

## Shenzhen HTT Technology Co., Ltd.

# TEST REPORT FCC Rules and Regulations Part PART 15.249

FCC Rules and Regulations Part PART 15.249 FCC ID...... 2AXWL-CTRL1 Compiled by Heber He Bruce Zhu Kevin Yang ( position+printed name+signature.. File administrators Supervised by ( position+printed name+signature.. Project Engineer Approved by ( position+printed name+signature.. RF Manager Date of issue...... Mar.27,2023 Testing Laboratory Name ...... Shenzhen HTT Technology Co.,Ltd. 1F, Building B, Huafeng International Robotics Industrial Park, Address...... Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Applicant's name ...... Guangzhou Zhiying Technology Co., Ltd Room 2401, Room 2402, Room 2403, Room 2404, Room 2409, No. 68, Huadi Avenue Middle, Liwan District, Guangzhou Standard ...... FCC Rules and Regulations Part PART 15.249 Shenzhen HTT Technology Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HTT Technology Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HTT Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test item description ...... COLBOR CTRL1 remote dimming control Trade Mark ..... COLBOR Manufacturer ..... Guangzhou Shengke Technology Co., Ltd Model/Type reference...... CTRL1 CTRLX,CTRLDMX,CTRL2,CTRL3,CTRL4,CTRL5,CTRL6,CTRL7, Listed Models ...... CTRL8,CTRL9,CTRL10,CTRLC,CTRLV,CTRLS,CTRLM, CTRL2-2.4G,CTRL2-DMX,CTRL3-2.4G,CTRL3-DMX

Modulation ...... GFSK

Result.....PASS

Frequency......2426MHz

Ratings ...... DC 3.0V From Battery

Report No.: HTT202303400F01 Page 2 of 21

## TEST REPORT

Equipment under Test : COLBOR CTRL1remote dimming control

Model /Type : CTRL1

: CTRLX,CTRLDMX,CTRL2,CTRL3,CTRL4,CTRL5,CTRL6,CTRL7,

Listed Models CTRL8,CTRL9,CTRL10,CTRLC,CTRLV,CTRLS,CTRLM,

CTRL2-2.4G,CTRL2-DMX,CTRL3-2.4G,CTRL3-DMX

Applicant : Guangzhou Zhiying Technology Co., Ltd

Address : Room 2401, Room 2402, Room 2403, Room 2404, Room 2409,

No. 68, Huadi Avenue Middle, Liwan District, Guangzhou

Manufacturer : Guangzhou Shengke Technology Co., Ltd

Address : 2nd Floor, No.68 Xieshi Road, Panyu District, Guangzhou, China

| Test Result: PASS |
|-------------------|
|-------------------|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

## **Contents**

| 4        |
|----------|
|          |
| 5        |
|          |
|          |
| 5        |
| 5        |
| 5        |
| 5        |
| 5        |
| 6        |
| 6        |
|          |
| 7        |
| 7        |
|          |
| 7        |
| 7        |
| 7        |
| 8        |
| 8        |
| 8        |
|          |
| _        |
| 0        |
|          |
| 10       |
| 11       |
| 18       |
| 20       |
| _        |
|          |
| <u>1</u> |
|          |
| 2 1      |
|          |

Report No.: HTT202303400F01 Page 4 of 21

## 1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

Report No.: HTT202303400F01 Page 5 of 21

## 2. SUMMARY

#### 2.1. General Remarks

| Date of receipt of test sample | : | Mar.21,2023 |
|--------------------------------|---|-------------|
|                                |   |             |
| Testing commenced on           | : | Mar.21,2023 |
|                                |   |             |
| Testing concluded on           | : | Mar.27,2023 |

## 2.2. Product Description

| Name of EUT         | COLBOR CTRL1 remote dimming control                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Model Number        | CTRL1                                                                                                                                  |
| List Model:         | CTRLX,CTRLDMX,CTRL2,CTRL3,CTRL4,CTRL5,CTRL6,CTRL7,CTRL8,CTRL9,CTRL10,CTRLC,CTRLV,CTRLS,CTRLM,CTRL2-2.4G,CTRL2-DMX,CTRL3-2.4G,CTRL3-DMX |
| Power Rating        | DC 3.0V From Battery                                                                                                                   |
| Sample ID:          | HTT202303400-1#(Engineer sample) HTT202303400-2#(Normal sample)                                                                        |
| Operation frequency | 2426MHz                                                                                                                                |
| Modulation          | GFSK                                                                                                                                   |
| Antenna Type        | PCB antenna                                                                                                                            |
| Antenna Gain        | 0dBi                                                                                                                                   |

## 2.3. Equipment Under Test

## Power supply system utilised

| Power supply voltage | 0 | 230V / 50 Hz                     | 0 | 120V / 60Hz |  |
|----------------------|---|----------------------------------|---|-------------|--|
|                      | 0 | 12 V DC                          | 0 | 24 V DC     |  |
|                      | • | Other (specified in blank below) |   |             |  |

DC 3.0V From Battery

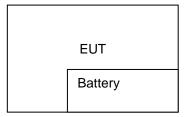
## 2.4. Short description of the Equipment under Test (EUT)

This is a COLBOR CTRL1 remote dimming control

For more details, refer to the user's manual of the EUT.

## 2.5. EUT operation mode

The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 3 channels provided to the EUT. Channel Low, Mid and High was selected to test.


| Channel | Frequency (MHz) |
|---------|-----------------|
| 01      | 2402            |

Report No.: HTT202303400F01 Page 6 of 21

Test frequency:

| Channel | Frequency<br>(MHz) |  |
|---------|--------------------|--|
| 01      | 2426               |  |

## 2.6. Block Diagram of Test Setup



## 2.7. Modifications

No modifications were implemented to meet testing criteria.

Report No.: HTT202303400F01 Page 7 of 21

## 3. TEST ENVIRONMENT

## 3.1. Address of the test laboratory

#### Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

## 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

#### Radiated Emission:

| Temperature:          | 23 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 48 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### AC Main Conducted testing:

| io mam comandida icomigi |              |
|--------------------------|--------------|
| Temperature:             | 24 ° C       |
|                          |              |
| Humidity:                | 45 %         |
|                          |              |
| Atmospheric pressure:    | 950-1050mbar |

#### Conducted testing:

| 9 -                   |              |
|-----------------------|--------------|
| Temperature:          | 24 ° C       |
|                       |              |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |
|                       |              |

Report No.: HTT202303400F01 Page 8 of 21

## 3.4. Summary of measurement results

| FCC PART 15.249    |                               |      |  |  |  |
|--------------------|-------------------------------|------|--|--|--|
| FCC Part 15.249(a) | Field Strength of Fundamental | PASS |  |  |  |
| FCC Part 15.209    | Spurious Emission             | PASS |  |  |  |
| FCC Part 15.209    | Band edge                     | PASS |  |  |  |
| FCC Part 15.215(c) | 20dB bandwidth                | PASS |  |  |  |
| FCC Part 15.207    | Conducted Emission            | N/A  |  |  |  |
| FCC Part 15.203    | Antenna Requirement           | PASS |  |  |  |

## 3.5. Statement of the measurement uncertainty

Measurement Uncertainty

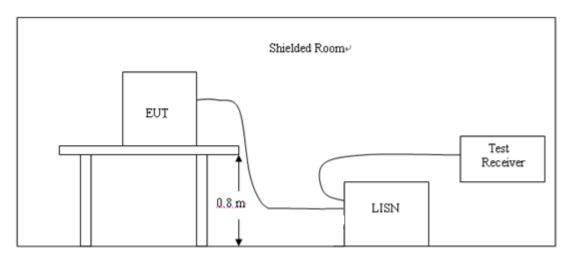
Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

## 3.6. Equipments Used during the Test

| Item | Test Equipment                  | Manufacturer                           | Model No.          | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
|------|---------------------------------|----------------------------------------|--------------------|------------------|------------------------|----------------------------|
| 1    | 3m Semi- Anechoic<br>Chamber    | Shenzhen C.R.T technology co., LTD     | 9*6*6              | HTT-E028         | Aug. 10 2020           | Aug. 09 2024               |
| 2    | Control Room                    | Shenzhen C.R.T technology co., LTD     | 4.8*3.5*3.0        | HTT-E030         | Aug. 10 2020           | Aug. 09 2024               |
| 3    | EMI Test Receiver               | Rohde&Schwar                           | ESCI7              | HTT-E022         | May 23 2022            | May 22 2023                |
| 4    | Spectrum Analyzer               | Rohde&Schwar                           | FSP                | HTT-E037         | May 23 2022            | May 22 2023                |
| 5    | Coaxial Cable                   | ZDecl                                  | ZT26-NJ-NJ-0.6M    | HTT-E018         | May 23 2022            | May 22 2023                |
| 6    | Coaxial Cable                   | ZDecl                                  | ZT26-NJ-SMAJ-2M    | HTT-E019         | May 23 2022            | May 22 2023                |
| 7    | Coaxial Cable                   | ZDecl                                  | ZT26-NJ-SMAJ-0.6M  | HTT-E020         | May 23 2022            | May 22 2023                |
| 8    | Coaxial Cable                   | ZDecl                                  | ZT26-NJ-SMAJ-8.5M  | HTT-E021         | May 23 2022            | May 22 2023                |
| 9    | Composite logarithmic antenna   | Schwarzbeck                            | VULB 9168          | HTT-E017         | May 23 2022            | May 22 2023                |
| 10   | Horn Antenna                    | Schwarzbeck                            | BBHA9120D          | HTT-E016         | May 23 2022            | May 22 2023                |
| 11   | Loop Antenna                    | Zhinan                                 | ZN30900C           | HTT-E039         | May 23 2022            | May 22 2023                |
| 12   | Horn Antenna                    | Beijing Hangwei Dayang                 | OBH100400          | HTT-E040         | May 23 2022            | May 22 2023                |
| 13   | low frequency Amplifier         | Sonoma Instrument                      | 310                | HTT-E015         | May 23 2022            | May 22 2023                |
| 14   | high-frequency<br>Amplifier     | HP                                     | 8449B              | HTT-E014         | May 23 2022            | May 22 2023                |
| 15   | Variable frequency power supply | Shenzhen Anbiao<br>Instrument Co., Ltd | ANB-10VA           | HTT-082          | May 23 2022            | May 22 2023                |
| 16   | EMI Test Receiver               | Rohde & Schwarz                        | ESCS30             | HTT-E004         | May 23 2022            | May 22 2023                |
| 17   | Artificial Mains                | Rohde & Schwarz                        | ESH3-Z5            | HTT-E006         | May 23 2022            | May 22 2023                |
| 18   | Artificial Mains                | Rohde & Schwarz                        | ENV-216            | HTT-E038         | May 23 2022            | May 22 2023                |
| 19   | Cable Line                      | Robinson                               | Z302S-NJ-BNCJ-1.5M | HTT-E001         | May 23 2022            | May 22 2023                |
| 20   | Attenuator                      | Robinson                               | 6810.17A           | HTT-E007         | May 23 2022            | May 22 2023                |
| 21   | Variable frequency power supply | Shenzhen Yanghong<br>Electric Co., Ltd | YF-650 (5KVA)      | HTT-E032         | May 23 2022            | May 22 2023                |

Report No.: HTT202303400F01 Page 9 of 21

| 22 | Control Room                       | Shenzhen C.R.T technology co., LTD     | 8*4*3.5 | HTT-E029 | May 23 2022 | May 22 2023 |
|----|------------------------------------|----------------------------------------|---------|----------|-------------|-------------|
| 23 | DC power supply                    | Agilent                                | E3632A  | HTT-E023 | May 23 2022 | May 22 2023 |
| 24 | EMI Test Receiver                  | Agilent                                | N9020A  | HTT-E024 | May 23 2022 | May 22 2023 |
| 25 | Analog signal generator            | Agilent                                | N5181A  | HTT-E025 | May 23 2022 | May 22 2023 |
| 26 | Vector signal generator            | Agilent                                | N5182A  | HTT-E026 | May 23 2022 | May 22 2023 |
| 27 | Power sensor                       | Keysight                               | U2021XA | HTT-E027 | May 23 2022 | May 22 2023 |
| 28 | Temperature and humidity meter     | Shenzhen Anbiao<br>Instrument Co., Ltd | TH10R   | HTT-074  | May 23 2022 | May 22 2023 |
| 29 | Radiated Emission Test<br>Software | Farad                                  | EZ-EMC  | N/A      | N/A         | N/A         |
| 30 | Conducted Emission Test Software   | Farad                                  | EZ-EMC  | N/A      | N/A         | N/A         |
| 31 | RF Test Software                   | panshanrf                              | TST     | N/A      | N/A         | N/A         |


Note: The Cal.Interval was one year.

Report No.: HTT202303400F01 Page 10 of 21

## 4. TEST CONDITIONS AND RESULTS

#### 4.1. AC Power Conducted Emission

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

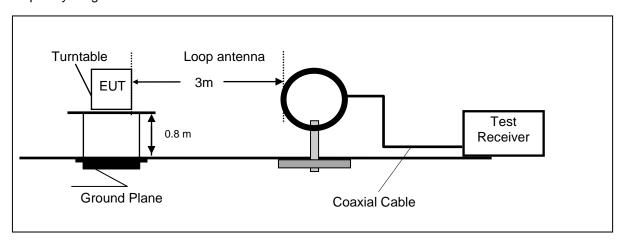
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

#### **AC Power Conducted Emission Limit**

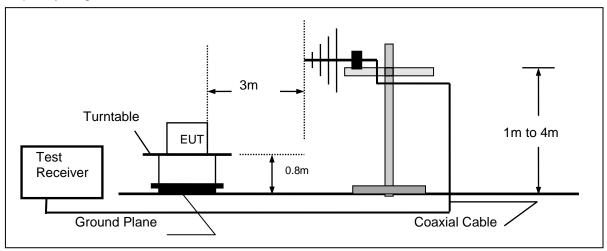
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Fraguency range (MHz)                            | Limit (dBuV) |           |  |  |  |  |
|--------------------------------------------------|--------------|-----------|--|--|--|--|
| Frequency range (MHz)                            | Quasi-peak   | Average   |  |  |  |  |
| 0.15-0.5                                         | 66 to 56*    | 56 to 46* |  |  |  |  |
| 0.5-5                                            | 56           | 46        |  |  |  |  |
| 5-30                                             | 60           | 50        |  |  |  |  |
| * Decreases with the logarithm of the frequency. |              |           |  |  |  |  |

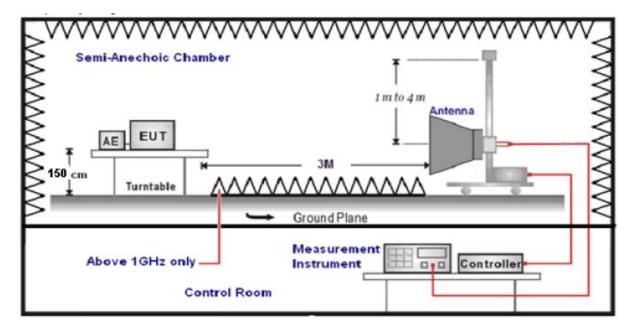
#### **TEST RESULTS**


The EUT is Powered by the Battery, So This test item is not applicable for the EUT.

Report No.: HTT202303400F01 Page 11 of 21


## 4.2. Radiated Emission and Band Edges

#### **TEST CONFIGURATION**


Frequency range 9 KHz - 30MHz



Frequency range 30MHz - 1000MHz



Frequency range above 1GHz-25GHz



Report No.: HTT202303400F01 Page 12 of 21

#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from  $0^{\circ}$ C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type          | Test Distance |
|----------------------|----------------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna        | 3             |
| 30MHz-1GHz           | Ultra-Broadband Antenna    | 3             |
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |
| 18GHz-25GHz          | Horn Anternna              | 1             |

7. Setting test receiver/spectrum as following table states:

| Test Frequency range | Test Receiver/Spectrum Setting         | Detector |
|----------------------|----------------------------------------|----------|
| 9KHz-150KHz          | RBW=200Hz/VBW=3KHz,Sweep time=Auto     | QP       |
| 150KHz-30MHz         | RBW=9KHz/VBW=100KHz,Sweep time=Auto    | QP       |
| 30MHz-1GHz           | RBW=120KHz/VBW=1000KHz,Sweep time=Auto | QP       |
|                      | Peak Value: RBW=1MHz/VBW=3MHz,         |          |
| 1GHz-40GHz           | Sweep time=Auto                        | Peak     |
| 1GH2-40GH2           | Average Value: RBW=1MHz/VBW=10Hz,      | reak     |
|                      | Sweep time=Auto                        |          |

## Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

## FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

Transd=AF +CL-AG

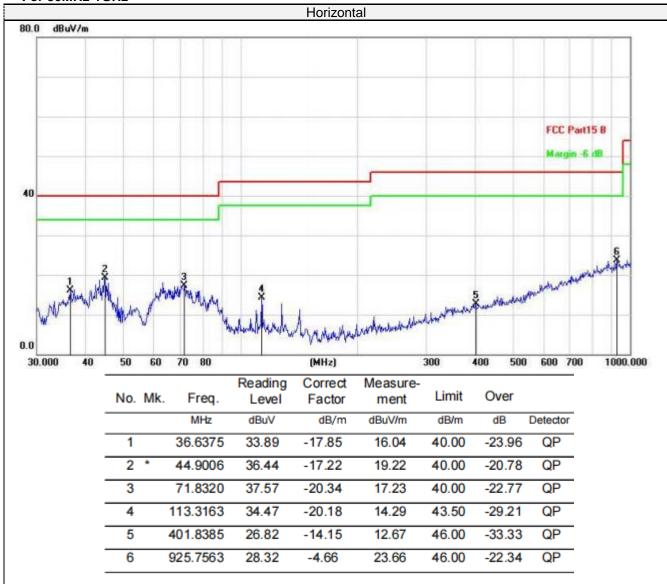
#### **RADIATION LIMIT**

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

#### Radiated emission limits

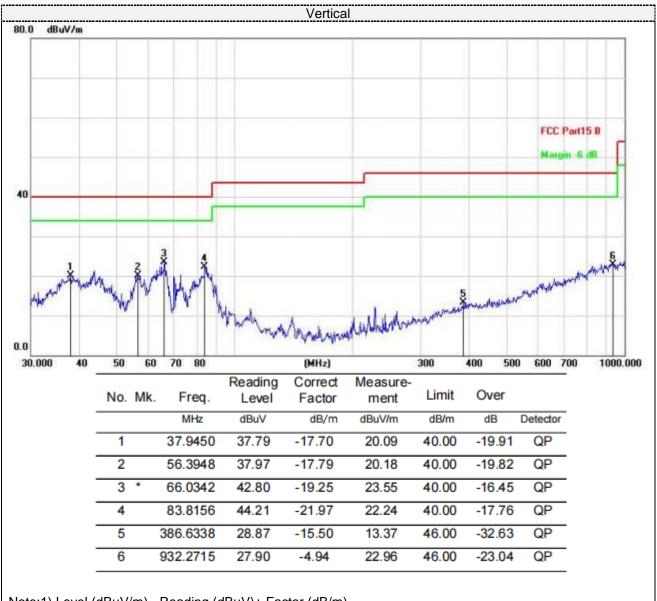

| Frequency (MHz) | Distance (Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|-------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                 | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                 | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                 | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                 | 40.0                             | 100             |
| 88-216          | 3                 | 43.5                             | 150             |
| 216-960         | 3                 | 46.0                             | 200             |
| Above 960       | 3                 | 54.0                             | 500             |

## **TEST RESULTS**

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of GFSK were tested at Low, Middle, and High channel and recorded worst mode at GFSK
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

#### For 30MHz-1GHz




Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Report No.: HTT202303400F01 Page 14 of 21



Note:1).Level  $(dB\mu V/m)$ = Reading  $(dB\mu V)$ + Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)

Report No.: HTT202303400F01 Page 15 of 21

## For 1GHz to 25GHz

## GFSK (above 1GHz)

CH (2426MHz)

## Horizontal:

| Frequency    | Meter Reading                                                 | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | <b>.</b>         |  |  |
|--------------|---------------------------------------------------------------|-------------------|------------|------------------|----------------|----------|--------|------------------|--|--|
| (MHz)        | (dBµV)                                                        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |  |  |
| 2426         | 105.15                                                        | 26.3              | 5.8        | 33.2             | 104.05         | 114.00   | -9.95  | peak             |  |  |
| 2426         | 87.35                                                         | 26.3              | 5.8        | 33.2             | 86.25          | 94.00    | -7.75  | AVG              |  |  |
| 4852         | 52.36                                                         | 31.43             | 8.20       | 32.07            | 59.92          | 74.00    | -14.08 | peak             |  |  |
| 4852         | 35.86                                                         | 31.43             | 8.20       | 32.07            | 43.42          | 54.00    | -10.58 | AVG              |  |  |
| 7278         | 42.13                                                         | 35.82             | 10.85      | 31.36            | 57.44          | 74.00    | -16.56 | peak             |  |  |
| 7278         | 30.67                                                         | 35.82             | 10.85      | 31.36            | 45.98          | 54.00    | -8.02  | AVG              |  |  |
|              |                                                               |                   |            |                  |                |          |        |                  |  |  |
|              |                                                               |                   |            |                  |                |          |        |                  |  |  |
| Remark: Fact | temark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. |                   |            |                  |                |          |        |                  |  |  |

## Vertical:

|           |               | Antenna |            | Preamp |                 |          |           |          |
|-----------|---------------|---------|------------|--------|-----------------|----------|-----------|----------|
| Frequency | Meter Reading |         | Cable Loss | Factor | Emission Level  | Limits   | Margin    |          |
| Frequency | weter Reading | Facioi  | Cable Loss | Factor | Ellission Level | LIIIIIIS | iviargiri | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)        | (dBµV/m) | (dB)      | Type     |
| 2426      | 105.63        | 26.3    | 5.8        | 33.2   | 104.53          | 114.00   | -9.47     | peak     |
| 2426      | 86.33         | 26.3    | 5.8        | 33.2   | 85.23           | 94.00    | -8.77     | AVG      |
| 4852      | 53.12         | 31.43   | 8.20       | 32.07  | 60.68           | 74.00    | -13.32    | peak     |
| 4852      | 35.74         | 31.43   | 8.20       | 32.07  | 43.30           | 54.00    | -10.70    | AVG      |
| 7278      | 43.12         | 35.82   | 10.85      | 31.36  | 58.43           | 74.00    | -15.57    | peak     |
| 7278      | 28.01         | 35.82   | 10.85      | 31.36  | 43.32           | 54.00    | -10.68    | AVG      |
|           |               |         |            |        |                 |          |           |          |
|           |               |         |            |        |                 |          |           |          |

Report No.: HTT202303400F01 Page 16 of 21

Results of Band Edges Test (Radiated)
Operation Mode: GFSK (2426MHz)

. Horizontal

| Frequency                                                    | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector |  |  |
|--------------------------------------------------------------|---------------|--------|----------------|----------|--------|----------|--|--|
| (MHz)                                                        | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |  |  |
| 2390                                                         | 57.86         | -5.68  | 52.18          | 74       | -21.82 | peak     |  |  |
| 2390                                                         | 44.52         | -5.68  | 38.84          | 54       | -15.16 | AVG      |  |  |
| Pamarky Factor - Antonna Factor - Cable Logo - Dra amplifier |               |        |                |          |        |          |  |  |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

## Vertical:

| Frequency                                                    | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector |  |  |
|--------------------------------------------------------------|---------------|--------|----------------|----------|--------|----------|--|--|
| (MHz)                                                        | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |  |  |
| 2390                                                         | 56.75         | -5.68  | 51.07          | 74       | -22.93 | peak     |  |  |
| 2390                                                         | 44.27         | -5.68  | 38.59          | 54       | -15.41 | AVG      |  |  |
| Remark: Factor - Antenna Factor + Cable Loss - Pre-amplifier |               |        |                |          |        |          |  |  |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: HTT202303400F01 Page 17 of 21

Operation Mode: GFSK (2426MHz)

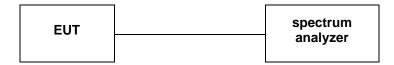
Horizontal

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|--------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
| 2483.5    | 55.28         | -5.85  | 49.43          | 74       | -24.57 | peak     |
| 2483.5    | 43.84         | -5.85  | 37.99          | 54       | -16.01 | AVG      |
|           |               |        | -              |          |        |          |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

#### Vertical:

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|--------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |
| 2483.5    | 56.84         | -5.85  | 50.99          | 74       | -23.01 | peak     |
| 2483.5    | 43.96         | -5.85  | 38.11          | 54       | -15.89 | AVG      |


Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Report No.: HTT202303400F01 Page 18 of 21

## 4.3. 20dB Bandwidth Measurement

## **TEST CONFIGURATION**



## **TEST PROCEDURE**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

## <u>LIMIT</u>

N/A

## **TEST RESULTS**

| Modulation | Channel | 20dB bandwidth<br>(MHz) | Result |
|------------|---------|-------------------------|--------|
| GFSK       | 01      | 0.8927                  | PASS   |

Note: 1.The test results including the cable lose.



Report No.: HTT202303400F01 Page 20 of 21

### 4.4. Antenna Requirement

#### **Standard Applicable**

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### **Antenna Information**

The maximum gain of antenna was 0.0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

Report No.: HTT202303400F01 Page 21 of 21

## 5. Test Setup Photos of the EUT

Reference to the appendix I for details

| 6. | Test | Photos | of the | EUT |
|----|------|--------|--------|-----|
|    |      |        |        |     |

Reference to the appendix II for details.

End of Report.....