricted be the radiated emission left.	power, based vided the translimits. If the truse of RMS at (b)(3) of this dB instead of a) is not required ands, as defilimits specifie	d on either an smitter dem ransmitter coveraging over section, the 20 dB. Attendred. In additioned in §15.20 d in §15.209	n RF conducted or a constrates compliance omplies with the conduct a time interval, as attenuation required unuation below the general on, radiated emission 05(a), must also comp	with octed nder eral s	
Conduction Spurious	rad the pov per this limi whi	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 of the specified in §15.209(a ch fall in the restricted ben the radiated emission left).	power, based vided the translation to the translati	d on either an ensmitter dem ransmitter coveraging over section, the acceptance of the control o	n RF conducted or a onstrates compliance omplies with the conduct a time interval, as attenuation required unuation below the general on, radiated emission (05(a), must also complex (a) (see §15.205(c)).	with octed nder eral s	
Conduction Spurious Emission	rad the pov per this limi whi	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 of the specified in §15.209(a ch fall in the restricted be the radiated emission I	power, based vided the translation to the translati	d on either an ensmitter dem ransmitter coveraging over section, the acceptance of the coveraging over section, the acceptance of the coveraging over section, the acceptance of the coveraging over the cover	n RF conducted or a onstrates compliance omplies with the conducter a time interval, as attenuation required unuation below the generon, radiated emission 05(a), must also complete (a) (see §15.205(c)). Detector Quasi-peak	with octed nder eral s	
Conduction Spurious Emission Emissions in Restricted	rad the pov per this limi whi	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 ots specified in §15.209(a ch fall in the restricted between the radiated emission I Frequency (MHz) 30 – 88 88 – 216	power, based vided the translation its. If the translation of RMS at (b)(3) of this dB instead of a) is not required ands, as defilimits specifie Limit (d) @ 3m 40.0 43.5	d on either an esmitter dem ransmitter coveraging over section, the section additioned in \$15.20 d in \$15.209 BµV/m) @ 10m 30.0 33.5	n RF conducted or a onstrates compliance omplies with the conduct a time interval, as attenuation required unuation below the generon, radiated emission 05(a), must also complete (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	with octed nder eral s	
Conduction Spurious Emission	rad the pov per this limi whi	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 cts specified in §15.209(ach fall in the restricted between the radiated emission length of the second state of the radiated emission length of the second s	power, based vided the translation limits. If the truse of RMS at (b)(3) of this dB instead of a) is not required ands, as defilimits specifie Limit (d) @ 3m 40.0 43.5 46.0	d on either an smitter dem ransmitter coveraging over section, the acceptance of the section of	n RF conducted or a constrates compliance omplies with the conducter a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also comple) (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak	with octed nder eral s	
Conduction Spurious Emission Emissions in Restricted	rad the pov per this limi whi with	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission length of the radiated emission lengt	power, based vided the translation in the translati	d on either an amitter dem ransmitter coveraging over section, the acceptance of the coveraging over section of the coveraging over section, the acceptance of the coveraging over section of the cov	n RF conducted or a onstrates compliance omplies with the conduct a time interval, as attenuation required unuation below the generon, radiated emission 05(a), must also complete (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	with octed nder eral s	
Conduction Spurious Emission Emissions in Restricted Frequency Bands Emissions in Non-restricted	rad the pov per this limi whi with	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 cts specified in §15.209(ach fall in the restricted between the radiated emission length of the second state of the radiated emission length of the second s	power, based vided the translation in the translati	d on either an amitter dem ransmitter dem ransmitter coveraging over section, the acceptance of the coveraging over section and the coveraging over section of the coveraging of the coveraging over section of the coveraging over section o	n RF conducted or a onstrates compliance omplies with the conduct a time interval, as attenuation required unuation below the generon, radiated emission (05(a), must also comple) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	with octed nder eral s	
Conduction Spurious Emission Emissions in Restricted Frequency Bands	rad the pov per this limi whi with	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission length of the radiated emission lengt	power, based vided the translation its. If the translation of RMS at (b)(3) of this dB instead of a) is not required ands, as defilimits specifie Limit (d) @ 3m 40.0 43.5 46.0 54.0 applies at transition	d on either an esmitter dem ransmitter coveraging over section, the section, the section in §15.2 d in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0 In frequencies. Limit (dBµV/m)	n RF conducted or a onstrates compliance omplies with the conducter a time interval, as attenuation required unuation below the generon, radiated emission 05(a), must also comple (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	with octed nder eral s	
Conduction Spurious Emission Emissions in Restricted Frequency Bands Emissions in Non-restricted	rad the pov per this limi whi with	nest level of the desired iated measurement, pro peak conducted power ver limits based on the umitted under paragraph paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission length of the radiated emission lengt	power, based vided the translation in the translati	d on either an smitter dem ransmitter coveraging over section, the section, the section and the section of the	n RF conducted or a onstrates compliance omplies with the conduct a time interval, as attenuation required unuation below the generon, radiated emission (05(a), must also comple) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	with octed nder eral s	

Report No.: JYTSZ-R12-2401170

5.2 Antenna requirement

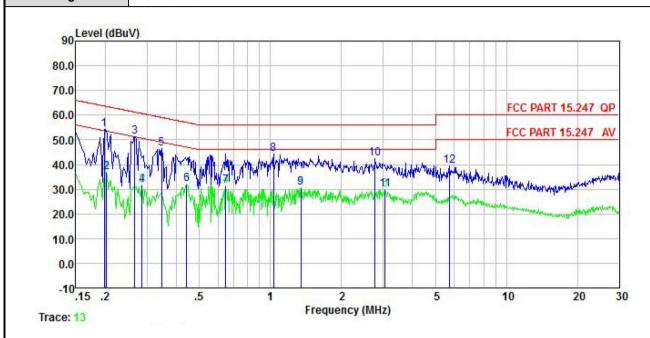
Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

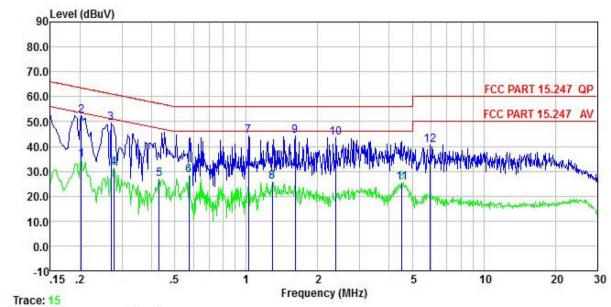
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.38 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

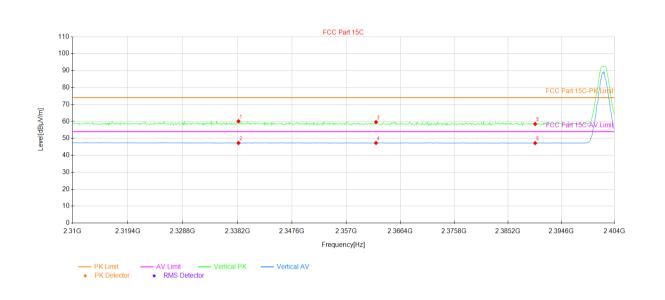
Product name:	LTE Smart phone	Product model:	S6514L
Test by:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level			Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
÷	MHz	dBu₹	<u>dB</u>	<u>dB</u>	<u>d</u> B		dBu∇	dBu∜	<u>dB</u>	
1	0.198	44.22	0.20	0.00	9.88	0.04	54.34	63.71	-9.37	QP
2	0.202	26.68	0.20	0.00	9.88	0.04	36.80	53.54	-16.74	Average
3	0.266	41.14	0.20	0.00	9.88	0.02	51.24	61.25	-10.01	QP
1 2 3 4 5 6 7 8	0.286	21.50	0.20	0.00	9.88	0.03	31.61	50.63	-19.02	Average
5	0.346	36.32	0.20	0.00	9.88	0.02	46.42	59.05	-12.63	QP
6	0.442	21.88	0.20	0.00	9.88	0.03	31.99	47.02	-15.03	Average
7	0.647	21.36	0.20	0.00	9.88	0.02	31.46	46.00	-14.54	Average
8	1.032	34.05	0.20	0.00	9.88	0.06	44.19	56.00	-11.81	QP
9	1.345	20.37	0.20	0.00	9.88	0.12	30.57	46.00	-15.43	Average
10	2.779	32.37	0.20	0.00	9.88	0.10	42.55		-13.45	
11	3.058	19.79	0.20	0.00	9.89	0.07	29.95	46.00	-16.05	Average
12	5.713	29.09	0.20	0.00	9.90	0.09	39.28		-20.72	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

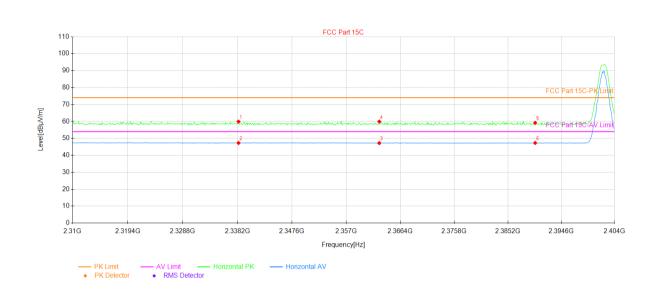
Product name:	LTE Smart phone	Product model:	S6514L						
Test by:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)						
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral						
Test voltage:	AC 120 V/60 Hz								


	Freq	Read Level		Aux Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>d</u> B	<u>dB</u>	<u>dB</u>	<u>ab</u>	dBu∇	dBu∜	<u>dB</u>	
1	0.202	24.53		0.00	9.88	0.04	34.65			Average
2	0.202	42.35	0.20	0.00	9.88	0.04	52.47	63.54	-11.07	QP
3	0.270	39.28	0.20	0.00	9.88	0.02	49.38	61.12	-11.74	QP
4	0.277	21.36	0.20	0.00	9.88	0.02	31.46	50.90	-19.44	Average
5	0.431	16.74	0.20	0.00	9.88	0.03	26.85			Average
6	0.573	18.09	0.20	0.00	9.88	0.02	28.19			Average
7	1.021	34.11	0.20		9.88	0.05	44.24		-11.76	
1 2 3 4 5 6 7 8 9	1.289	15.58		0.00	9.88	0.11	25.81			Äverage
9	1.610	33.84	0.27	0.00	9.88	0.16	44.15		-11.85	
10	2.384	33.19	0.30	0.00	9.88	0.15	43.52		-12.48	D-0.100.0
11	4.525	15.17	0.30		9.89	0.09	25.45			Average
12	5.961	30.37	0.30	0.00	9.90	0.09	40.66		-19.34	

1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

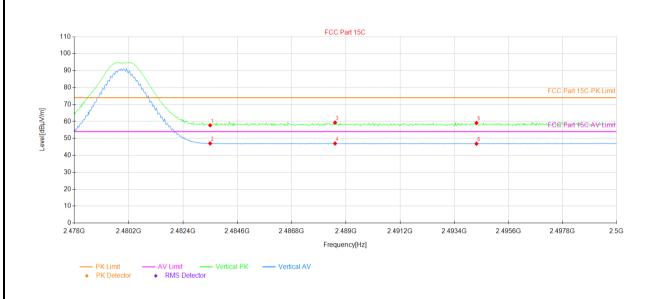
Product Name:	LTE Smart phone	Product Model:	S6514L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V		


Suspo	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2338.39	23.93	36.19	60.12	74.00	13.88	44	PK	PASS	Vertical
2	2338.39	11.07	36.19	47.26	54.00	6.74	208	AV	PASS	Vertical
3	2362.17	23.30	36.33	59.63	74.00	14.37	280	PK	PASS	Vertical
4	2362.17	10.97	36.33	47.30	54.00	6.70	6	AV	PASS	Vertical
5	2390.00	22.06	36.47	58.53	74.00	15.47	51	PK	PASS	Vertical
6	2390.00	10.74	36.47	47.21	54.00	6.79	130	AV	PASS	Vertical

Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

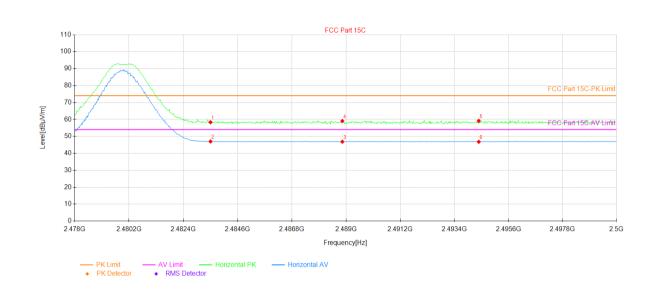
Product Name:	LTE Smart phone	Product Model:	S6514L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V		



Į	Suspected Data List										
	NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
Ī	1	2338.39	23.70	36.19	59.89	74.00	14.11	170	PK	PASS	Horizontal
	2	2338.39	11.11	36.19	47.30	54.00	6.70	132	AV	PASS	Horizontal
	3	2362.73	10.88	36.34	47.22	54.00	6.78	359	AV	PASS	Horizontal
	4	2362.73	23.59	36.34	59.93	74.00	14.07	181	PK	PASS	Horizontal
	5	2390.00	22.69	36.47	59.16	74.00	14.84	19	PK	PASS	Horizontal
	6	2390.00	10.84	36.47	47.31	54.00	6.69	267	AV	PASS	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	LTE Smart phone	Product Model:	S6514L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V		



Susp	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity		
1	2483.50	21.61	36.11	57.72	74.00	16.28	194	PK	PASS	Vertical		
2	2483.50	10.90	36.11	47.01	54.00	6.99	323	AV	PASS	Vertical		
3	2488.56	23.17	36.13	59.30	74.00	14.70	300	PK	PASS	Vertical		
4	2488.56	10.86	36.13	46.99	54.00	7.01	311	AV	PASS	Vertical		
5	2494.30	22.94	36.15	59.09	74.00	14.91	149	PK	PASS	Vertical		
6	2494.30	10.69	36.15	46.84	54.00	7.16	93	AV	PASS	Vertical		

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	LTE Smart phone	Product Model:	S6514L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V		

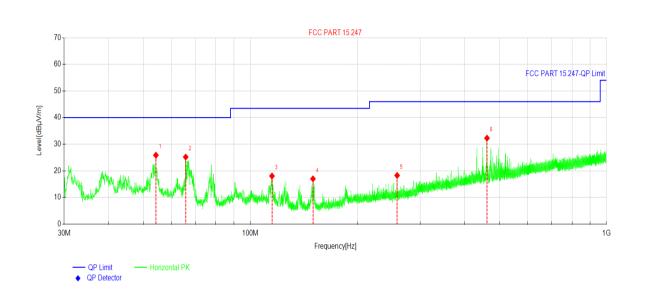
Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity	
1	2483.50	22.25	36.11	58.36	74.00	15.64	208	PK	PASS	Horizontal	
2	2483.50	10.91	36.11	47.02	54.00	6.98	167	AV	PASS	Horizontal	
3	2488.85	10.72	36.13	46.85	54.00	7.15	53	AV	PASS	Horizontal	
4	2488.85	22.94	36.13	59.07	74.00	14.93	356	PK	PASS	Horizontal	
5	2494.39	22.98	36.15	59.13	74.00	14.87	26	PK	PASS	Horizontal	
6	2494.39	10.67	36.15	46.82	54.00	7.18	300	AV	PASS	Horizontal	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	LTE Smart phone	Product Model:	S6514L
Test By:	Alan Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3.85V		


Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading[dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	53.3782	35.59	-12.89	22.70	40.00	17.30	PK	Vertical		
2	67.0559	40.10	-15.66	24.44	40.00	15.56	PK	Vertical		
3	137.7724	38.73	-18.20	20.53	43.50	22.97	PK	Vertical		
4	195.6843	34.22	-15.43	18.79	43.50	24.71	PK	Vertical		
5	284.5892	43.37	-13.32	30.05	46.00	15.95	PK	Vertical		
6	462.0111	40.72	-9.86	30.86	46.00	15.14	PK	Vertical		

Remark.

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	LTE Smart phone	Product Model:	S6514L
Test By:	Alan Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.85V		

Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading[dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	54.2997	38.96	-13.07	25.89	40.00	14.11	PK	Horizontal		
2	65.8433	40.37	-15.18	25.19	40.00	14.81	PK	Horizontal		
3	115.0248	33.65	-15.58	18.07	43.50	25.43	PK	Horizontal		
4	149.8980	35.24	-18.23	17.01	43.50	26.49	PK	Horizontal		
5	258.3009	32.13	-13.84	18.29	46.00	27.71	PK	Horizontal		
6	461.7686	42.16	-9.87	32.29	46.00	13.71	PK	Horizontal		

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

bove 1GHz:	bove 1GHz:								
		В	LE Tx (LE 1M PH	IY)					
		Test o	hannel: Lowest cl	hannel					
		D	etector: Peak Val	ue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4804.00	48.95	-8.00	40.95	74.00	33.05	Vertical			
4804.00	48.75	-8.00	40.75	74.00	33.25	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4804.00	39.64	-8.00	31.64	54.00	22.36	Vertical			
4804.00	39.73	-8.00	31.73	54.00	22.27	Horizontal			
Test channel: Middle channel									
		D	etector: Peak Val	ue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	48.82	-7.45	41.37	74.00	32.63	Vertical			
4884.00	48.60	-7.45	41.15	74.00	32.85	Horizontal			
		Det	tector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	39.72	-7.45	32.27	54.00	21.73	Vertical			
4884.00	39.62	-7.45	32.17	54.00	21.83	Horizontal			
Test channel: Highest channel									
		D	etector: Peak Val	ue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4960.00	48.78	-7.08	41.70	74.00	32.30	Vertical			
4960.00	48.74	-7.08	41.66	74.00	32.34	Horizontal			

Remark:

Frequency

(MHz)

4960.00

4960.00

1. Level = Reading + Factor.

Read Level

(dBµV)

39.84

39.55

2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

Detector: Average Value

Level

(dBµV/m)

32.76

32.47

Limit

(dBµV/m)

54.00

54.00

Margin

(dB)

21.24

21.53

-----End of report-----

Factor

(dB)

-7.08

-7.08

Project No.: JYTSZR2409037

Polarization

Vertical

Horizontal