

Report No.: EED32O81359004 Page 1 of 55

Product : Photo Printer
Trade mark : rock space
Model/Type reference : DHP511

Serial Number : N/A

Report Number : EED32O81359003

FCC ID : 2AUA9-RQZY014

Date of Issue : Oct. 19, 2022

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

Prepared for:

Shenzhen Renqing Excellent Technology Co., Ltd. 104, No.15, Longfu Industrial Zone, Huarong Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Mark Chen
Approved by:

Aaron Ma

Report Seal

Reviewed by:

Tom Chen

Date:

Oct. 19, 2022

Check No.: 5407310822

2 Content

1 COVER PAGE	•••••	•••••	
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION	MER		
6 EQUIPMENT LIST			
RADIO TECHNICAL REQUIREMENTS SPECIFICAT	TION		12
6.1 ANTENNA REQUIREMENT	BANDWIDTH		
7 APPENDIX A			52
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DET	AILS		5:

Version

Version No.	Date	Description			
00 Oct. 19, 2022		00 Oct. 19, 2022 Origina		Original	_0
	(4)				

Report No. : EED32O81359004 Page 4 of 55

4 Test Summary

	1 200 2	1 - 40 - 41
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 233		/ // 363

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Renqing Excellent Technology Co., Ltd.
Address of Applicant:	104, No.15, Longfu Industrial Zone, Huarong Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen, China
Manufacturer:	Shenzhen Renqing Excellent Technology Co., Ltd.
Address of Manufacturer:	104, No.15, Longfu Industrial Zone, Huarong Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	Dongguan Kaifa Technology Co., Ltd
Address of Factory:	Kaifa Park of CEC Industry Base, No.2 Junma road, Chigang Community, Humen town, Dongguan City, Guangdong Province, China

5.2 General Description of EUT

Product Name:	Photo Printe	r	
Model No.(EUT):	DHP511		
Trade mark:	rock space		
Product Type:	☐ Mobile	☐ Portable ☐ Fix Location	
Type of Modulation:	IEEE 802.11	2.11n(HT20/HT40): OFDM (64QAM, 16Q la: OFDM (BPSK, QPSK, 16QAM, 64QA lac(HT20/HT40/HT80): OFDM (BPSK, Q	M)
Operating Frequency	U-NII-1: 518 U-NII-3: 574		
Operating Temperature:`	0℃ to +35℃		
Antenna Type:	PCB Antenn	a	
Antenna Gain:	0.34 dBi	(EL) (EL)	(6,7.)
Function	⊠ SISO □	2x2 MIMO ☐ Beamforming ☐ TPC	
Power Supply:	Adapter	Model:DSA-38PFE-24FUS 240160 Input:100-240V~50/60Hz 1.0A Output:24V1.6A 38.4W	
Test voltage:	AC 120V		
Sample Received Date:	Aug. 31, 202	22	
Sample tested Date:	Aug. 31, 202	22 to Sep. 15, 2022	_0_

Page 6 of 55

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	149	5745
40	5200	153	5765
44	5220	157	5785
48	5240	161	5805
- (6	-	165	5825

802.11n/802.11ac (40MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 7 of 55 Report No.: EED32O81359004

5.3 Test Configuration

EUT Test Software Setting	ngs:			
Software:	dbgmon	~°>	C'S	100
EUT Power Grade:	Default	(T)	(253)	(3)
Use test software to set the transmitting of the EUT.	e lowest frequency, the	middle frequen	cy and the highest frequency keep	
Test Mode:				
			n. All the test modes were carried ou eport and defined as follows:	it with
Per-scan all kind of data	rate in lowest channe	el, and found th	e follow list which it	
was worst case				

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0

5.4 Test Environment

Operating Environment:				
Radiated Spurious Emission	s:			
Temperature:	22~25.0 °C			
Humidity:	50~56 % RH		6.	(0.)
Atmospheric Pressure:	1010mbar			
Conducted Emissions:				
Temperature:	22~26.0 °C	(3)		
Humidity:	50~56 % RH	(6,)	(6,7)	
Atmospheric Pressure:	1010mbar			
RF Conducted:				
Humidity:	50~55 % RH		('>	· · ·
Atmospheric Pressure:	1010mbar		(25)	(27)
	NT (Normal Temperature)		22~25.0 °C	
Temperature:	LT (Low Temperature)		0 °C	
	HT (High Temperature)	-05	35.0 °C	
	NV (Normal Voltage)		AC 120V/60Hz	
Working Voltage of the EUT:	LV (Low Voltage)	AC 100V/60Hz		
	HV (High Voltage)		AC 240V/50Hz	

Report No. : EED32O81359004 Page 8 of 55

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ
	(6.7)	(6.)		(6)

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nouver conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
	Dadiated Couries amigaian test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No.: EED32O81359004 Page 9 of 55

6 Equipment List

		RF test	system			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022	
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022	
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022	
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022	
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518			

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023		
Temperature/ Humidity Indicator	Defu	TH128	1	(37)	6		
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188				

Page 10 of 55 Report No.: EED32O81359004

	3M Semi-an	echoic Chamber (2)	- Radiated distu	ırbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05-22-2022	05-21-2025
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05-22-2022	05-21-2023
Multi device Controller	maturo	NCD/070/10711112	()	- (2	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06-20-2022	06-19-2023

Report No.: EED32O81359004 Page 11 of 55

(4)		(42)	(40)	1.6	77
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3	(6)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(ii)	-(3)
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	(3	·)
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(ii)	-(3)
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Page 12 of 55

Radio Technical Requirements Specification

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203
-----------------------	--------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna 1 is 0.34dBi.

Report No. : EED32O81359004 Page 13 of 55

6.2 AC Power Line Conducted Emissions

Test Reg	uirement:	47 CFR Part 15C Section 15.2	207		
Test Met		ANSI C63.10: 2013			
Test Fred		150kHz to 30MHz			
Receiver		RBW=9 kHz, VBW=30 kHz, S	weep time=auto		S Year
Limit:	•		Limit (d	lBuV)	183
		Frequency range (MHz)	Quasi-peak	Average	>)
		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	
		5-30	60	50	
		* Decreases with the logarithm	n of the frequency.	1	ı
Test Setu	ıp:	Shielding Room EUT AC Mains LISN1	AE LISNZ AC Mai	Test Receiver	
		room. 2) The EUT was connected Impedance Stabilization Not impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the reason of the tabletop EUT was planground reference plane. An placed on the horizontal graph of the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and born mounted on top of the ground resolution of the Land associated equipment of the interface calculated.	etwork) which provides cables of all other SN 2, which was bonders the LISN 1 for the was used to connect reating of the LISN was not upon a non-metal and for floor-standing around reference plane. The avertical ground reference plane was bonded to a ground refund reference plane. The LISN 1 and the EUT. A was at least 0.8 m from the relativation of the standard of the control of the provides must be changed as the standard of	is a 50 \(\tilde{O} / 50 \tilde{\tilde{H}} + 5 \tilde{O} \) liquits of the EUT of the EUT of the the ground reference of the exceeded. The event of the horizontal ground	inear were ence ed. A s to a e the was ear of The ound of the ISNs ween EUT
Test Mod		ANSI C63.10: 2013 on con All modes were tested, only th	ne worst case lowest ch	nannel of 6Mbps for	
		802.11a was recorded in the r		•	
		OOZ:11 TO TIGO TOOOTGOO III GTO T	ороги.		

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	42.05	9.87	51.92	66.00	-14.08	QP	
2		0.1500	16.74	9.87	26.61	56.00	-29.39	AVG	
3		0.2310	30.84	9.93	40.77	62.41	-21.64	QP	
4		0.2355	7.03	9.94	16.97	52.25	-35.28	AVG	
5		0.3570	23.24	10.01	33.25	58.80	-25.55	QP	
6		0.4065	12.10	9.97	22.07	47.72	-25.65	AVG	
7		1.0679	10.76	9.83	20.59	56.00	-35.41	QP	
8		1.0949	0.19	9.83	10.02	46.00	-35.98	AVG	
9		5.4240	12.29	9.78	22.07	60.00	-37.93	QP	
10		6.0225	0.75	9.78	10.53	50.00	-39.47	AVG	
11		10.8600	18.59	9.81	28.40	60.00	-31.60	QP	
12		11.0040	8.46	9.81	18.27	50.00	-31.73	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

22.95 QP 5 0.4020 9.97 32.92 57.81 -24.89 6 0.4020 11.65 21.62 47.81 -26.19 AVG 9.97 7 1.0680 11.53 9.83 21.36 56.00 -34.64 QP 8 1.0680 0.75 9.83 10.58 46.00 -35.42 **AVG** 9 5.5500 11.64 9.78 21.42 60.00 -38.58 QP 10 6.9900 0.74 9.79 10.53 50.00 -39.47 AVG QP 11 10.9005 17.86 9.81 27.67 60.00 -32.33 12 11.0760 7.21 9.81 17.02 50.00 -32.98**AVG**

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 55 Report No.: EED32O81359004

6.3 Maximum Conducted Output Power

	100				
Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)			
Test Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Rules	s v02r01 Section	
Test Setup:	(3)	(B)		CIN	
	Costrol Computer Power Supply Table	Attenuator	RF test - System Instrument		
Test Procedure:	(6)		nent Procedure of KDB78	(C,)	
	 The RF output of attenuator. The pat measurement. Set to the maxim continuously. 	f EUT was conne th loss was comp num power settinç	Rules v02r01 Section E, cted to the power meter rensated to the results for g and enable the EUT transver and record the resu	by RF cable and r each ansmit	
Limit:					
	Frequency band (MHz)	Limit	(6.)	6	
	5150-5250	≤1W(30dBm) fc	or master device		
	(*)	≤250mW(24dBı	m) for client device		
	5250-5350	≤250mW(24dBi	m) for client device or 11	dBm+10logB*	
	5470-5725	≤250mW(24dBi	m) for client device or 11	dBm+10logB*	
	5725-5850	≤1W(30dBm)	≤1W(30dBm)		
	Remark:	The maximum of measured over	e 26dB emission bandwi conducted output power any interval of continuou ntation calibrated in term	must be us transmission	
		_ '	190.		
Test Mode:	Transmitting mode	<u> </u>	.90.		

Report No. : EED32O81359004 Page 17 of 55

6.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Control Conflow Power Pools Power Pool Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI

6.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D					
Test Setup:						
	Control Computer Power Power Attenuator Instrument Table RF test System Attenuator Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.					
Limit:	No restriction limits					
Test Mode:	Transmitting mode with modulation					
Test Results:	Refer to Appendix 5G WIFI					

6.6 Maximum Power Spectral Density

			/					
Test Requirement:	47 CFR Part 15C S	47 CFR Part 15C Section 15.407 (a)						
Test Method:	KDB789033 D02 G	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F						
Test Setup:			/°>					
	Control Computer Power Supply Table	Attenuator	RF test - System Instrument					
Test Procedure:	Remark: Offset=Ca			view the entire emission				
rest Procedure.	 Set the spectrum analyzer or EMI receiver span to view the entire end bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude 							
Limit:		(2))					
	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1MHz for master device						
		≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1Mh	Hz for client device					
	5470-5725	≤11dBm in 1MF	Hz for client device					
	5725-5850	≤30dBm in 500kHz						
	Remark: The maximum power spectral density is measured a conducted emission by direct connection of a calibrated test instrument to the equipment under			onnection of a				
T 4 N4 . 1	Transmitting mode with modulation							
Test Mode:	Refer to Appendix 5G WIFI							

6.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Congruler Power Supply Table RF test System Attenuator Instrument Table
	B
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI

Report No. : EED32O81359004 Page 21 of 55

6.8 Radiated Emission

o.o itaulateu Liilis	10.0	(6,7)		10.	
Test Requirement:	47 CFR Part 15C Section	on 15.209 and P	art 15E Se	ection 15.407	(b)
Test Method:	ANSI C63.10 2013				
Test Site:	Measurement Distance:	3m (Semi-Aned	choic Char	mber)	
Receiver Setup:	Frequency	Detector	RBV	N VBW	Remark
	0.009MHz-0.090MHz		10kH		Peak
	0.009MHz-0.090MHz		10kF		Average
	0.090MHz-0.110MHz				Quasi-peak
	0.110MHz-0.490MHz		10kH		Peak
	0.110MHz-0.490MHz		10kF		Average
	0.490MHz -30MHz	Quasi-pea			Quasi-peak
	30MHz-1GHz	Quasi-pea			Quasi-peak
	1011	Peak	1M⊦		Peak
	Above 1GHz	Peak	1MH		Average
Limit:			•		
		Field strength microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-(0)) <u>-</u>	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	*(1) For transmitters of outside of the 5.15-5. dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz bat (3) For transmitters ope outside of the 5.47-5. dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the bar above or below the bar above or below the bar edge increasing linearly the band edge, and from linearly to a level of 27 control Remark: The emission measurements employ frequency bands 9-90 emission limits in these an average detector, the maximum permitted.	as GHz band rating in the 5.25 and shall not except as a shall not	shall not shall not seed an e.i 5.47-5.72 shall no 25-5.85 Givel of -27 ding linearly om 25 Millon band edg in the quasi-pearly and a re based ength of all	t exceed an Iz band: All em i.r.p. of -27 dE i.r.p. of -2	e.i.r.p. of -2' nissions outside Bm/MHz. : All emissions e.i.r.p. of -2' '5 MHz or more MHz at 25 MHz below the band above or below edge increasing are based or except for the MHz. Radiated ents employing hall not exceed
	under any condition of n Note: (i) EIRP = ((E*d)^2) / 30				

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5
	meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement
	distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	 b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case
	and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest
Toot Mada	channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Transmitting mode with modulation
Test Mode:	· ·
Test Results:	Pass

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lower channel of 6Mbps antenna 1 of 802.11a was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		66.2661	9.46	11.37	20.83	40.00	-19.17	peak	200	4	
2		115.7256	10.06	11.84	21.90	43.50	-21.60	peak	100	286	
3		223.7333	9.03	14.60	23.63	46.00	-22.37	peak	200	4	
4		397.6334	13.70	19.34	33.04	46.00	-12.96	peak	100	3	
5	*	444.8514	18.96	20.36	39.32	46.00	-6.68	peak	100	18	
6		744.8660	8.49	25.48	33.97	46.00	-12.03	peak	100	232	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	51.4807	19.11	14.16	33.27	40.00	-6.73	peak	100	4	
2		96.7749	14.99	13.60	28.59	43.50	-14.91	peak	100	299	
3		137.9028	18.22	9.23	27.45	43.50	-16.05	peak	100	278	
4		210.0482	11.04	14.13	25.17	43.50	-18.33	peak	100	139	
5		444.8514	16.16	20.36	36.52	46.00	-9.48	peak	100	53	
6		793.3960	8.50	26.27	34.77	46.00	-11.23	peak	100	4	

Report No.: EED32O81359004 Page 26 of 55

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

Mode	:	8	302.11 a Tran	smitting		Chann	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1434.5435	1.49	40.11	41.60	68.20	26.60	PASS	Horizontal	PK
2	2453.7954	4.81	39.73	44.54	68.20	23.66	PASS	Horizontal	PK
3	3933.9934	9.08	36.87	45.95	68.20	22.25	PASS	Horizontal	PK
4	8282.0141	-10.99	54.21	43.22	68.20	24.98	PASS	Horizontal	PK
5	11790.2645	-6.16	53.93	47.77	68.20	20.43	PASS	Horizontal	PK
6	15000.6500	-0.95	50.82	49.87	68.20	18.33	PASS	Horizontal	PK
7	1194.7195	0.81	41.30	42.11	68.20	26.09	PASS	Vertical	PK
8	2100.6601	5.04	38.57	43.61	68.20	24.59	PASS	Vertical	PK
9	3952.6953	9.18	37.30	46.48	68.20	21.72	PASS	Vertical	PK
10	9104.8802	-8.61	53.72	45.11	68.20	23.09	PASS	Vertical	PK
11	11786.8143	-6.14	53.68	47.54	68.20	20.66	PASS	Vertical	PK
12	14356.6178	0.17	49.11	49.28	68.20	18.92	PASS	Vertical	PK

1	Mode	:		802.11 a Tran	smitting		Channe	el:	5200MHz	
2	NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1356.9857	1.32	40.72	42.04	68.20	26.16	PASS	Horizontal	PK
	2	2411.9912	4.47	39.29	43.76	68.20	24.44	PASS	Horizontal	PK
	3	3290.4290	7.35	38.18	45.53	68.20	22.67	PASS	Horizontal	PK
	4	9191.1346	-7.80	52.63	44.83	68.20	23.37	PASS	Horizontal	PK
	5	11816.1408	-6.08	53.59	47.51	68.20	20.69	PASS	Horizontal	PK
	6	14354.3177	0.15	50.13	50.28	68.20	17.92	PASS	Horizontal	PK
e e	7	1523.1023	1.78	39.65	41.43	68.20	26.77	PASS	Vertical	PK
	8	2472.4973	4.96	39.60	44.56	68.20	23.64	PASS	Vertical	PK
	9	3523.1023	7.48	38.12	45.60	68.20	22.60	PASS	Vertical	PK
	10	9168.7084	-8.01	53.86	45.85	68.20	22.35	PASS	Vertical	PK
	11	11898.9449	-5.45	54.14	48.69	68.20	19.51	PASS	Vertical	PK
	12	15898.8449	0.11	51.10	51.21	68.20	16.99	PASS	Vertical	PK

Page 27 of 55

п		1 233		1 20 30.3		1. 11		140	201	
	Mode	:	8	302.11 a Tran	smitting		Chann	el:	5240MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1399.3399	1.44	41.68	43.12	68.20	25.08	PASS	Horizontal	PK
	2	2173.2673	4.23	39.41	43.64	68.20	24.56	PASS	Horizontal	PK
	3	3050.6051	6.68	38.92	45.60	68.20	22.60	PASS	Horizontal	PK
	4	9126.7313	-8.41	53.61	45.20	68.20	23.00	PASS	Horizontal	PK
	5	12441.7721	-4.12	52.77	48.65	68.20	19.55	PASS	Horizontal	PK
	6	16591.7546	1.27	51.30	52.57	68.20	15.63	PASS	Horizontal	PK
	7	1619.9120	2.56	39.20	41.76	68.20	26.44	PASS	Vertical	PK
	8	2338.8339	4.17	39.35	43.52	68.20	24.68	PASS	Vertical	PK
	9	3316.2816	7.42	38.21	45.63	68.20	22.57	PASS	Vertical	PK
۰	10	7551.7276	-10.89	54.52	43.63	68.20	24.57	PASS	Vertical	PK
4	11	9736.2618	-7.42	53.01	45.59	68.20	22.61	PASS	Vertical	PK
٥	12	13661.9831	-1.70	50.71	49.01	68.20	19.19	PASS	Vertical	PK

ı	Mode	:	80)2.11 a Tran	smitting		Channe	el:	5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1272.8273	1.49	40.50	41.99	68.20	26.21	PASS	Horizontal	PK
	2	2121.5622	5.36	40.30	45.66	68.20	22.54	PASS	Horizontal	PK
۰	3	3050.6051	7.39	39.63	47.02	68.20	21.18	PASS	Horizontal	PK
4	4	7884.6923	-11.26	54.63	43.37	68.20	24.83	PASS	Horizontal	PK
2	5	10289.8860	-6.33	53.38	47.05	68.20	21.15	PASS	Horizontal	PK
	6	14325.8884	-0.16	50.66	50.50	68.20	17.70	PASS	Horizontal	PK
	7	1374.5875	1.77	40.90	42.67	68.20	25.53	PASS	Vertical	PK
	8	2106.1606	5.55	39.31	44.86	68.20	23.34	PASS	Vertical	PK
	9	3341.0341	8.25	37.92	46.17	68.20	22.03	PASS	Vertical	PK
	10	8337.8225	-10.88	53.72	42.84	68.20	25.36	PASS	Vertical	PK
Ī	11	11181.5788	-5.85	52.41	46.56	68.20	21.64	PASS	Vertical	PK
	12	12459.6973	-4.17	52.22	48.05	68.20	20.15	PASS	Vertical	PK

Page 28 of 55

		1 2 3		1 17		1 1				
	Mode	:		802.11 a Tra	nsmitting	Channel:			5785MHz	
	NO	Freq. [MHz]	Factor [dB]	D	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
, O	1	1633.1133	2.99	39.64	42.63	68.20	25.57	PASS	Horizontal	PK
S	2	2678.2178	6.03	39.67	45.70	68.20	22.50	PASS	Horizontal	PK
	3	3907.0407	9.75	36.98	46.73	68.20	21.47	PASS	Horizontal	PK
	4	9116.8078	-8.50	53.48	44.98	68.20	23.22	PASS	Horizontal	PK
	5	11853.2235	-5.80	53.55	47.75	68.20	20.45	PASS	Horizontal	PK
	6	14351.1901	0.11	49.83	49.94	68.20	18.26	PASS	Horizontal	PK
	7	1430.6931	1.85	40.50	42.35	68.20	25.85	PASS	Vertical	PK
	8	2675.4675	6.02	39.97	45.99	68.20	22.21	PASS	Vertical	PK
	9	3305.2805	8.31	38.86	47.17	68.20	21.03	PASS	Vertical	PK
-0	10	7850.1900	-11.29	54.94	43.65	68.20	24.55	PASS	Vertical	PK
A	11	11974.3650	-4.99	52.24	47.25	68.20	20.95	PASS	Vertical	PK
9	12	14301.3534	-0.43	50.35	49.92	68.20	18.28	PASS	Vertical	PK

	Mode	:	80)2.11 a Tran	smitting		Channe	el:	5825MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1393.8394	1.81	40.40	42.21	68.20	25.99	PASS	Horizontal	PK
	2	2067.1067	5.45	39.51	44.96	68.20	23.24	PASS	Horizontal	PK
۰	3	3482.3982	8.33	38.52	46.85	68.20	21.35	PASS	Horizontal	PK
4	4	8319.4213	-10.95	54.30	43.35	68.20	24.85	PASS	Horizontal	PK
2	5	11272.0515	-6.33	53.87	47.54	68.20	20.66	PASS	Horizontal	PK
	6	15958.9973	-0.08	50.88	50.80	68.20	17.40	PASS	Horizontal	PK
	7	1419.1419	1.84	40.17	42.01	68.20	26.19	PASS	Vertical	PK
	8	2399.8900	4.86	40.00	44.86	68.20	23.34	PASS	Vertical	PK
	9	3376.2376	8.19	37.62	45.81	68.20	22.39	PASS	Vertical	PK
	10	8978.0319	-8.59	52.22	43.63	68.20	24.57	PASS	Vertical	PK
Ī	11	11821.7881	-6.03	52.82	46.79	68.20	21.41	PASS	Vertical	PK
	12	15943.6629	-0.03	50.94	50.91	68.20	17.29	PASS	Vertical	PK

Report No.: EED32O81359004 Page 29 of 55

		100		16.4	/	10.0	- /	A1	CAT /	
	Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
- 0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1432.3432	1.49	39.81	41.30	68.20	26.90	PASS	Horizontal	PK
	2	1975.2475	4.51	39.59	44.10	68.20	24.10	PASS	Horizontal	PK
Ī	3	2913.6414	6.33	38.73	45.06	68.20	23.14	PASS	Horizontal	PK
Ī	4	7586.8043	-10.63	54.04	43.41	68.20	24.79	PASS	Horizontal	PK
Ī	5	9659.7830	-7.47	53.80	46.33	68.20	21.87	PASS	Horizontal	PK
	6	12462.4731	-4.17	53.53	49.36	68.20	18.84	PASS	Horizontal	PK
	7	1476.8977	1.55	40.17	41.72	68.20	26.48	PASS	Vertical	PK
Ī	8	2423.5424	4.56	39.54	44.10	68.20	24.10	PASS	Vertical	PK
i e	9	3295.3795	7.37	38.42	45.79	68.20	22.41	PASS	Vertical	PK
A	10	9137.0819	-8.31	53.76	45.45	68.20	22.75	PASS	Vertical	PK
3	11	12423.9462	-4.07	52.46	48.39	68.20	19.81	PASS	Vertical	PK
	12	15905.1703	0.11	51.07	51.18	68.20	17.02	PASS	Vertical	PK

Mode	:	80	02.11 n(HT4	0) Transmitti	ng	Channe	əl:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1625.9626	2.60	39.38	41.98	68.20	26.22	PASS	Horizontal	PK
2	2531.9032	5.17	39.21	44.38	68.20	23.82	PASS	Horizontal	PK
3	3254.1254	7.20	38.79	45.99	68.20	22.21	PASS	Horizontal	PK
4	8495.3498	-10.59	53.32	42.73	68.20	25.47	PASS	Horizontal	PK
5	11218.1109	-5.87	52.52	46.65	68.20	21.55	PASS	Horizontal	PK
6	13095.0048	-3.13	52.42	49.29	68.20	18.91	PASS	Horizontal	PK
7	1488.4488	1.56	41.26	42.82	68.20	25.38	PASS	Vertical	PK
8	2334.9835	4.16	39.49	43.65	68.20	24.55	PASS	Vertical	PK
9	3254.1254	7.20	39.36	46.56	68.20	21.64	PASS	Vertical	PK
10	9235.4118	-7.67	52.46	44.79	68.20	23.41	PASS	Vertical	PK
11	12274.4387	-5.38	53.72	48.34	68.20	19.86	PASS	Vertical	PK
12	15901.7201	0.12	50.97	51.09	68.20	17.11	PASS	Vertical	PK

Report No. : EED32O81359004 Page 30 of 55

					1 1				
Mod	de:	80	2.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1431.7932	1.85	40.62	42.47	68.20	25.73	PASS	Horizontal	PK
2	2478.5479	5.32	39.25	44.57	68.20	23.63	PASS	Horizontal	PK
3	3836.6337	9.49	38.57	48.06	68.20	20.14	PASS	Horizontal	PK
4	8850.7567	-9.19	52.64	43.45	68.20	24.75	PASS	Horizontal	PK
5	13145.9097	-3.05	51.54	48.49	68.20	19.71	PASS	Horizontal	PK
6	16611.4741	1.38	51.18	52.56	68.20	15.64	PASS	Horizontal	PK
7	1378.9879	1.78	40.27	42.05	68.20	26.15	PASS	Vertical	PK
8	2389.9890	4.83	39.92	44.75	68.20	23.45	PASS	Vertical	PK
9	3052.8053	7.40	38.97	46.37	68.20	21.83	PASS	Vertical	PK
10	8860.7240	-9.21	51.95	42.74	68.20	25.46	PASS	Vertical	PK
11	11209.9473	-5.80	52.77	46.97	68.20	21.23	PASS	Vertical	PK
12	15505.8671	0.47	50.12	50.59	68.20	17.61	PASS	Vertical	PK

Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1448.8449	1.87	40.35	42.22	68.20	25.98	PASS	Horizontal	PK
2	2420.2420	4.98	39.90	44.88	68.20	23.32	PASS	Horizontal	PK
3	3863.0363	9.58	37.51	47.09	68.20	21.11	PASS	Horizontal	PK
4	9661.1774	-7.48	52.97	45.49	68.20	22.71	PASS	Horizontal	PK
5	12452.7969	-4.15	52.64	48.49	68.20	19.71	PASS	Horizontal	PK
6	16281.0187	0.91	50.44	51.35	68.20	16.85	PASS	Horizontal	PK
7	1647.9648	3.13	39.14	42.27	68.20	25.93	PASS	Vertical	PK
8	2396.5897	4.85	41.57	46.42	68.20	21.78	PASS	Vertical	PK
9	3881.7382	9.64	36.81	46.45	68.20	21.75	PASS	Vertical	PK
10	9234.8823	-7.67	52.59	44.92	68.20	23.28	PASS	Vertical	PK
11	11146.3098	-6.10	53.26	47.16	68.20	21.04	PASS	Vertical	PK
12	13742.4162	-2.03	51.11	49.08	68.20	19.12	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

6.9 Radiated Emission which fall in the restricted bands

Test Requirement:	47 CFR Part 15C Section	n 15.209 and P	art 15E Se	ection 15.407	(b)
Test Method:	ANSI C63.10 2013				
Test Site:	Measurement Distance:	3m (Semi-Aned	choic Chan	nber)	
Receiver Setup:	Frequency	Detector	RBV	V VBW	Remark
	0.009MHz-0.090MHz	Peak	10kH	lz 30kHz	Peak
	0.009MHz-0.090MHz	Average	10kH	lz 30kHz	Average
	0.090MHz-0.110MHz	Quasi-pea		lz 30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kH	lz 30kHz	Peak
	0.110MHz-0.490MHz	Average	10kH	lz 30kHz	Average
	0.490MHz -30MHz	Quasi-pea	k 10kH	lz 30kHz	Quasi-peak
	30MHz-1GHz	Quasi-pea	k 100 kl	Hz 300kHz	Quasi-peak
	Above 1GHz	Peak	1MH	z 3MHz	Peak
	Above 19112	Peak	1MH	z 10kHz	Average
Limit:					
		Frequency Field strength (microvolt/meter) (dBuV/m) Remark			
	0.009MHz-0.490MHz	2400/F(kHz)	-160	/ -	300
		24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	outside of the 5.15-5.3 dBm/MHz. (2) For transmitters operated of the 5.15-5.35 GHz bare (3) For transmitters operated of the 5.47-5.7 dBm/MHz. (4) For transmitters operated of the 5.47-5.7 dBm/MHz. (i) All emissions shall be above or below the bane above or below the bane above or below the bane edge increasing linearly the band edge, and from linearly to a level of 27 dl Remark: The emission measurements employing frequency bands 9-90k emission limits in these an average detector, the	ating in the 5.29 and shall not except at the 25 GHz band ating in the 5.72 limited to a level of 15 m 5 MHz above Bm/MHz at the limits showning a CISPR three bands are peak field street and shall be peak field street	5-5.35 GH: beed an e.i 5.47-5.725 shall not 25-5.85 GH: rel of -27 cing linearly rom 25 MH: 6.6 dBm/M re or below band edge in the a quasi-pea Hz and a re based cength of ar	z band: All em .r.p. of -27 dE 5 GHz band: t exceed an Hz band: dBm/MHz at 7 y to 10 dBm/M Hz above or b Hz at 5 MHz a w the band e e. above table ak detector e bove 1000 f on measurem ny emission s	nissions outsions outsions and mission soutsions. All emission e.i.r.p. of -2 5 MHz or mount and MHz at 25 MHz at 25 MHz at 25 MHz are based of the control of the control of the control of the control outside the control out
	the maximum permitted under any condition of m		Specifica	above by ille	ore triair 20 t

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:	j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that
	which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from
	 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the
	worst case. r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

Page 34 of 55

Mode:	802.11 a Transmitting	Channel:	5180
Remark:		·	

	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	5150.0000	-15.08	50.82	35.74	68.44	32.70	PASS	Horizontal	PK
6	2	5150.0000	-15.08	40.93	25.85	54.00	28.15	PASS	Horizontal	AV

Page	$\sim r$		r
Pane	イコ	OΤ	つつ
ı aac	\sim	\sim 1	\sim

Mode:	802.11 a Transmitting	Channel:	5180
Remark:		-0-	

	Suspe	cted List								
0.1	ОИ	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	-15.08	51.28	36.20	68.44	32.24	PASS	Vertical	PK
	2	5150.0000	-15.08	40.53	25.45	54.00	28.55	PASS	Vertical	AV

Page 36 of 55

Mode:	802.11 a Transmitting	Channel:	5745
Remark:		-0-	

Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5743.8844	13.84	62.05	75.89	122.20	46.31	PASS	Horizontal	PK		

Page 37 of 55

Mode:	802.11 a Transmitting	Channel:	5745
Remark:		_0_	

Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5746.8859	13.85	63.09	76.94	122.20	45.26	PASS	Vertical	PK		

Page 38 of 55

Mode:	802.11 a Transmitting	Channel:	5785
Remark:		-0-	

	Suspected List										
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
6	1	5784.2171	13.91	62.29	76.20	122.20	46.00	PASS	Horizontal	PK	

Page 39 of 55

Mode:	802.11 a Transmitting	Channel:	5785
Remark:		-0-	

Suspe	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5783.8419	13.91	62.87	76.78	122.20	45.42	PASS	Vertical	PK	

Page 40 of 55

Mode:	802.11 a Transmitting	Channel:	5825
Remark:		-0-	

	Suspected List										
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
6	1	5824.1746	14.03	60.91	74.94	122.20	47.26	PASS	Horizontal	PK	

Page 41 of 55

Mode:	802.11 a Transmitting	Channel:	5825
Remark:		-0-	

Susp	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5824.5498	14.03	61.62	75.65	122.20	46.55	PASS	Vertical	PK		

_		_			_	
`	55	ot.	42	91	Pag	
	v	OI.	42	ᄺ	гач	

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:		-0-	

	Suspec	Suspected List										
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
ò	1	5150.0000	12.36	32.16	44.52	68.20	23.68	PASS	Horizontal	PK		
	2	5150.0000	12.36	21.26	33.62	54.00	20.38	PASS	Horizontal	AV		

Page 43 of 55

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:		-0-	

	Suspec	Suspected List										
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5150.0000	12.36	31.28	43.64	68.20	24.56	PASS	Vertical	PK		
	2	5150.0000	12.36	20.82	33.18	54.00	20.82	PASS	Vertical	AV		

Page 44 of 55

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:		_0_	

Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5753.6393	13.86	60.79	74.65	122.20	47.55	PASS	Horizontal	PK		

Page 45 of 55

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:		-0-	

Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5764.8949	13.88	60.48	74.36	122.20	47.84	PASS	Vertical	PK		

_		_	
Pad	ıe 4	6 o	f 55

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:		_0_	

Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5796.4107	13.93	60.35	74.28	122.20	47.92	PASS	Horizontal	PK		

Page 47 of 55

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:		_0_	

Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5793.5968	13.93	61.61	75.54	122.20	46.66	PASS	Vertical	PK		

Page 48 of 55

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:		-0-	

	Suspec	ted List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	36.31	48.67	68.20	19.53	PASS	Horizontal	PK
	2	5150.0000	12.36	25.64	38.00	54.00	16.00	PASS	Horizontal	AV

Page 49 of 55

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:		-0-	

	Suspected List										
7.0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
6	1	5150.0000	12.36	36.97	49.33	68.20	18.87	PASS	Vertical	PK	
	2	5150.0000	12.36	25.31	37.67	54.00	16.33	PASS	Vertical	AV	

Page 50 of 55

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:		-0-	

Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5769.2096	13.89	57.77	71.66	122.20	50.54	PASS	Horizontal	PK		

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:		_0_	

Test Graph

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5766.2081	13.88	58.30	72.18	122.20	50.02	PASS	Vertical	PK			

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 51 of 55

Page 52 of 55

7 Appendix A

Refer to Appendix: 5G WIFI of EED32O81359004.

PHOTOGRAPHS OF TEST SETUP

Test model No.: DHP511

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No. : EED32O81359004 Page 54 of 55

Radiated spurious emission Test Setup-3(Above 1GHz)
There are absorbing materials under the ground.

Conducted emission Test Setup-4

Page 55 of 55

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O81359001 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

