

TEST REPORT

Report No.: BCTC2406425898E

Applicant: Saregama Inc

Product Name: CARVAAN Plug play

Test Model: SCPP130

Tested Date: 2024-06-18 to 2024-08-07

Issued Date: 2024-08-07

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005 Page: 1/of.86 / / / / Edition: B,2

FCC ID: 2AMX5-SCPP130

Product Name: CARVAAN Plug play

Trademark: **CARVAAN**

Model/Type Reference: SCPP130

Prepared For: Saregama Inc

Address: 200 Continental Drive, Suite 401, Newark, Delaware 19713, United States

Manufacturer: Shenzhen Kenuo Digital Technology Co., Ltd

3A01, Building U3, Junxiang U8 Intelligent Manufacturing Industrial Park, Guxing Address:

Community, Xixiang Street, Baoan District, Shenzhen, China

Shenzhen BCTC Testing Co., Ltd. Prepared By:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Address:

Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

2024-06-18 Sample Received Date:

Sample tested Date: 2024-06-18 to 2024-08-07

Issue Date: 2024-08-07

Report No.: BCTC2406425898E

FCC Part15.247 **Test Standards** ANSI C63.10-2013

Test Results PASS

Remark: This is Bluetooth Classic radio test report.

Tested by:

Lei Chen/Project Handler

Approved by:

Zero Zhou/Reviewer

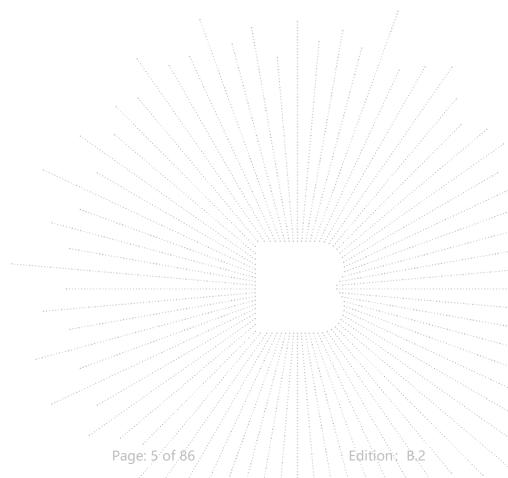
The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005

Table Of Content

Report Declaration Pa	age
Version	5
Test Summary	6
Measurement Uncertainty	7
Product Information	
Test Setup Configuration	8
Test Mode	
Table Of Parameters Of Text Software Setting	10
·	
, •	
Test Result	
Block Diagram Of Test Setup	28
Limit	28
Test procedure	28
Test Result	20
20 dB Bandwidth	50
Block Diagram Of Test Setup	50
Limit	50
Test procedure	50
Test Result.	50
Maximum Peak Output Power	56
2 3 1	Version Test Summary Measurement Uncertainty Product Information And Test Setup Product Information Test Setup Configuration Support Equipment Channel List Test Mode Table Of Parameters Of Text Software Setting Test Facility And Test Instrument Used. Test Facility Test Instrument Used. Conducted Emissions Block Diagram Of Test Setup. Limit Test procedure EUT operating Conditions Test Result Radiated emissions Block Diagram Of Test Setup. Limit Test procedure EUT operating Conditions Test Result Radiated Band Emission Measurement And Restricted Bands Of Operation Block Diagram Of Test Setup. Limit Test procedure EUT operating Conditions Test Result Radiated Band Emission Measurement And Restricted Bands Of Operation Block Diagram Of Test Setup. Limit Test procedure EUT operating Conditions Test Result Spurious RF Conducted Emissions Block Diagram Of Test Setup. Limit Test procedure Test Result Spurious RF Conducted Emissions Block Diagram Of Test Setup. Limit Test procedure Test Result 20 dB Bandwidth Block Diagram Of Test Setup. Limit Test procedure

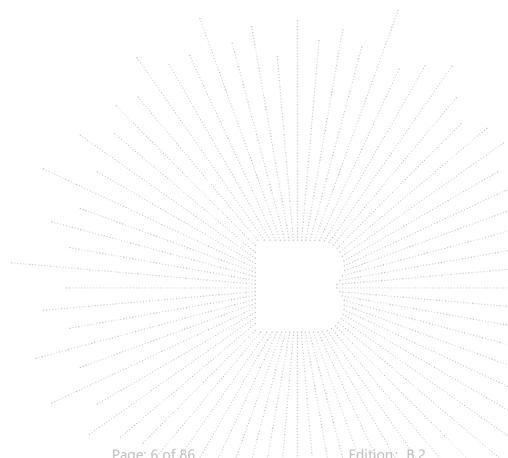
Report No.:BCTC2406425898E


11.3	lest procedure	.56
11.4	Test Result	.56
12.	Hopping Channel Separation	.62
12.1	Block Diagram Of Test Setup	.62
12.2	Limit	.62
12.3	Test procedure	.62
12.4	Test Result	.62
13.	Number Of Hopping Frequency	.68
13.1	Block Diagram Of Test Setup	.68
13.2	Limit	.68
13.3	Test procedure	.68
13.4	Test Result	.68
14.	Dwell Time	
14.1	Block Diagram Of Test Setup	.71
14.2		.71
14.3	·	
14.4		
	Antenna Requirement	
15.1	Limit	
	Test Result	
	EUT Photographs	.83
17.	FUT Test Setup Photographs	.84

(Note: N/A Means Not Applicable)

1. Version

Report No.	Issue Date	Description	Approved
BCTC2406425898E	2024-08-07	Original	Valid


No.: BCTC/RF-EMC-005

Test Summary 2.

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

No.: BCTC/RF-EMC-005

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	Ü=5.3%
10	Temperature uncertainty	U=0.59°C

No.: BCTC/RF-EMC-005 Page: 7/of.86 / / | Edition: B.

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	SCPP130
Model differences:	N/A
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	PCB antenna
	2.07dBi
Antenna Gain:	Remark: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.

4.2 Test Setup Configuration

Ratings:

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission & Radiated Spurious Emission:

AC 100-240V, 50/60Hz

E-1 AC EUT

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	CARVAAN Plug play	CARVAAN	SCPP130	N/A	EUT

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	a _. 42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	J.

No.: BCTC/RF-EMC-005 Page: 9 of 86 / / / Edition; B.2

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel	
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz	
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz	
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz	
4	Linking mode (Conducted Emission & Radiated Emission)				

Note:

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		BT_Tool	
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters	DEF	DEF	DEF /

No.: BCTC/RF-EMC-005 Page: 10 of 86 / / Edition: B.2

⁽¹⁾ The measurements are performed at the highest, middle, lowest available channels.

5. Test Facility And Test Instrument Used

5.1 Test Facility

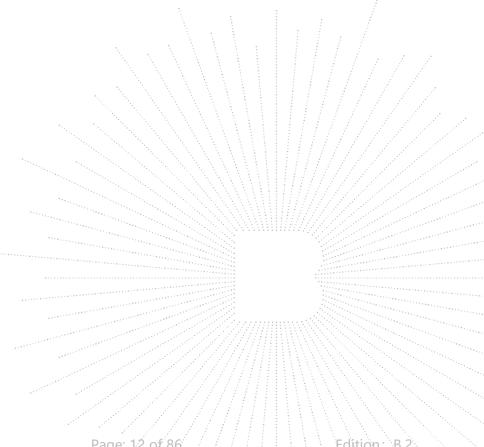
All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212

ISED Registered No.: 23583 ISED CAB identifier: CN0017

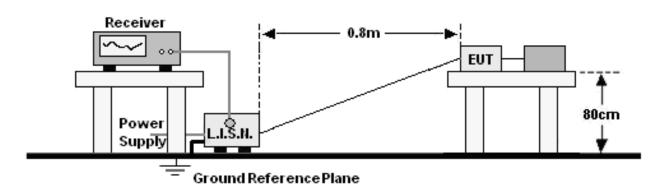
5.2 Test Instrument Used

Conducted Emissions Test							
Equipment Manufacturer Model# Serial# Last Cal. Next Ca							
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025		
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025		
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\		
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025		


RF Conducted Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Power meter	Keysight	E4419	1	May 16, 2024	May 15, 2025	
Power Sensor (AV)	Keysight	E9300A	1 1 1	May 16, 2024	May 15, 2025	
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025	
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025	
Radio frequency control box	MAIWEI	MW100-RFC B				
Software	MAIWEI	MTS 8310				

No.: BCTC/RF-EMC-005 Page: 11 of 86 / / Edition: B.2

Radiated Emissions Test (966 Chamber01)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025			
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025			
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025			
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025			
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 16, 2024	May 15, 2025			
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025			
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025			
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	FA-03A2 RE	\	\			



No.: BCTC/RF-EMC-005 Page: 12 of 86 / / Edition: B.2

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

Fraguency (MU=)	Limit (dBuV)			
Frequency (MHz)	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Notes

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

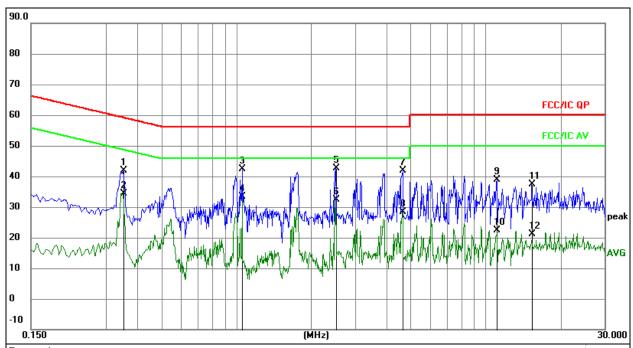
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

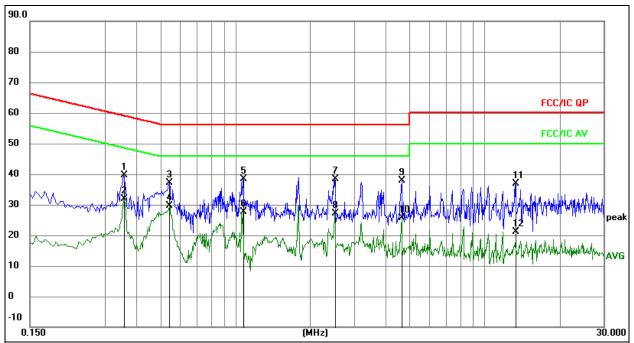
No.: BCTC/RF-EMC-005 Page: 13 of 86 / / / Edition: B.2


b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz



Remark:

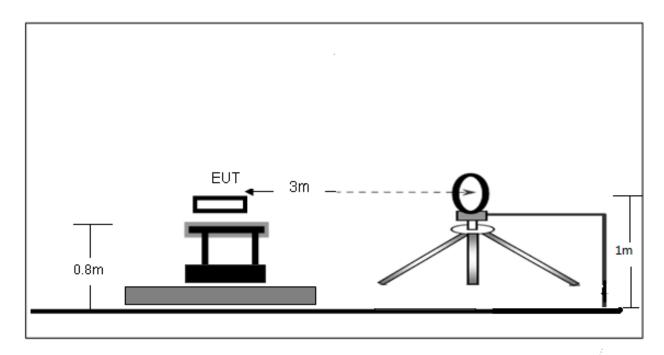
- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. Measurement=Reading Level+ Correct Factor
- 4. Over=Measurement-Limit

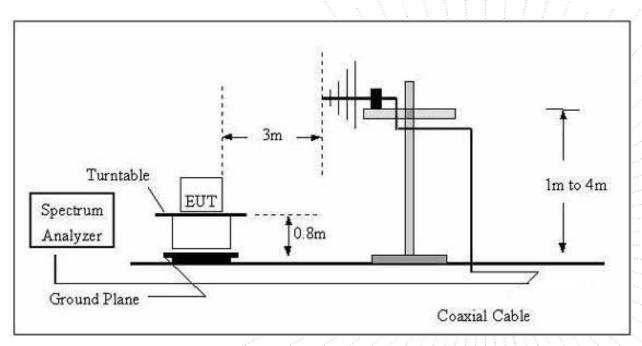
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBu∨	dBuV	dB	Detector
1		0.3525	21.87	20.07	41.94	58.90	-16.96	QP
2		0.3525	14.29	20.07	34.36	48.90	-14.54	AVG
3		1.0590	22.19	20.09	42.28	56.00	-13.72	QP
4	*	1.0590	13.20	20.09	33.29	46.00	-12.71	AVG
5		2.5080	22.58	20.11	42.69	56.00	-13.31	QP
6		2.5080	12.16	20.11	32.27	46.00	-13.73	AVG
7		4.6545	21.80	20.14	41.94	56.00	-14.06	QP
8		4.6545	8.13	20.14	28.27	46.00	-17.73	AVG
9		11.1075	18.67	20.20	38.87	60.00	-21.13	QP
10		11.1075	2.29	20.20	22.49	50.00	-27.51	AVG
11		15.3240	17.07	20.31	37.38	60.00	-22.62	QP
12		15.3240	0.79	20.31	21.10	50.00	-28.90	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	N
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

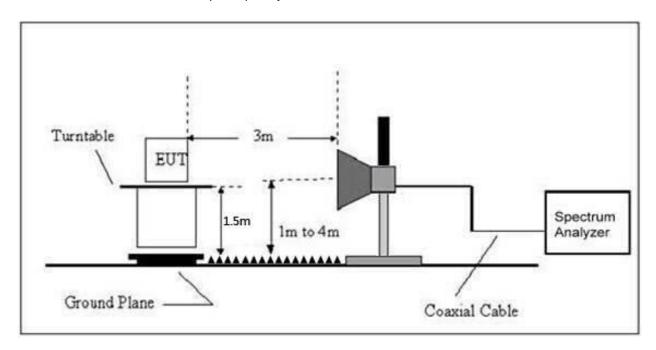
- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
- 3. Measurement=Reading Level+ Correct Factor
- 4. Over=Measurement-Limit


4. Over=	ivieasure	ment-Liniit			1			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBu∨	dBuV	dB	Detector
1		0.3558	19.51	20.08	39.59	58.83	-19.24	QP
2		0.3558	11.92	20.08	32.00	48.83	-16.83	AVG
3		0.5435	17.17	20.08	37.25	56.00	-18.75	QP
4	*	0.5435	9.52	20.08	29.60	46.00	-16.40	AVG
5		1.0710	18.25	20.09	38.34	56.00	-17.66	QP
6		1.0710	7.43	20.09	27.52	46.00	-18.48	AVG
7		2.5000	18.19	20.11	38.30	56.00	-17.70	QP
8		2.5000	7.09	20.11	27.20	46.00	-18.80	AVG
9		4.6469	17.71	20.14	37.85	56.00	-18.15	QP
10		4.6469	5.51	20.14	25.65	46.00	-20.35	AVG
11		13.2667	16.72	20.26	36.98	60.00	-23.02	QP
12		13.2667	0.82	20.26	21.08	50.00	-28.92	AVG


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

No.: BCTC/RF-EMC-005 Page: 16 of 86 / Edition: B.2

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)	***************************************
Frequency (MHZ)	Peak	Average
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C

(2) The tighter limit applies at the band edges:

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

No.: BCTC/RF-EMC-005 Page: 17 of 86 / / / Edition: B.2

Frequency Range Of Radiated Measurement

- (a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:
- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting			
Attenuation	Auto			
9kHz~150kHz	RBW 200Hz for QP			
150kHz~30MHz	RBW 9kHz for QP			
30MHz~1000MHz	RBW 120kHz for QP			

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak,
1-230112	RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

No.: BCTC/RF-EMC-005 Page: 18 of 86 / / / Edition: B.2

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	

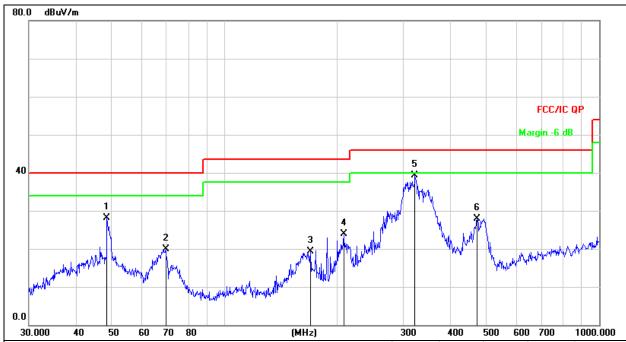
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
			<u>-</u> -	PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

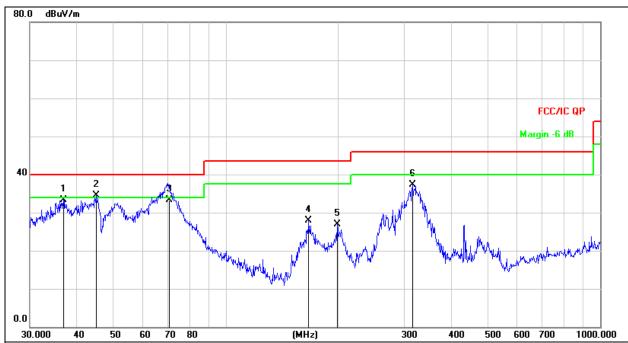
Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


No.: BCTC/RF-EMC-005 Page: 19 of 86 / / / Edition: B.2

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz



Remark:

- 1.Factor = Antenna Factor + Cable Loss Pre-amplifier.
 2. Measurement=Reading Level+ Correct Factor
 3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		48.5016	42.04	-14.02	28.02	40.00	-11.98	QP
2		69.6005	37.76	-17.89	19.87	40.00	-20.13	QP
3		169.5990	37.27	-17.98	19.29	43.50	-24.21	QP
4		207.8501	39.45	-15.50	23.95	43.50	-19.55	QP
5	*	322.1886	51.74	-12.46	39.28	46.00	-6.72	QP
6		472.1760	37.20	-9.31	27.89	46.00	-18.11	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

- 1.Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. Measurement=Reading Level+ Correct Factor
- 3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		36.8953	48.54	-15.32	33.22	40.00	-6.78	QP
2	*	45.0583	48.84	-14.31	34.53	40.00	-5.47	QP
3		70.8093	51.39	-18.14	33.25	40.00	-6.75	QP
4		166.6514	46.17	-18.19	27.98	43.50	-15.52	QP
5		198.5880	42.68	-15.82	26.86	43.50	-16.64	QP
6		315.4808	50.06	-12.70	37.36	46.00	-8.64	QP

Between 1GHz - 25GHz

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			GFSK Lo	w channel			
V	4804.00	74.24	-19.99	54.25	74.00	-19.75	PK
V	4804.00	65.04	-19.99	45.05	54.00	-8.95	AV
V	7206.00	63.55	-14.22	49.33	74.00	-24.67	PK
V	7206.00	54.44	-14.22	40.22	54.00	-13.78	AV
Н	4804.00	69.78	-19.99	49.79	74.00	-24.21	PK
Н	4804.00	60.13	-19.99	40.14	54.00	-13.86	AV
Н	7206.00	60.76	-14.22	46.54	74.00	-27.46	PK
Н	7206.00	53.36	-14.22	39.14	54.00	-14.86	AV
			GFSK Midd	dle channel			
V	4882.00	71.84	-19.84	52.00	74.00	-22.00	PK
V	4882.00	63.83	-19.84	43.99	54.00	-10.01	AV
V	7323.00	64.11	-13.90	50.21	74.00	-23.79	PK
V	7323.00	54.92	-13.90	41.02	54.00	-12.98	AV
Н	4882.00	69.00	-19.84	49.16	74.00	-24.84	PK
Н	4882.00	59.04	-19.84	39.20	54.00	-14.80	AV
Н	7323.00	61.88	-13.90	47.98	74.00	-26.02	PK
Н	7323.00	54.12	-13.90	40.22	54.00	-13.78	AV
			GFSK Hig	h channel			
V	4960.00	73.01	-19.68	53.33	74.00	-20.67	/ PK
V	4960.00	63.91	-19.68	44.23	54.00	-9.77	AV
V	7440.00	64.86	-13.57	51.29	74.00	-22.71	PK
V	7440.00	54.46	-13.57	40.89	54.00	-13.11	AV
Н	4960.00	71.43	-19.68	51.75	74.00	-22.25	PK
Н	4960.00	62.35	-19.68	42.67	54.00	-11.33	AV
Н	7440.00	62.57	-13.57	49.00	74.00	-25.00	PK
Н	7440.00	54.04	-13.57	40.47	54.00	-13.53	AV

Remark:

1. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005 Page: 22 of 86 / Edition: B.2

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			π/4DQPSK	Low channel			
V	4804.00	73.54	-19.99	53.55	74.00	-20.45	PK
V	4804.00	64.05	-19.99	44.06	54.00	-9.94	AV
V	7206.00	62.65	-14.22	48.43	74.00	-25.57	PK
V	7206.00	53.21	-14.22	38.99	54.00	-15.01	AV
Н	4804.00	71.89	-19.99	51.90	74.00	-22.10	PK
Н	4804.00	61.52	-19.99	41.53	54.00	-12.47	AV
Н	7206.00	60.37	-14.22	46.15	74.00	-27.85	PK
Н	7206.00	51.49	-14.22	37.27	54.00	-16.73	AV
			π/4DQPSK N	/liddle channe	el .		
V	4882.00	69.96	-19.84	50.12	74.00	-23.88	PK
V	4882.00	63.91	-19.84	44.07	54.00	-9.93	AV
V	7323.00	60.68	-13.90	46.78	74.00	-27.22	PK
V	7323.00	51.06	-13.90	37.16	54.00	-16.84	AV
Н	4882.00	66.73	-19.84	46.89	74.00	-27.11	PK
Н	4882.00	56.56	-19.84	36.72	54.00	-17.28	AV
Н	7323.00	57.92	-13.90	44.02	74.00	-29.98	PK
Н	7323.00	50.51	-13.90	36.61	54.00	-17.39	AV
			π /4DQPSK	High channel			
V	4960.00	72.37	-19.68	52.69	74.00	-21.31	PK
V	4960.00	62.95	-19.68	43.27	54.00	-10.73	AV
V	7440.00	64.05	-13.57	50.48	74.00	-23.52	PK
V	7440.00	53.78	-13.57	40.21	54.00	-13.79	AV
Н	4960.00	69.80	-19.68	50.12	74.00	-23.88	PK
Н	4960.00	58.91	-19.68	39.23	54.00	-14.77	AV
Н	7440.00	62.38	-13.57	48.81	74.00	-25.19	PK
Н	7440.00	54.92	-13.57	41.35	54.00	-12.65	AV

Remark:

1. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005 Page: 23 of 86 / Edition: B.2

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•		8DPSK Lo	w channel			
V	4804.00	73.50	-19.99	53.51	74.00	-20.49	PK
V	4804.00	63.52	-19.99	43.53	54.00	-10.47	AV
V	7206.00	65.26	-14.22	51.04	74.00	-22.96	PK
V	7206.00	54.59	-14.22	40.37	54.00	-13.63	AV
Н	4804.00	69.27	-19.99	49.28	74.00	-24.72	PK
Н	4804.00	58.43	-19.99	38.44	54.00	-15.56	AV
Н	7206.00	62.41	-14.22	48.19	74.00	-25.81	PK
Н	7206.00	53.51	-14.22	39.29	54.00	-14.71	AV
			8DPSK Mid	ldle channel			
V	4882.00	70.18	-19.84	50.34	74.00	-23.66	PK
V	4882.00	61.61	-19.84	41.77	54.00	-12.23	AV
V	7323.00	62.77	-13.90	48.87	74.00	-25.13	PK
V	7323.00	54.46	-13.90	40.56	54.00	-13.44	AV
Н	4882.00	67.15	-19.84	47.31	74.00	-26.69	PK
Н	4882.00	57.80	-19.84	37.96	54.00	-16.04	AV
Н	7323.00	61.51	-13.90	47.61	74.00	-26.39	PK
Н	7323.00	52.68	-13.90	38.78	54.00	-15.22	AV
			8DPSK Hi	gh channel			
V	4960.00	72.72	-19.68	53.04	74.00	-20.96	PK
V	4960.00	63.98	-19.68	44.30	54.00	-9.70	AV
V	7440.00	64.70	-13.57	51.13	74.00	-22.87	PK
V	7440.00	55.21	-13.57	41.64	54.00	-12.36	AV
Н	4960.00	70.30	-19.68	50.62	74.00	-23.38	PK
Н	4960.00	60.44	-19.68	40.76	54.00	-13.24	AV
Н	7440.00	61.74	-13.57	48.17	74.00	-25.83	PK
Н	7440.00	54.01	-13.57	40.44	54.00	-13.56	AV

Remark:

1. Measurement = Reading Level + Correct Factor,

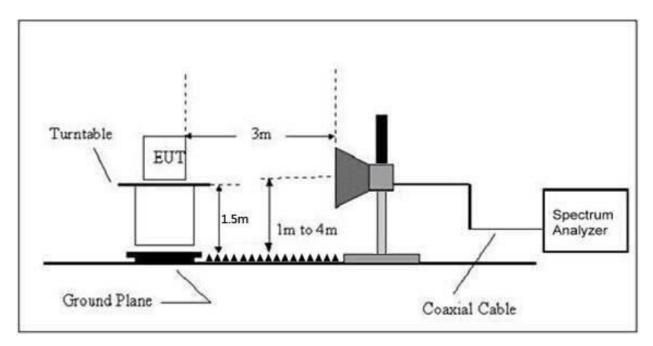
Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2. If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


No.: BCTC/RF-EMC-005 Page: 24 of 86 / Edition: B.2

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

No.: BCTC/RF-EMC-005 Page: 25 of 86 / / Edition: B.2

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)				
	Peak	Average			
Above 1000	74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting		
Attenuation	Auto		
Start Frequency	2300MHz		
Stop Frequency	2520		
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005 Page: 26 of 86 / / / Edition: B.2

8.5 Test Result

	Polar (H/V)	Fre- quency	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Lin (dBu		Result				
	()	(MHz)	(dBuV/m)	(dB)	PK	PK	AV					
	Low Channel 2402MHz											
	Н	2390.00	71.05	-25.43	45.62	74.00	54.00	PASS				
	Н	2400.00	74.88	-25.40	49.48	74.00	54.00	PASS				
	V	2390.00	71.75	-25.43	46.32	74.00	54.00	PASS				
GFSK	V	2400.00	76.32	-25.40	50.92	74.00	54.00	PASS				
GFSK			ŀ	High Channe	el 2480MHz							
	Н	2483.50	73.51	-25.15	48.36	74.00	54.00	PASS				
	Н	2500.00	70.11	-25.10	45.01	74.00	54.00	PASS				
	V	2483.50	75.62	-25.15	50.47	74.00	54.00	PASS				
	V	2500.00	71.93	-25.10	46.83	74.00	54.00	PASS				
		Low Channel 2402MHz										
	Н	2390.00	71.14	-25.43	45.71	74.00	54.00	PASS				
	Н	2400.00	75.86	-25.40	50.46	74.00	54.00	PASS				
	V	2390.00	71.69	-25.43	46.26	74.00	54.00	PASS				
π	V	2400.00	76.41	-25.40	51.01	74.00	54.00	PASS				
/4DQPSK	High Channel 2480MHz											
	Н	2483.50	73.48	-25.15	48.33	74.00	54.00	PASS				
	Н	2500.00	68.93	-25.10	43.83	74.00	54.00	PASS				
	V	2483.50	73.72	-25.15	48.57	74.00	54.00	PASS				
	V	2500.00	70.85	-25.10	45.75	74.00	54.00	PASS				
			l	_ow Channe	el 2402MHz			7 /				
	Н	2390.00	72.02	-25.43	46.59	74.00	54.00	PASS				
	Н	2400.00	76.22	-25.40	50.82	74.00	54.00	PASS				
	V	2390.00	71.09	-25.43	45.66	74.00	54.00	PASS				
8DPSK	V	2400.00	75.79	-25.40	50.39	74.00	54.00	PASS				
ODESK				ligh Channe	el 2480MHz							
	Н	2483.50	74.68	-25.15	49.53	74.00	54.00	PASS				
	Н	2500.00	71.49	-25.10	46.39	74.00	54.00	PASS				
	V	2483.50	74.87	-25.15	49.72	74.00	54.00	PASS				
	V	2500.00	71.35	-25.10	46.25	74.00	54.00	PASS				

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

No.: BCTC/RF-EMC-005 Page: 27 of 86 / Edition: B.2

^{2.} If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

³ In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

^{4.} The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

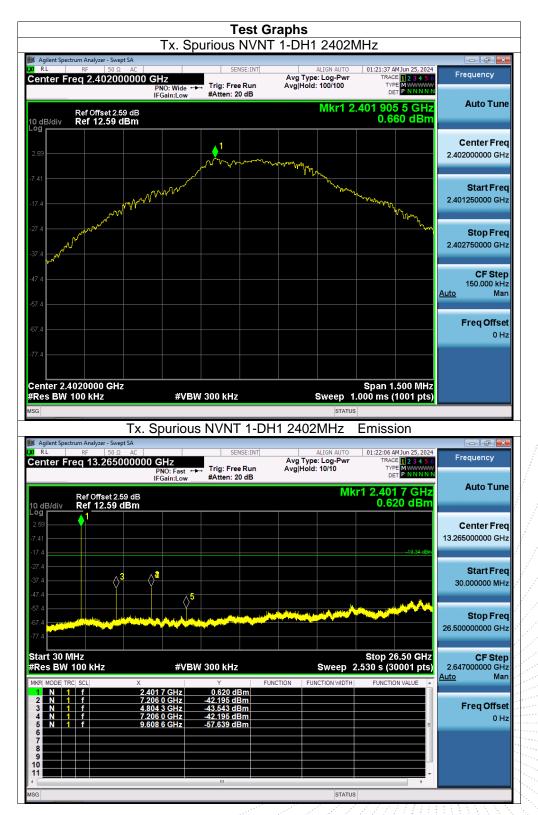
EUT	SPECTRUM
	ANALYZER

9.2 Limit

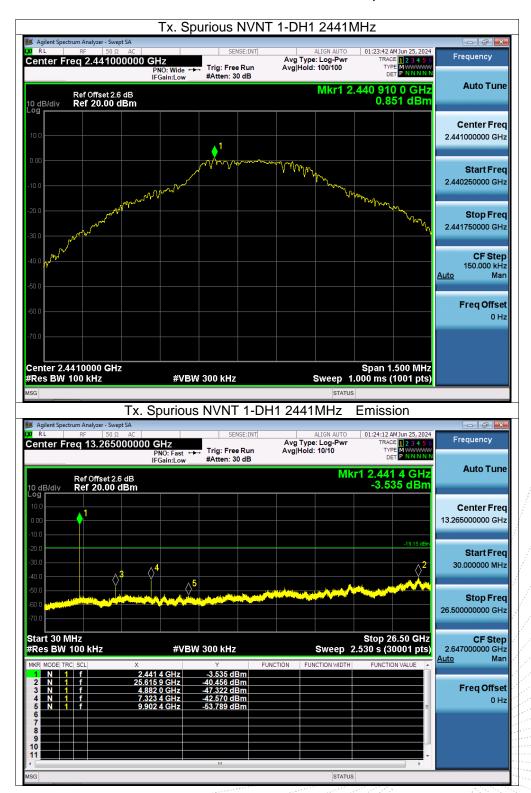
Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

9.3 Test procedure

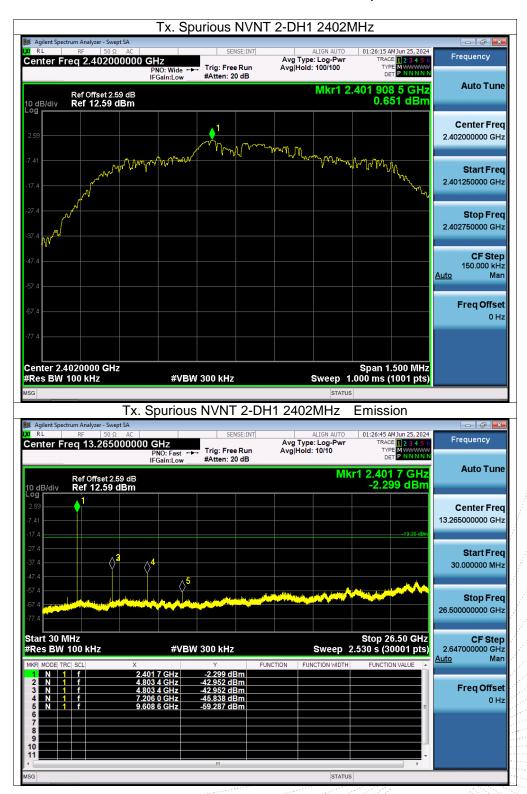
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

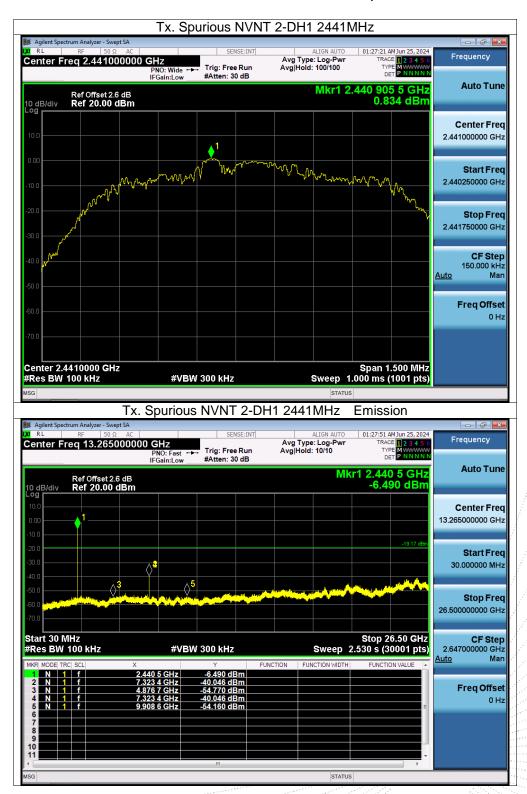

Detector function = peak, Trace = max hold

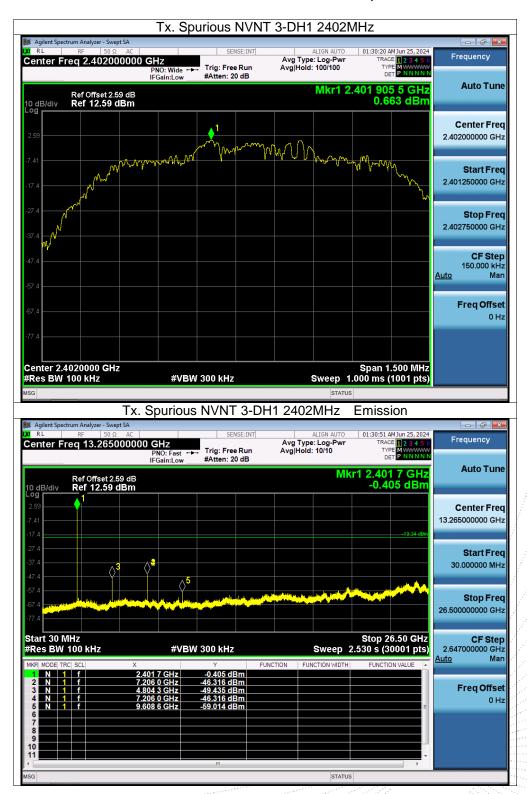
No.: BCTC/RF-EMC-005 Page: 28 of 86 / /

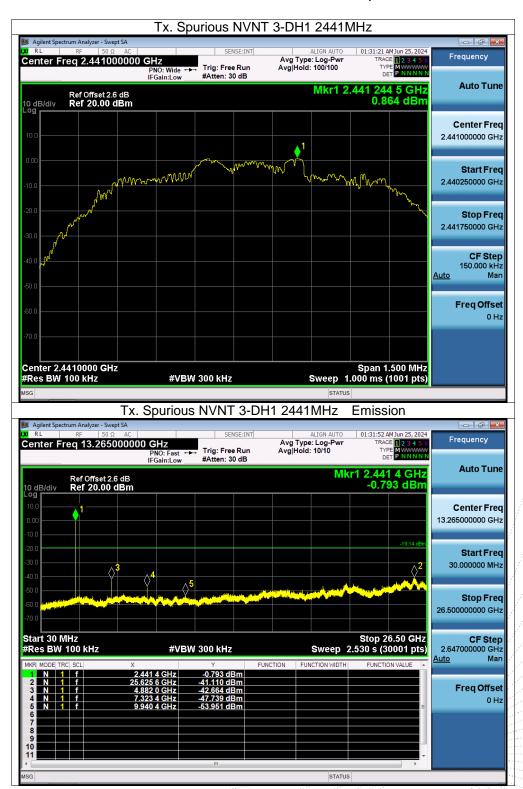

Edition: B.2

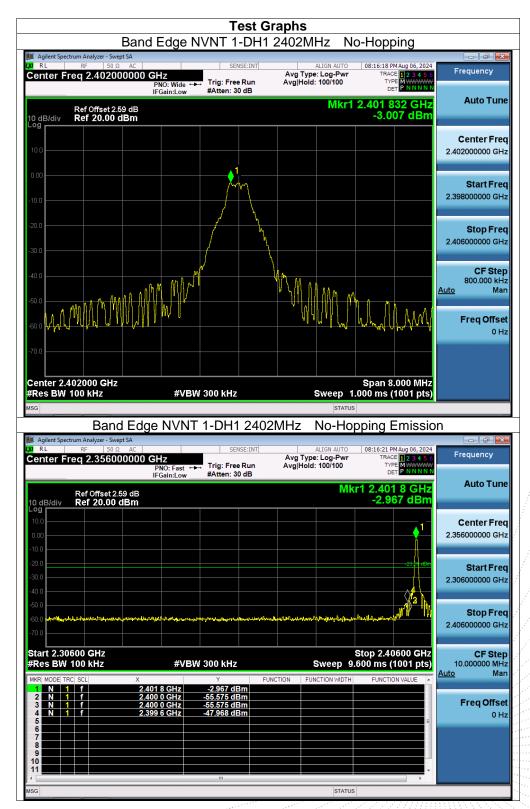

9.4 Test Result

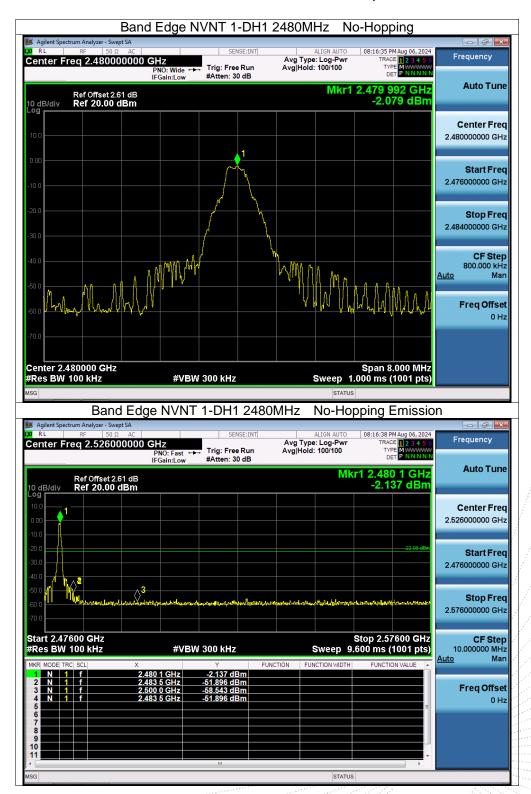


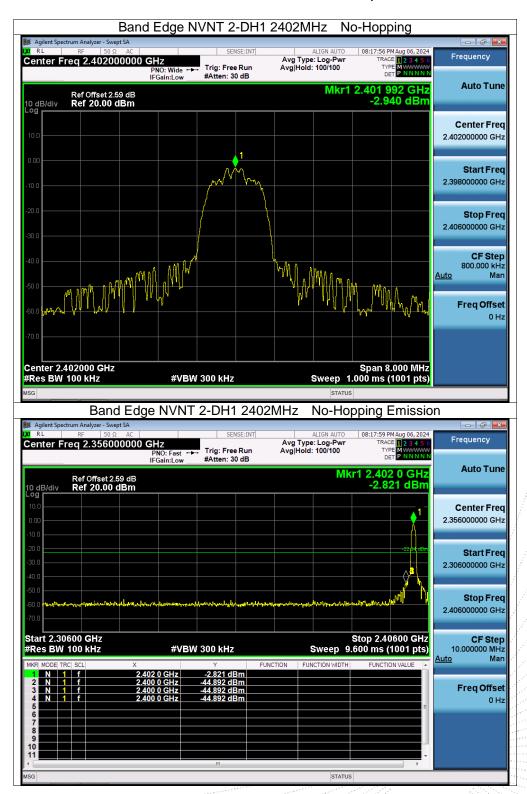


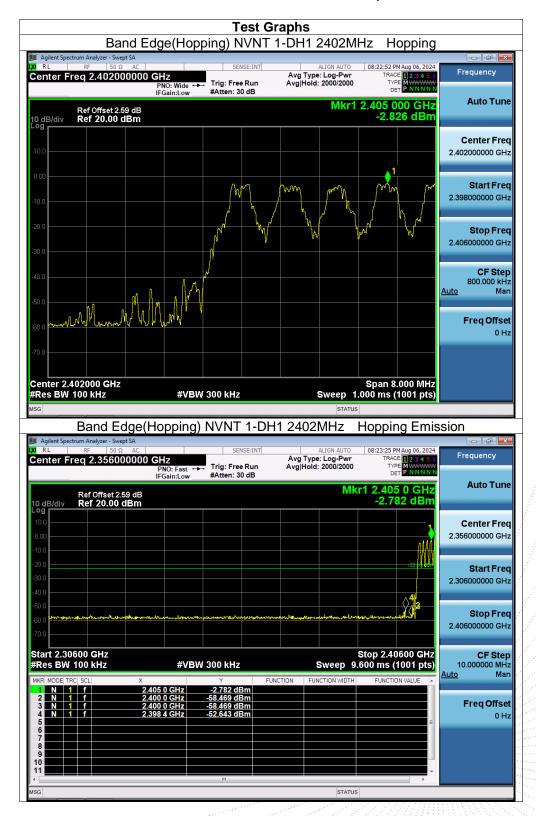












10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Temperature:	26℃	Relative Humidity:	54%	17	77		7	.]
Test Voltage:	AC 120V/60Hz	Remark:	N/A		77.	7.7		.].

Condition	Mode	Frequency (MHz) -20 dB Bandwidth (MHz)		Verdict
NVNT	1-DH1	2402	0.91	Pass
NVNT	1-DH1	2441	0.867	Pass
NVNT	1-DH1	2480	0.802	Pass
NVNT	2-DH1	2402	1.156	Pass
NVNT	2-DH1	2441	1.171	Pass
NVNT	2-DH1	2480	1.191	Pass
NVNT	3-DH1	2402	1.185	Pass
NVNT	3-DH1	2441	1.198	Pass
NVNT	3-DH1	2480	1.196	Pass

No.: BCTC/RF-EMC-005 Page: 50 of 86 / / / Edițion: B.2