TCT通测检测 TEST REPORT						
FCC ID :		2A525-AFF140				
Test Report No:	TCT230921E031	(C ^A)(C ^A)				
Date of issue:	May 07, 2024					
Testing laboratory::	SHENZHEN TONGCE TESTING					
Testing location/ address:	2101 & 2201, Zhenchang Facto Fuhai Subdistrict, Bao'an Distric 518103, People's Republic of Cl	t, Shenzhen, Guangdong,				
Applicant's name: :	Jiangsu Zhong Heng Pet Article	s Joint-stock CO., LTD				
Address:	NO.1388 Century Avenue, Yano Jiangsu, China	lu District, Yancheng City,				
Manufacturer's name :	Jiangsu Zhong Heng Pet Article	s Joint-stock CO., LTD				
Address:	NO.1388 Century Avenue, Yano Jiangsu, China	lu District, Yancheng City,				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013					
Product Name::	Pet Smart Video Feeder					
Trade Mark :	N/A					
Model/Type reference :	AFF140					
Rating(s):	Adapter Information: MODEL: HNDA050200U1 INPUT: AC 100-240V, 50/60Hz, 0.45A MAX OUTPUT: DC 5.0V, 2.0A DC 4.5V(3*AAA Battery)					
Date of receipt of test item	Sep. 21, 2023					
Date (s) of performance of test:	Sep. 21, 2023 ~ May 07, 2024					
Tested by (+signature) :	Onnado YE	Onnado ASONGCEPE				
Check by (+signature) :	Beryl ZHAO	Boyl 2 TCT				
Approved by (+signature):	Tomsin	Tomsm 43 84				
	oduced except in full, without the					

TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Pro							
	1.1. EUT des	cription						3
	1.2. Model(s)							
	1.3. Operatio	n Frequenc	;у					4
2.	Test Result	Summar	у					5
3.	General Inf							
	3.1. Test env	ironment a	nd mode.					6
	3.2. Descript	ion of Supp	ort Units					7
4.	Facilities a							
	4.1. Facilities	5						8
	4.2. Location							8
	4.3. Measure							
5.	Test Result	s and Me	asureme	ent Data .		<u>(G)</u>		9
	5.1. Antenna	requireme	nt					9
	5.2. Conduct	ed Emissio	n					10
	5.3. Maximun	n Conducte	ed (Averag	ge) Output	Power			14
	5.4. Emission	n Bandwidt	h					15
	5.5. Power S	pectral Den	sity					16
	5.6. Conduct	ed Band Ed	dge and S	purious Ei	mission M	easureme	nt	17
	5.7. Radiated	Spurious	Emission	Measurem	nent			19
Ap	opendix A: T	est Resu	It of Con	ducted 1	Fest			
Ap	opendix B: F	Photograp	ohs of Te	est Setup				
A	opendix C: F	Photograp	ohs of El	JT				

1. General Product Information

1.1. EUT description

Product Name:	Pet Smart Video Feeder
Model/Type reference:	AFF140
Sample Number:	TCT230921E031-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	FPC Antenna
Antenna Gain:	0.08dBi
Rating(s):	Adapter Information: MODEL: HNDA050200U1 INPUT: AC 100-240V, 50/60Hz, 0.45A MAX OUTPUT: DC 5.0V, 2.0A DC 4.5V(3*AAA Battery)

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Report No.: TCT230921E031

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
/	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
X	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

For 802.11n (HT40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
<u>(</u> ()	(5)5	2432MHz	8	2447MHz	G`)	(20
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 101

3. General Information

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	24.6 °C	24.6 °C			
Humidity:	53 % RH	53 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Software:					
Software Information:	8188FTV				
Power Level:	Default				
Test Mode:					
above the ground plane of 3 polarities were performed. If the EUT continuously worki axis (X, Y & Z) and con manipulating interconnection from 1m to 4m in both	Keep the EUT in continuous channel and modulations with Fully-charged battery 8m & 1.5m for the measure of the measure of the test, each emission of test, each e	th max duty cycle and ment below & above 1GHz h both horizontal and vertical h was maximized by: having g modes, rotated about all 3 h to obtain worst position, ble, varying antenna height plarizations. The emissions			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

3.2. Description of Support Units

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	/	1
(\mathcal{S})	201		¿G`)	$(\mathbf{z}\mathbf{G})$

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is FPC antenna which permanently attached, and the best case gain of the antenna is 0.08dBi.

inches - 61 3 4 00 5 molta 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 20 21 22 29 24 25 26 2

WIFI ANT

5.2. Conducted Emission

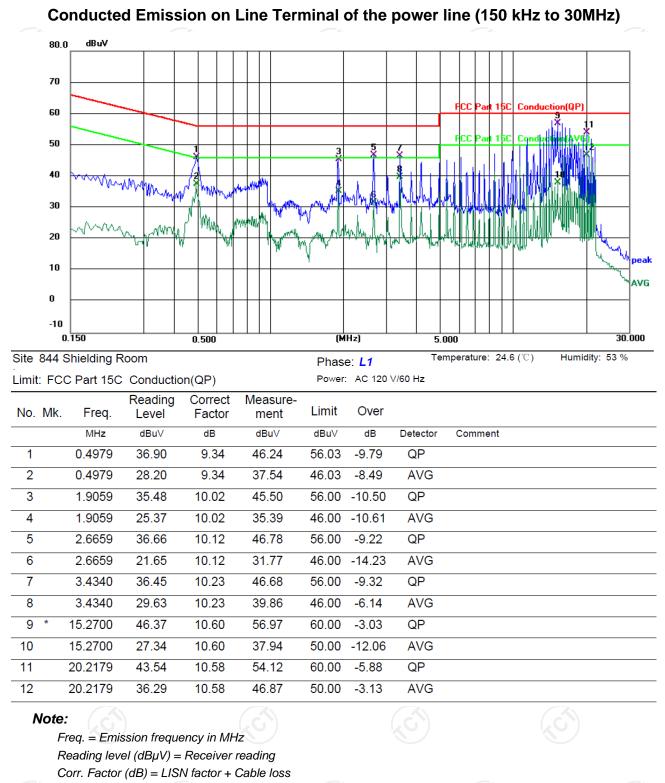
5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	3			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
Test Setup: Test Mode:	40cm 40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m Transmitting Mode	EMI Receiver	- AC power		
Test Procedure:	 The E.U.T is connelline impedance staprovides a 500hm/s measuring equipme The peripheral device power through a Licoupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface applied and the interface applied applied and the interface applied applied and the interface applied appl	bilization network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checkence. In order to fir e positions of equ	k (L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH nination. (Please test setup and d for maximum nd the maximum ipment and all o		
	the interface cables ANSI C63.10:2013		u		

Page 10 of 101

5.2.2. Test Instruments

Conc	Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024			
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025			
Line-5	тст	CE-05	/	Jul. 03, 2024			
EMI Test Software	Shurple Technology	EZ-EMC	1	1 6			
				e.			

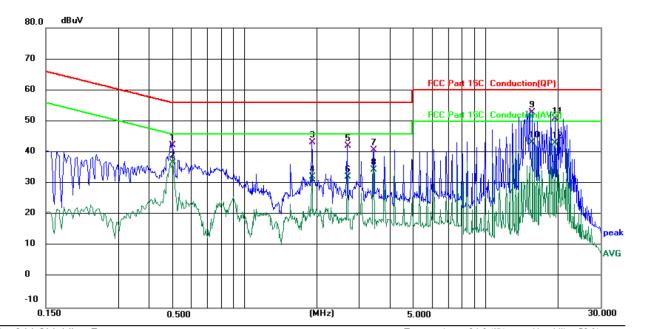


Page 11 of 101

5.2.3. Test data

TCT 通测检测 TCT 通测检测

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)


Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 12 of 101

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844	Shielding	Room			Pha	se: N	٦	Temperature: 24.6 (℃)	Humidity: 53 %
Limit: FO	CC Part 15	C Conduct	ion(QP)		Powe	er: AC 120	V/60 Hz		
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.5020	32.97	9.32	42.29	56.00	-13.71	QP		
2	0.5020	27.38	9.32	36.70	46.00	-9.30	AVG		
3	1.9060	33.32	9.97	43.29	56.00	-12.71	QP		
4	1.9060	22.32	9.97	32.29	46.00	-13.71	AVG		
5	2.6740	31.96	10.06	42.02	56.00	-13.98	QP		
6	2.6740	22.17	10.06	32.23	46.00	-13.77	AVG		
7	3.4380	30.58	10.15	40.73	56.00	-15.27	QP		
8	3.4380	24.27	10.15	34.42	46.00	-11.58	AVG		
9	15.6620	42.21	10.58	52.79	60.00	-7.21	QP		
10 *	15.6620	32.58	10.58	43.16	50.00	-6.84	AVG		
11	19.4700	40.40	10.50	50.90	60.00	-9.10	QP		
12	19.4700	32.58	10.50	43.08	50.00	-6.92	AVG		

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS

5.3.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
X	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
	Combiner Box	Ascentest	AT890-RFB	/	/

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (a)(2)				
Test Method:	KDB 558074 D01 v05r0	2				
Limit:	>500kHz					
Test Setup:						
	Spectrum Analyzer	EUT				
Test Mode:	Transmitting mode with	modulation				
Test Procedure:	EUT transmit continue 2. Make the measurement resolution bandwidth Video bandwidth (VE an accurate measure be greater than 500	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 				
Test Result:	PASS					

5.4.2. Test Instruments

X	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
	Combiner Box	Ascentest	AT890-RFB	(c) I	(CY

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
~	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
5	Combiner Box	Ascentest	AT890-RFB	1	1 8

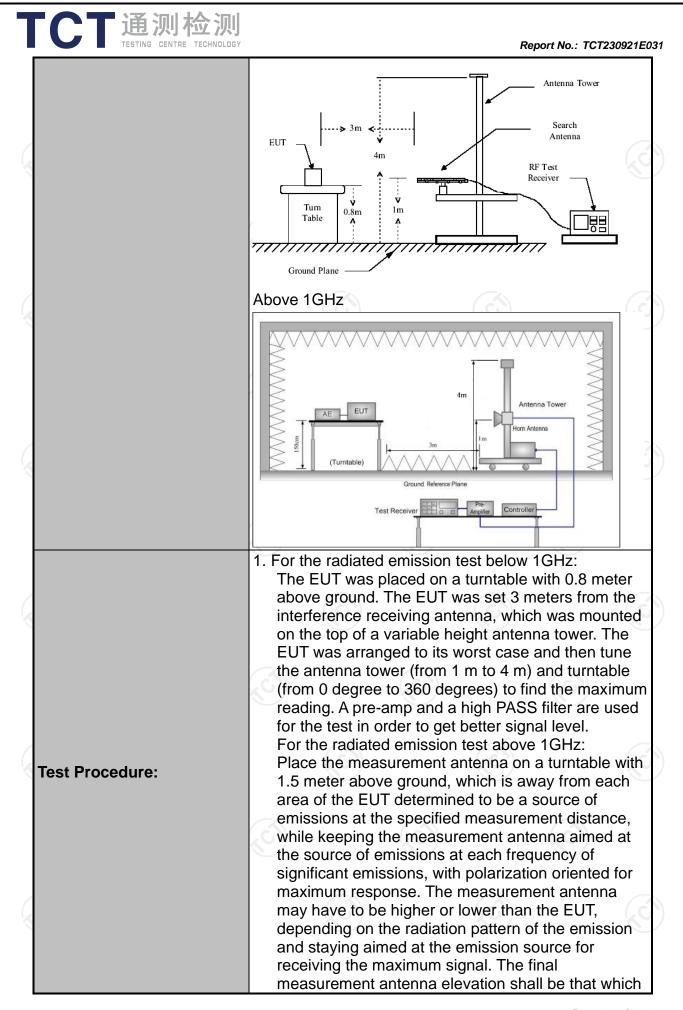
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the constraint for the standard of the standard
	against the limit line in the operating frequency band.

5.6.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
(Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Ň	Combiner Box	Ascentest	AT890-RFB	/	/



5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

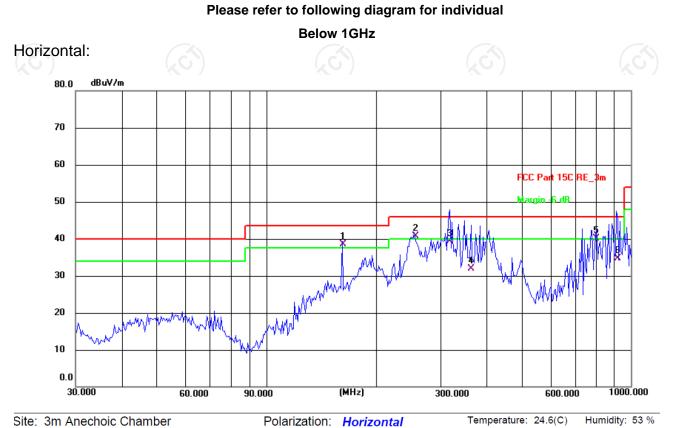
Test Requirement:	FCC Part15	C Sectior	n 15.209	<u>(</u> ()		
Test Method:	ANSI C63.10	0:2013	· · · · · · · · · · · · · · · · · · ·			
Frequency Range:	9 kHz to 25 (GHz				
Measurement Distance:	3 m	(x	<u>(</u> G)			
Antenna Polarization:	Horizontal &	Vertical	<u>.</u>			
Operation mode:	Transmitting	mode wit	th modulat	ion	(
	Frequency	Detector	RBW	VBW	Remark	
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-pea Quasi-pea		1kHz 30kHz	Quasi-peak Value Quasi-peak Value	
	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quasi-peak Value	
		Peak	1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
	Frequen		Field Stro (microvolts	/meter)	Measurement Distance (meters)	
	0.009-0.4		2400/F(I		300	
	0.490-1.7		24000/F(KHz) 30		30	
	30-88		100		30	
	88-216		150		3	
Limit:	216-96		200		3	
	Above 9	60	500		3	
	Frequency Above 1GHz	(micro	d Strength ovolts/meter) 500	Measure Distan (meter 3	ce Detector rs) Average	
			5000	3	Peak	
	For radiated	emission	s below 30)MHz		
	Di	stance = 3m			Computer	
	t) T r	Pre -/	Amplifier	
Test setup:	0.8m					
		Groun	d Plane			
	30MHz to 10	-Hz				

Page 19 of 101

Page 20 of 101

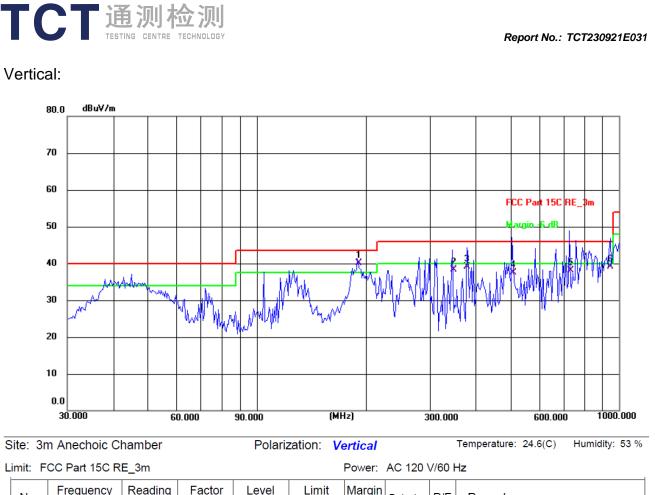
TESTING CENTRE TECHNOLOGY	Report No.: TCT230921E031
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the
	transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

5.7.2. Test Instruments


	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.7.3. Test Data



Limit: FCC Part 15C RE_3m

Power: AC 120 V/60 Hz

1										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1 *	161.4740	49.58	-11.08	38.50	43.50	-5.00	QP	Ρ	
	2!	254.7282	53.08	-12.28	40.80	46.00	-5.20	QP	Р	
ſ	3	318.8170	49.12	-9.72	39.40	46.00	-6.60	QP	Р	
	4	364.2595	41.12	-9.12	32.00	46.00	-14.00	QP	Ρ	
	5!	804.6027	41.64	-1.44	40.20	46.00	-5.80	QP	Ρ	
	6	912.8620	34.60	0.10	34.70	46.00	-11.30	QP	Ρ	

Page 23 of 101

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	189.7385	53.89	-13.79	40.10	43.50	-3.40	QP	Ρ	
2	346.8092	47.66	-9.26	38.40	46.00	-7.60	QP	Ρ	
3	379.9141	47.90	-8.80	39.10	46.00	-6.90	QP	Ρ	
4	506.4791	44.13	-6.53	37.60	46.00	-8.40	QP	Р	
5	729.3583	41.09	-2.89	38.20	46.00	-7.80	QP	Ρ	
6	945.4399	38.15	0.95	39.10	46.00	-6.90	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

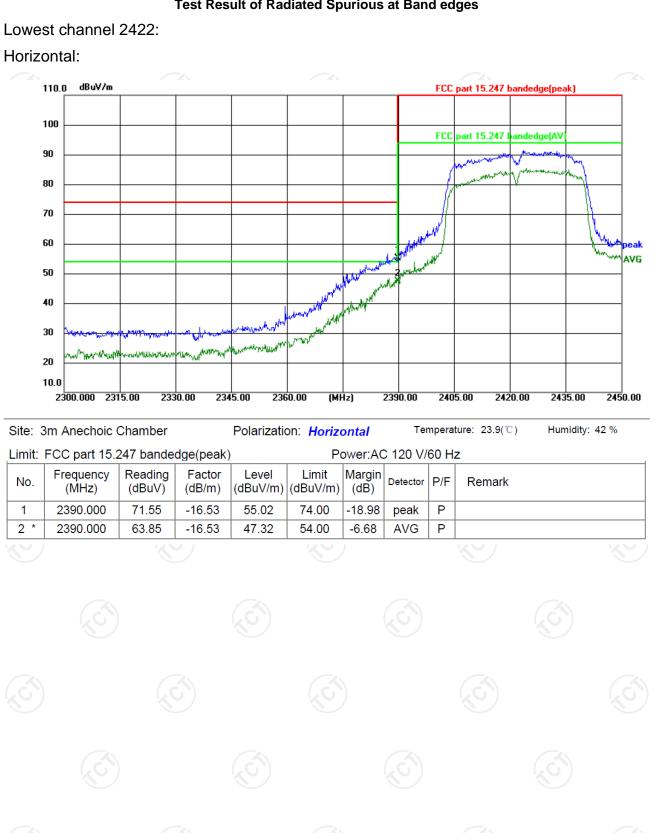
2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Lowest channel and 802.11b)) was submitted only.

 $Measurement (dB\mu V/m) = Reading \ level (dB\mu V) + Corr. \ Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

 $\textit{Margin (dB)} = \textit{Measurement (dB}\mu\textit{V/m}) - \textit{Limits (dB}\mu\textit{V/m})$


 * is meaning the worst frequency has been tested in the test frequency range.

Page 24 of 101

^{3.} Freq. = Emission frequency in MHz

Test Result of Radiated Spurious at Band edges

Page 25 of 101

110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 I andedge(AV 90 80 70 60 50 ide W 40 Mum AVG Martill 30 many market water man provide the second of the mathematic hash 20 10.0 2300.000 2315.00 2330.00 2345.00 2360.00 2390.00 2405.00 2450.00 (MHz) 2420.00 2435.00 Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.9(℃) Humidity: 42 % Power:AC 120 V/60 Hz Limit: FCC part 15.247 bandedge(peak)

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ĺ	1 *	2390.000	57.94	-16.53	41.41	74.00	-32.59	peak	Р	

Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20), 802.11n(HT0)), and the worst case Mode 802.11n(HT40)) was submitted only.

Report No.: TCT230921E031

Vertical:

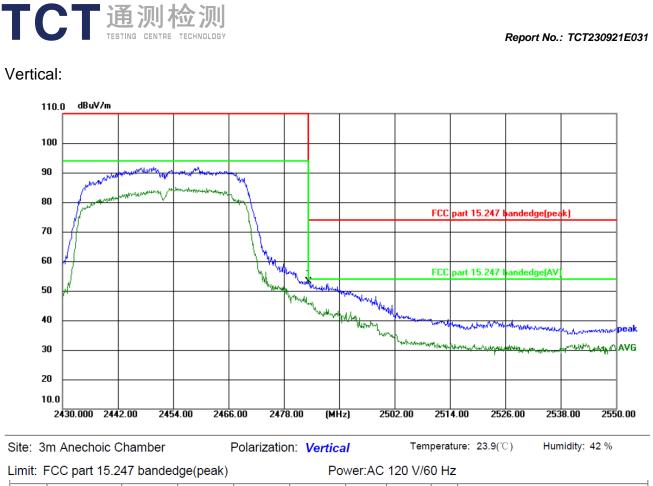
T(CTi		<mark>检测</mark> TECHNOLOGY							F	Report No.:	TCT23092	!1E031
Highe	st channel	2452:											
Horizo	ontal:												
1	10.0 dBuV/m												-
1	00												
9	0	the second											_
8	0	and and and the second s	and the second of the	man									
7	0 from and	weinen ter	and a second second second	m					FCC	part 15.247 I)andedge(pea	k)	_
6	o //			1									
5	o 🗐			14					FCC	part 15.247	andedge(AV)		-
4	o 🗸			h.	W.	1 min	www. huns due						
3					<u></u>	whet All and and	mon man a	Mr. Parton al	Harrhay	when we have a server	Aller and the second	-harmonitationed	_
2									~~4.\4JV#	We-Hallen W. W. W.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Horwann yr a rhyddyd	r AVG
	0.0]
	2430.000 244	2.00 245	4.00 246	6.00 2	478.00) (MI	lz) i	2502.00	251	4.00 252	6.00 253	8.00 25	50.00
Site: 3	m Anechoic (Chamber		Polariza	tion:	Horizo	ontal	Ter	mpera	ture: 23.9(°) Hum	nidity: 42 %	>
Ļimit: F	CC part 15.2	47 bande	dge(peak)			P	ower:AC	2 120 V/	60 H	z			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/n		Limit 3uV/m)	Margin (dB)	Detector	P/F	Remark			

1 *

2483.500

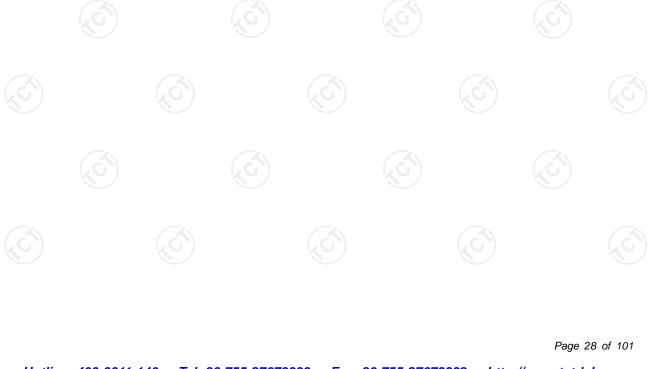
74.00

-30.43


peak

Ρ

-16.43


43.57

60.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	69.47	-16.43	53.04	74.00	-20.96	peak	Ρ	

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11n(HT40) was submitted only.

Above 1GHz Modulation Type: 802.11b Low channel: 2412 MHz AV reading Correction **Emission Level** Peak Frequency Ant. Pol. Peak limit AV limit Margin reading Factor Peak AV (MHz) (dBuV) (dBµV/m) (dBµV/m) (dB) H/V (dBµV) (dB/m) (dBµV/m) (dBµV/m) 74 4824 -8.80 Н 44.45 ---0.75 45.20 54 7236 Н 32.28 ---9.87 42.15 ---74 54 -11.85 ---Н ------------------------4824 V 43.35 0.75 44.10 74 -9.90 54 ------7236 V 32.19 42.06 74 -11.94 ----9.87 ----54 V ----------------------___ ---

			Mi	ddle chann	el: 2437 MI	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	43.22		0.97	44.19		74	54	-9.81
7311	Н	31.18		9.83	41.01		74	54	-12.99
	H				(
			KO.)	X	6			
4874	V	41.34		0.97	42.31		74	54	-11.69
7311	V	30.96		9.83	40.79		74	54	-13.21
	V								
				(,					

			Н	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	42.43		1.18	43.61		74	54	-10.39
7386	H	32.97		10.07	43.04		74	54	-10.96
	Η								
4924	V	41.75		1.18	42.93		74	54	-11.07
7386	V	31.87		10.07	41.94		74	54	-12.06
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

CT通测检测 TESTING CENTRE TECHNOLOGY

TC		的加检					Rep	ort No.: TCT2	30921E031
			Μ	odulation T	ype: 802.1 ⁻	1g			
			L	ow channe.	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	43.68		0.75	44.43		74	54	-9.57
7236	Н	33.60		9.87	43.47		74	54	-10.53
	Н			()				
4824	V	42.09		0.75	42.84		74	54	-11.16
7236	N	32.48	()	9.87	42.35	×	74	54	-11.65
	V)	(<u>G)</u>		(<u>_G</u>)	

	Middle channel: 2437 MHz													
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)					
4874	Н	42.13		0.97	43.10		74	54	-10.90					
7311	Н	31.76		9.83	41.59		74	54	-12.41					
	Н													
				6	(
4874	V	39.89	<u> </u>	0.97	40.86	<u> </u>	74	54	-13.14					
7311	V	31.03		9.83	40.86		74	54	-13.14					
	V													

			h H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	42.87		1.18	44.05		74	54	-9.95
7386	H	32.26		10.07	42.33	<u> </u>	74	54	-11.67
	H			/	`	<u> </u>			
4924	V	43.64		1.18	44.82		74	54	-9.18
7386	V	32.88		10.07	42.95		74	54	-11.05
()	V	C ut		(, 0	5)		$\mathcal{S}^{\rightarrow}$		

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		的加松					Repo	ort No.: TCT2	30921E031
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	41.33		0.75	42.08		74	54	-11.92
7236	Н	29.08		9.87	38.95		74	54	-15.05
	Н			()				
4824	V	42.26		0.75	43.01		74	54	-10.99
7236	N	31.98	()	9.87	41.85		74	54	-12.15
	V)	(<u> </u>			

			Mi	ddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	41.49		0.97	42.46		74	54	-11.54
7311	Н	32.72		9.83	42.55		74	54	-11.45
	Н								
				2	(
4874	V	44.43	<u> </u>	0.97	45.40	0)	74	54	-8.60
7311	V	32.72		9.83	42.55		74	54	-11.45
	V								

(c)		(6)	F	ligh channe	el: 2462 MH	Z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	40.63		1.18	41.81		74	54	-12.19
7386	Н	31.04		10.07	41.11	<u> </u>	74	54	-12.89
	H			/		<u> </u>		×	
4924	V	41.92		1.18	43.10		74	54	-10.90
7386	V	32.58		10.07	42.65		74	54	-11.35
	V			(, ($\mathcal{S}^{\rightarrow}$		
Madai			7						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		的加枪					Repo	ort No.: TCT2	30921E031
			Modu	lation Type	: 802.11n (l	HT40)			
			L	ow channe	I: 2422 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	39.99		0.75	40.74		74	54	-13.26
7266	Н	30.85		9.87	40.72		74	54	-13.28
	Н			()	····				
4824	V	41.79		0.75	42.54		74	54	-11.46
7236	V	32.43		9.87	42.30		74	54	-11.70
	V)	(<u> </u>			

			Mi	iddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	43.32		0.97	44.29		74	54	-9.71
7311	Н	33.31		9.83	43.14		74	54	-10.86
	Н								
				6	(
4874	V	44.59	<u> </u>	0.97	45.56	0)	74	54	-8.44
7311	V	35.86		9.83	45.69		74	54	-8.31
	V								

		() F	ligh channe	el: 2452 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H_	40.93		1.18	42.11		74	54	-11.89
7356	H	29.77		10.07	39.84	<u> </u>	74	54	-14.16
	Н			/	X	<u> </u>			
4904	V	43.34		1.18	44.52		74	54	-9.48
7356	V	30.68		10.07	40.75		74	54	-13.25
	V	UT C		(, (
Mada			/						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

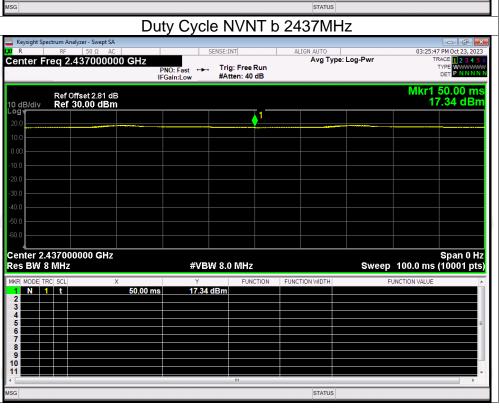
		Duty	/ Cycle	
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	b	2412	100	0
NVNT	b	2437	100	0
NVNT	b	2462	100	0
NVNT	g	2412	100	0
NVNT	g	2437	100	0
NVNT	g	2462	100	0
NVNT	n20	2412	100	0
NVNT	n20	2437	100	0
NVNT	n20	2462	100	0
NVNT	n40	2422	100	0
NVNT	n40	2437	100	0
NVNT	n40	2452	100	0,0

Page 33 of 101

TCT通测检测 TESTING CENTRE TECHNOLOGY

10 dB/di∖ Log**√**

Keysight Spectrum Analyzer - Swept SA


Center 2.412000000 GHz Res BW 8 MHz

N 1 t

10 11

Center Freq 2.412000000 GHz

Ref Offset 2.72 dB Ref 30.00 dBm

Test Graphs Duty Cycle NVNT b 2412MHz

1

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB

#VBW 8.0 MHz

18.37 dBm

50.00 ms

Avg Type: Log-Pwr

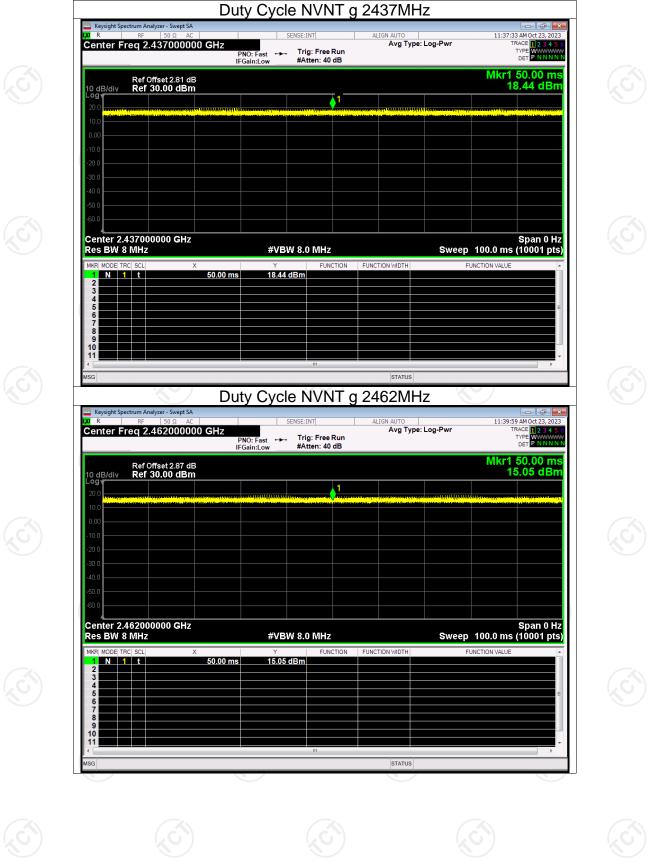
Report No.: TCT230921E031

03:20:59 PM Oct 23, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWW DET PNNNN

Mkr1 50.00 ms 18.37 dBm

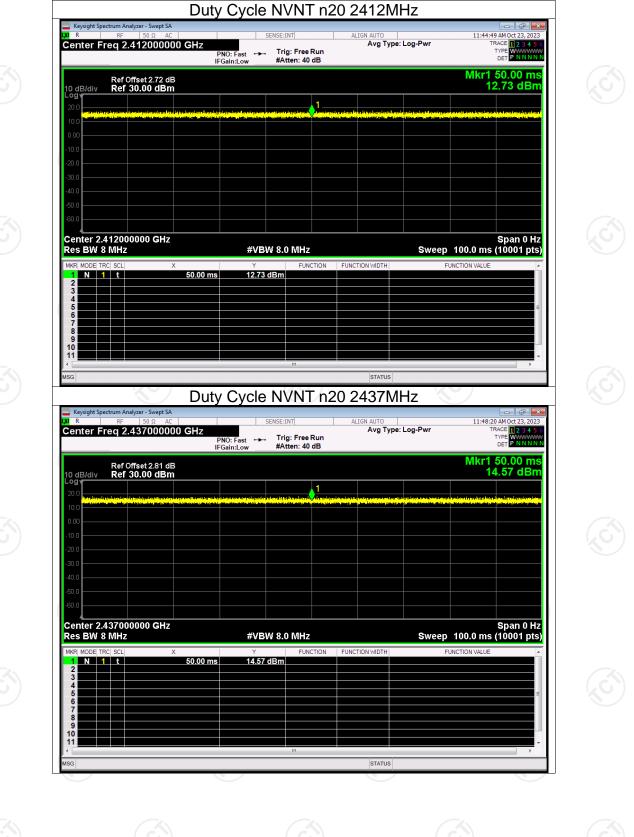
Span 0 Hz Sweep 100.0 ms (10001 pts)

STATUS

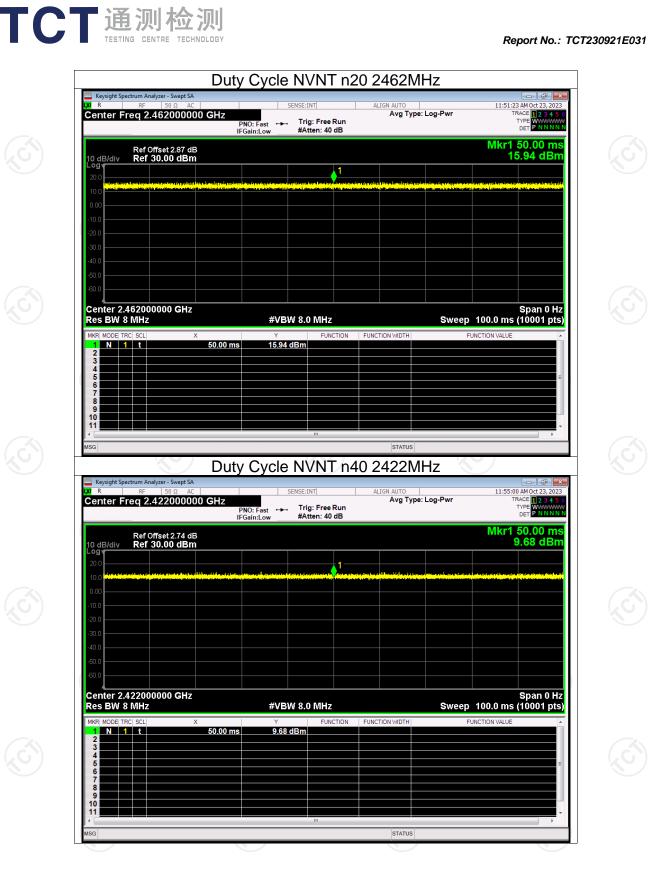

Center Freq 2.462000000 GHz	PNO: Fast Irig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N
	IFGain:Low #Atten: 40 dB		Mkr1 50.00 ms
Ref Offset 2.87 dB 10 dB/div Ref 30.00 dBm			15.51 dBm
Log	1		
20.0			
0.00			
-10.0			
-20.0			
-30.0			
-40.0			
-50.0			
-60.0			
Center 2.462000000 GHz	<u>, </u>		Span 0 Hz
Res BW 8 MHz	#VBW 8.0 MHz		o 100.0 ms (10001 pts)
MKR MODE TRC SCL X 1 N 1 t 50.0	Y FUNCTION 0 ms 15.51 dBm	FUNCTION WIDTH	FUNCTION VALUE
2 3			
4			=
6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
8			
10			
			*
•			•
< SG		STATUS	
Keysight Spectrum Analyzer - Swept SA	Duty Cycle NVNT g	2412MHz	
Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC	SENSE:INT		11:34:28 AM Oct 23, 2023
Keysight Spectrum Analyzer - Swept SA	SENSE:INT	2412MHz	11:34:28 AM Oct 23, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PINNIN
Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.412000000 GHz	SENSE:INT PNO: Fast Trig: Free Run	2412MHz	11:34:28 AM Oct 23, 2023 TRACE 12 34 5 6 TYPE WWWWWW DET PNNNNN Mkr1 50.00 ms
Reysight Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm	PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 40 dB	2412MHz	11:34:28 AM Oct 23, 2023 TRACE 2 3 4 5 6 TYPE WWWWW DET P NNNNN
Reysight Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm	SENSE:INT PNO: Fast Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AM Oct 23, 2023 TRACE 12 34 5 6 TYPE WWWWWW DET PNNNNN Mkr1 50.00 ms
Keysight Spectrum Analyzer - Swept SA R RF 50.Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Keysight Spectrum Analyzer - Swept SA R R R F SOΩ AC Center Freq 2.412000000 GHz IO GB/div Ref Offset 2.72 dB Cog Cog Contertum Contertum Source Action Cog	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Reysight Spectrum Analyzer - Swept SA R R 50 Ω AC Center Freq 2.412000000 GHz 10 dB/div Ref Offset 2.72 dB 200 Ref 30.00 dBm 00 100	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Reysight Spectrum Analyzer - Swept SA R S0 Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm Ref 30.00 dBm 20 0 0.00 0Hz Ref 30.00 dBm Ref 30.00 dBm Ref 30.00 dBm 20 0 0.00 0Hz Ref 30.00 dBm Ref 30.00 dBm Ref 30.00 dBm 20 0 0.00 0Hz Ref 30.00 0Hz Ref 30.00 0Hz Ref 30.00 0Hz	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Reysight Spectrum Analyzer - Swept SA R R SO Ω AC Center Freq 2.412000000 GHz 10 dB/div Ref Offset 2.72 dB 200 Ref 30.00 dBm 200 Ref 30.00 dBm 200 Ref 30.00 dBm 300 Ref 30.00 dBm	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Reysight Spectrum Analyzer - Swept SA R S0 Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm Ref 30.00 dBm 20 0 0.00 0Hz Ref 30.00 dBm Ref 30.00 dBm Ref 30.00 dBm 30 0 0.00 0Hz 0.00 0Hz 0.00 0Hz 0.00 0Hz 40 0 0.00 0Hz 0.00 0Hz 0.00 0Hz 0.00 0Hz	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Reysight Spectrum Analyzer - Swept SA R S0 Ω AC R R F 50 Ω AC Center Freq 2.412000000 GHz Conterr Freq 2.412000000 GHz Ref Offset 2.72 dB Centerr Freq 2.412000000 GHz Centerr Freq 2.412000000 GHz Conterr Freq 2.412000000 GHz Ref Offset 2.72 dB Centerr Freq 2.412000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.412000000 GHz Ref 30.00 dBm Centerr Freq 2.4120000000 GHz Conterr Freq 2.4120000000 GHz Ref 30.00 dBm Centerr Freq 2.41200000000 GHz Conterr Freq 2.4120000000 GHz Ref 30.00 dBm Centerr Freq 2.41200000000000000000000000000000000000	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Keysight Spectrum Analyzer - Swept SA R RF 50Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm Ref 30.00 dBm 200 0 0 0 0 0 0 10 dB/div Ref 30.00 dBm 0 0 0 0 0 10 dB/div Ref 30.00 dBm 0 0 0 0 0 10 dB/div Ref 30.00 dBm 0 <td< td=""><td>PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB</td><td>2412MHz</td><td>11:34:28 AMOR 23,2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PINNINN MKr1 50.00 ms 16.08 dBm</td></td<>	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	2412MHz	11:34:28 AMOR 23,2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PINNINN MKr1 50.00 ms 16.08 dBm
Keysight Spectrum Analyzer - Swept SA R RF 50.0 AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref Offset 2.72 dB Ref Offset 2.72 dB 10 dB/div Ref 30.00 dBm 00	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	2412MHz	11:34:28 AMOR 23,2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PINNINN MKr1 50.00 ms 16.08 dBm
Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.4.12000000 GHz Ref Offset 2.72 dB Context and the set of the s	Z PNO: Fast IFGain:Low #Atten: 40 dB 1 1 1 1 1 1 1 1 1 1 1 1 1	2412MHz	11:34:28 AMOdt 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWW DET P NNNNN Mkr1 50.00 ms 16.08 dBm
Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.4.12000000 GHz Ref 30.00 dBm Context of the second se	Z PNO: Fast IFGain:Low #Atten: 40 dB 1 1 1 1 1 1 1 1 1 1 1 1 1	2412MHz	11:34-28 AMORT 23,2023 TRACE 1/2 23 5 G TYPE WANNING DET PININUN Mkr1 50.00 ms 16.08 dBm
Keysight Spectrum Analyzer - Swept SA R RF S0 Q AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref 30.00 dBm Content of the second se	PNO: Fast → Trig: Free Run IFGain:Low 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2412MHz	11:34-28 AMORT 23,2023 TRACE 1/2 23 5 G TYPE WANNING DET PININUN Mkr1 50.00 ms 16.08 dBm
Reprint Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.412000000 GHz Ref Offset 2.72 dB Ref Offset 2.72 dB Ref Offset 2.72 dB 10 dB/div Ref 30.00 dBm 8000 800 800	PNO: Fast → Trig: Free Run IFGain:Low 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2412MHz	11:34-28 AMORT 23,2023 TRACE 1/2 23 5 G TYPE WANNING DET PININUN Mkr1 50.00 ms 16.08 dBm

Duty Cycle NVNT b 2462MHz

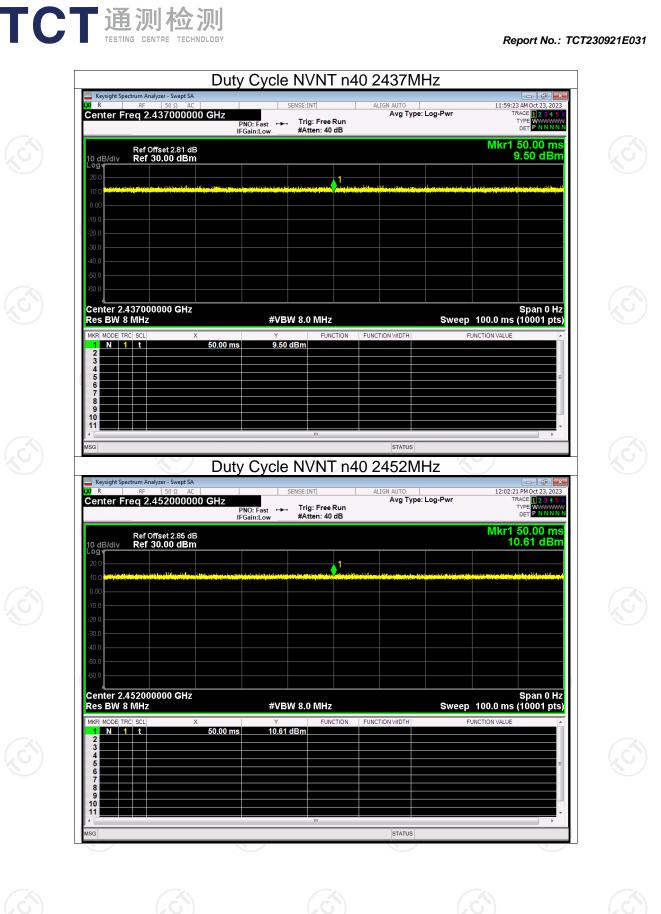
TCT 通测检测 TESTING CENTRE TECHNOLOGY

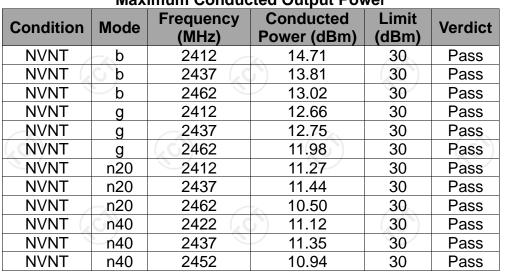

Report No.: TCT230921E031

Page 35 of 101



TCT通测检测 TESTING CENTRE TECHNOLOGY

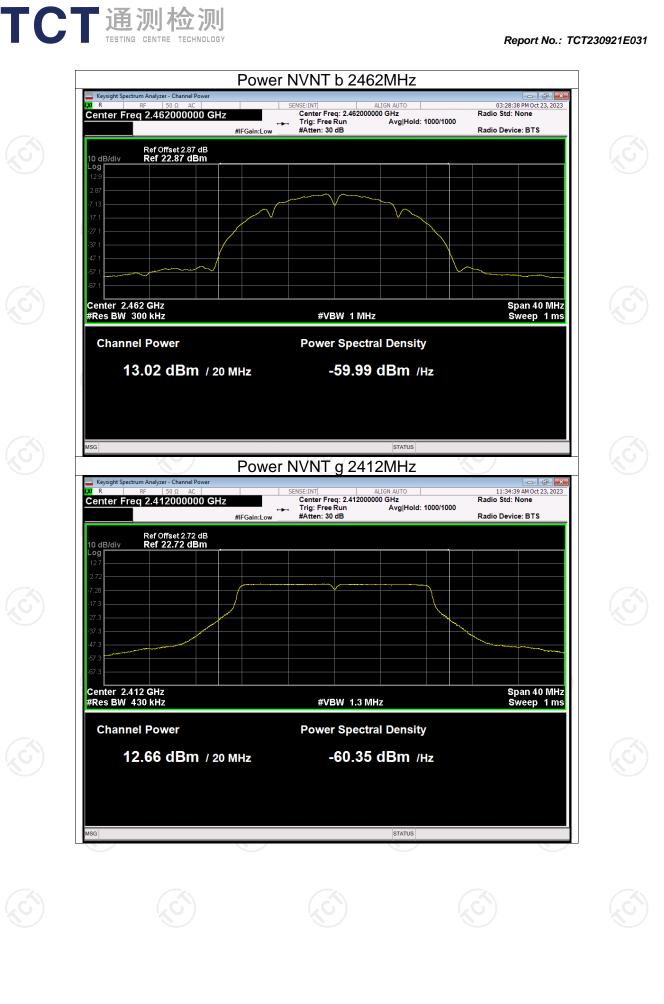

Report No.: TCT230921E031

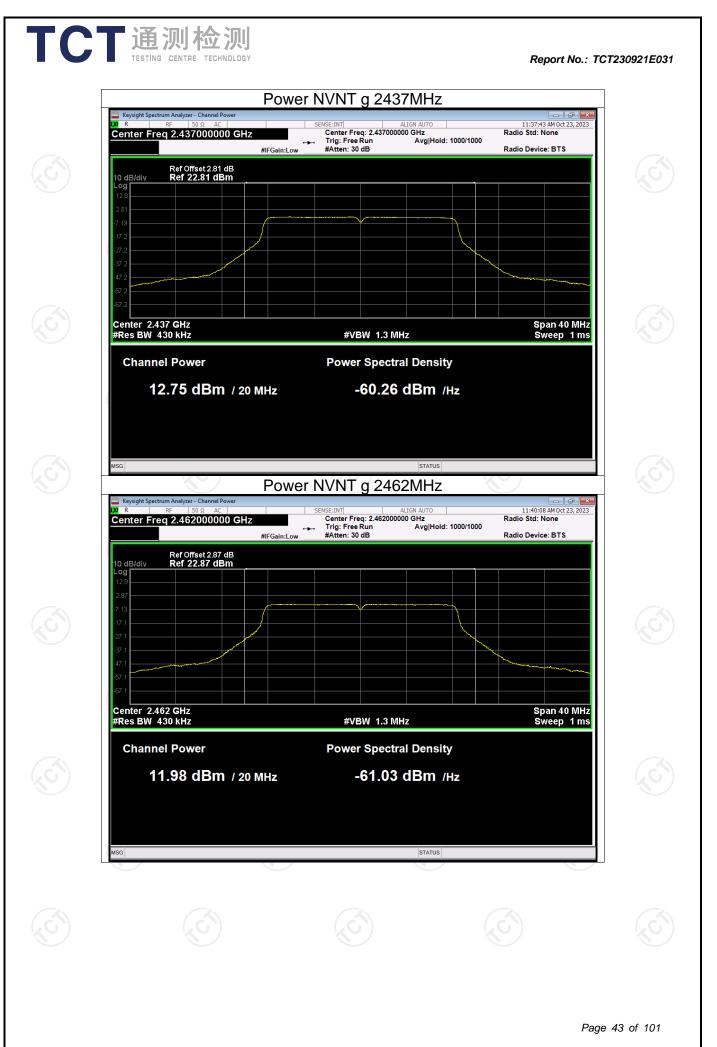

TCT通测检测 TESTING CENTRE TECHNOLOGY

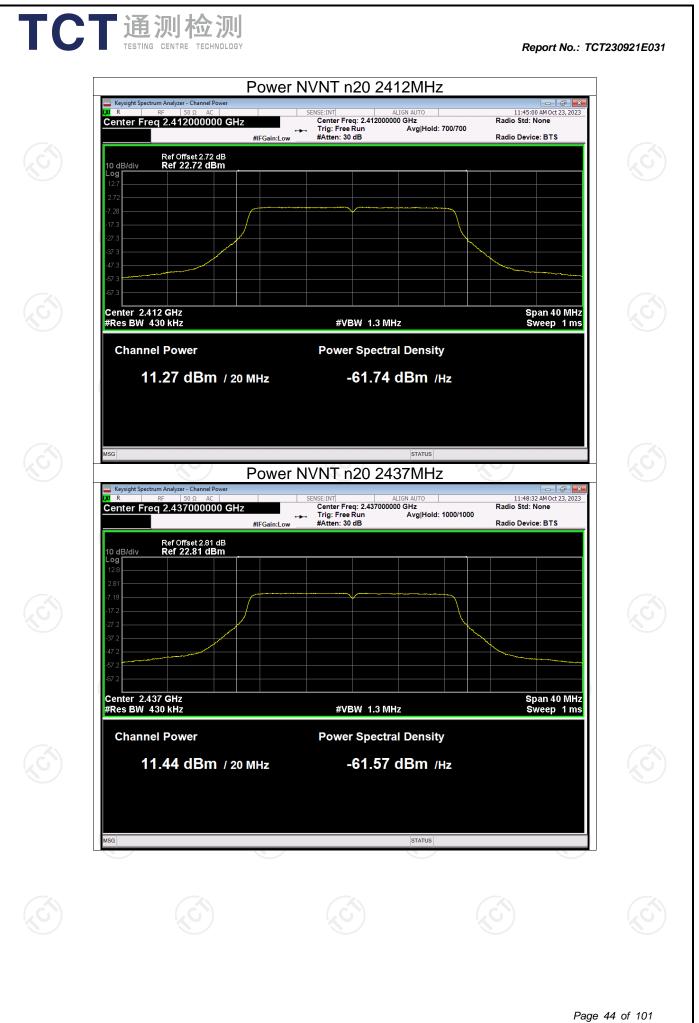
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

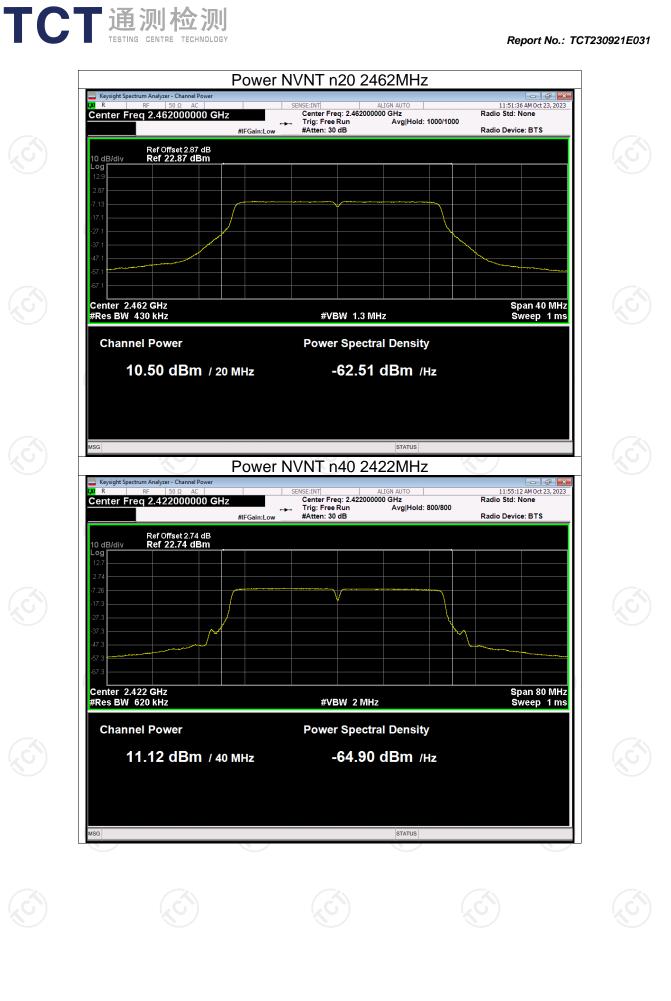
Report No.: TCT2	230921E031
------------------	------------

Maximum Conducted Output Power

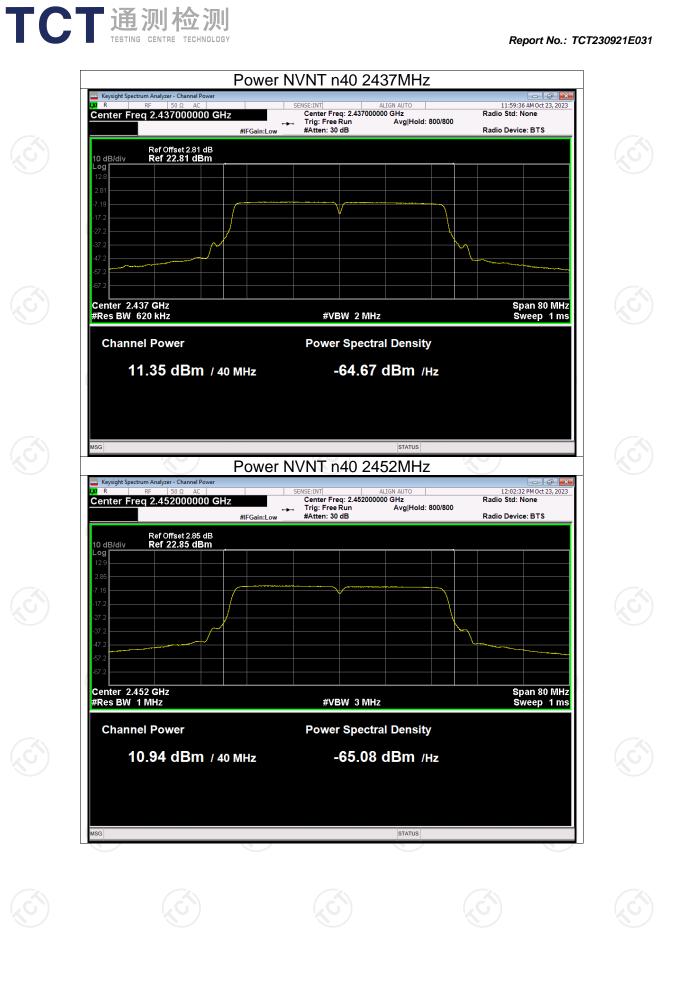



Page 40 of 101


Page 41 of 101

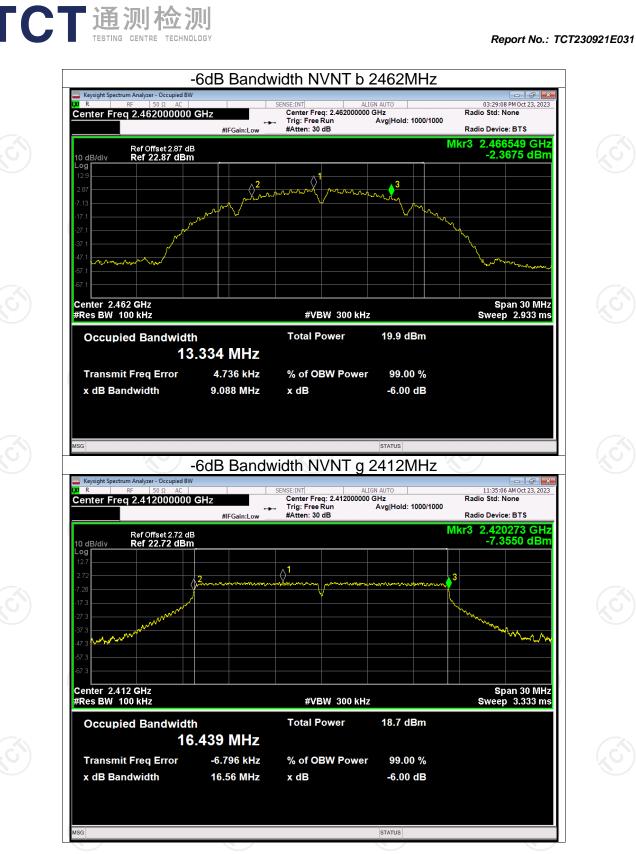


Page 42 of 101



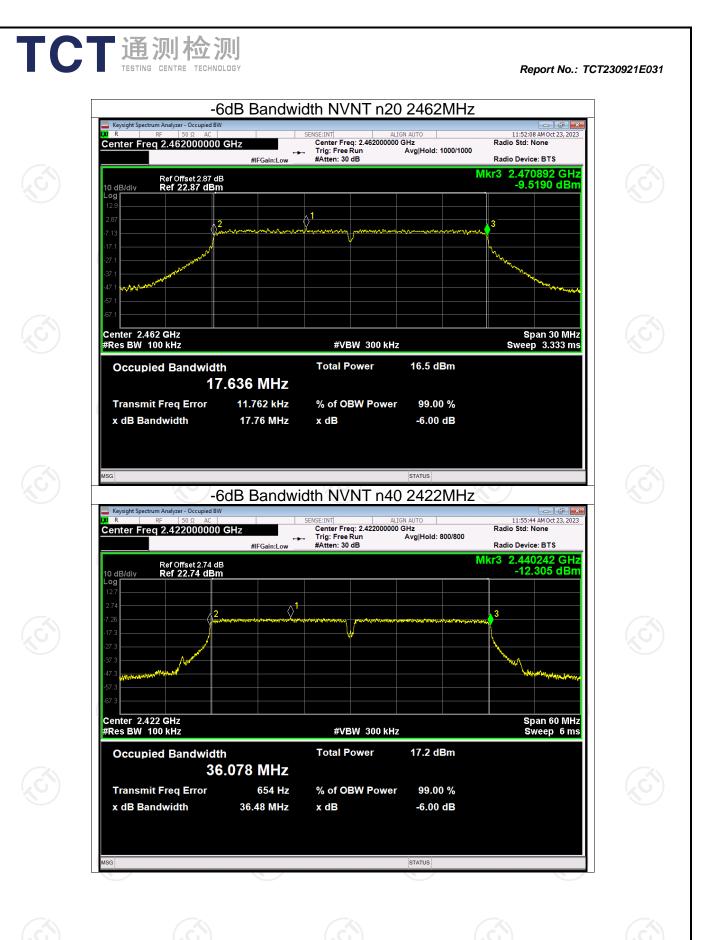
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

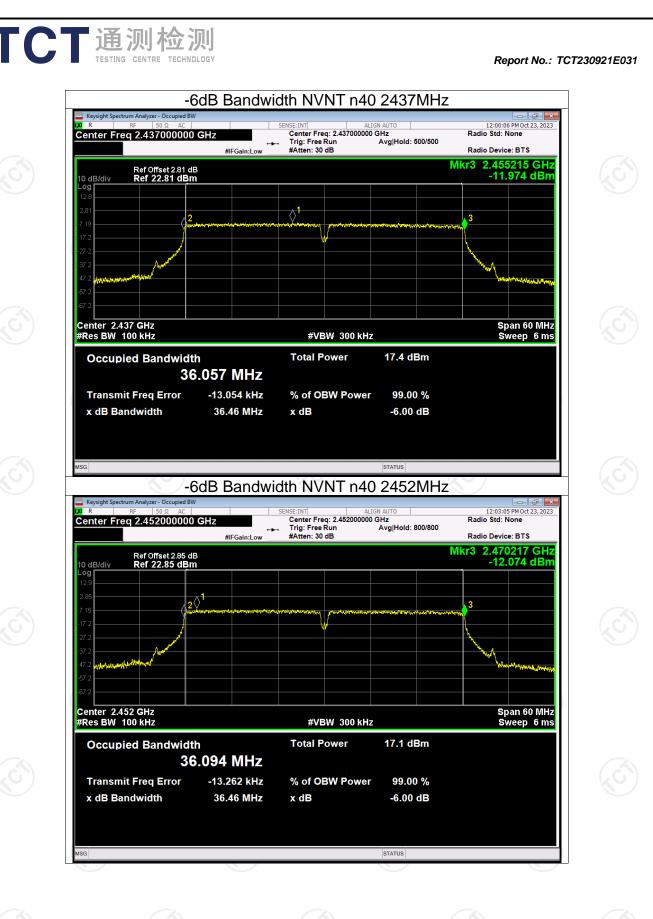
Page 45 of 101


Page 46 of 101

СТ	通	测	检	测
	TESTING	CENTR	RE TECH	NOLOGY

	-6dB Bandwidth						
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict		
NVNT	b	2412	9.083	0.5	Pass		
NVNT	b	2437	9.080	0.5	Pass		
NVNT	b	2462	9.088	0.5	Pass		
NVNT	g	2412	16.559	0.5	Pass		
NVNT	g	2437	16.553	0.5	Pass		
NVNT	g	2462	16.566	0.5	Pass		
NVNT	n20	2412	17.721	0.5	Pass		
NVNT	n20	2437	17.699	0.5	Pass		
NVNT	n20	2462	17.760	0.5	Pass		
NVNT	n40	2422	36.482	0.5	Pass		
NVNT	n40	2437	36.456	0.5	Pass		
NVNT	n40	2452	36.461	0.5	Pass		




Page 49 of 101

Page 52 of 101

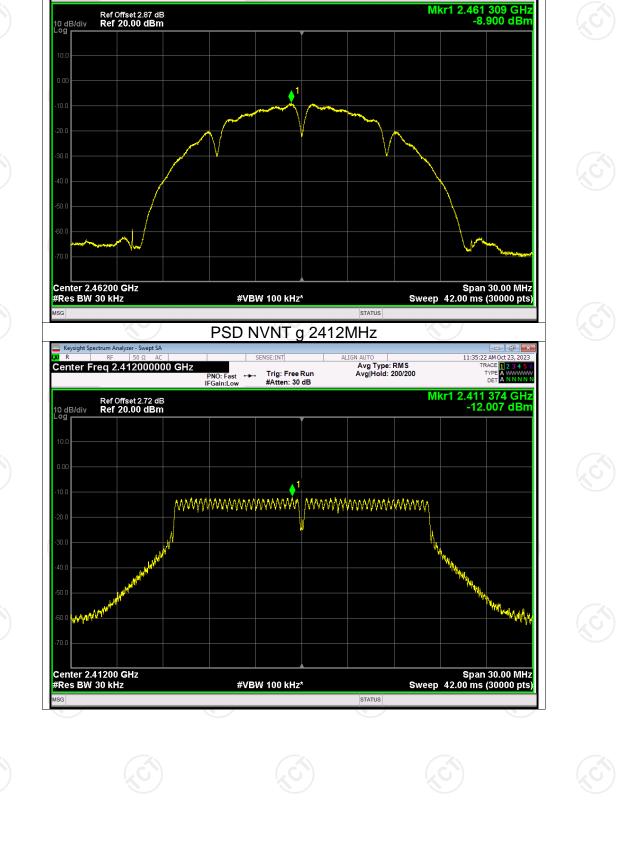
Page 53 of 101

Report No.: TCT230921E031

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-7.20	-17.20	8	Pass
NVNT	b	2437	-8.21	-18.21	8	Pass
NVNT	b	2462	-8.90	-18.90	8	Pass
NVNT	g	2412	-12.01	-22.01	8	Pass
NVNT	g	2437	-11.61	-21.61	8 ()	Pass
	g	2462	-12.93	-22.93	8	Pass
NVNT	n20	2412	-13.54	-23.54	8	Pass
NVNT	n20	2437	-13.62	-23.62	- 8	Pass
NVNT	n20	2462	-14.60	-24.60	6 8	Pass
NVNT	n40	2422	-16.61	-26.61	8	Pass
NVNT	n40	2437	-16.51	-26.51	8	Pass
NVNT	n40	2452	-17.50	-27.50	8	Pass

Maximum Power Spectral Density Level

Note: Result[dBm/3kHz] = Result[dBm/30kHz] +10log(3kHz/30kHz)



TCT通测检测 TESTING CENTRE TECHNOLOGY

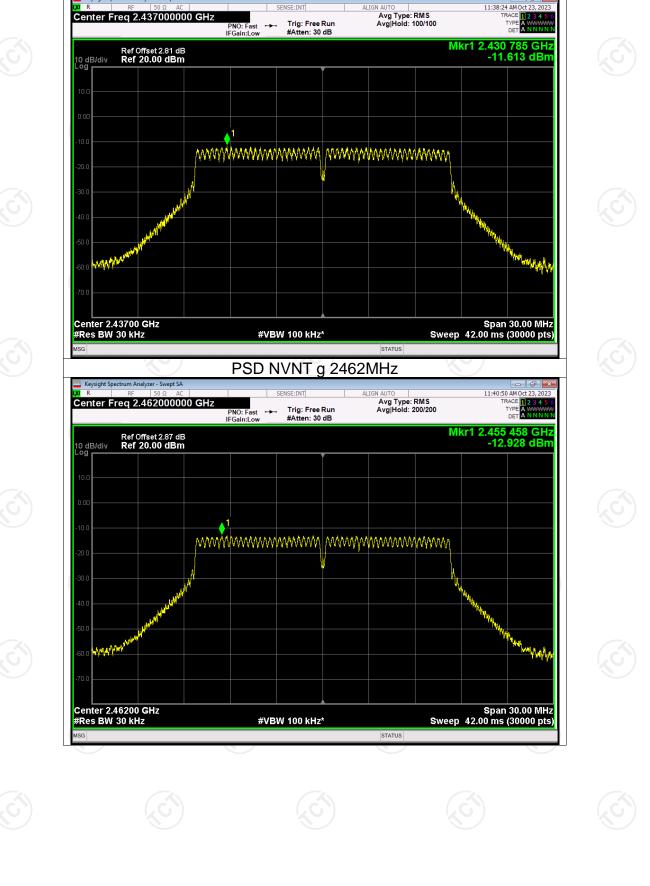
Page 55 of 101

PSD NVNT b 2462MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low ALTGN AL

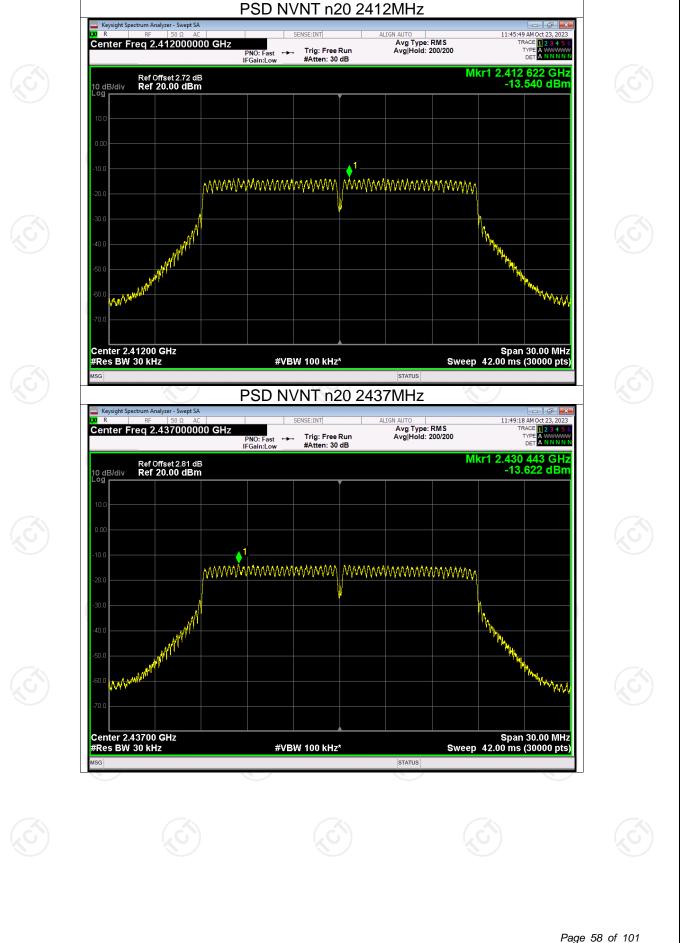
Avg Type: RMS Avg|Hold: 200/200


0 R

Keysight Spectrum Analyzer - Swept SA

Center Freg 2.462000000 GHz

Report No.: TCT230921E031


03:29:27 PM Oct 23, 2 TRACE 1 2 3 TYPE A WW DET A N N

PSD NVNT g 2437MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept S

TCT通测检测 TESTING CENTRE TECHNOLOGY

PSD NVNT n20 2462MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

ALTGN AL

Avg Type: RMS Avg|Hold: 200/200

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight Spe

10 dB/div Log

0 R

trum Analyzer - Swept S

Ref Offset 2.87 dB Ref 20.00 dBm

Center Freg 2.462000000 GHz

Report No.: TCT230921E031

Page 59 of 101

11:52:28 AM Oct 23, TRACE 1 2 3 TYPE A WW DET A NN

TYP

Mkr1 2.462 635 GHz -14.599 dBm

PSD NVNT n40 2437MHz

Keysight Spectrum Analyzer - Swept SA

Band Edge						
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	b	2412	-58.84	-30	Pass	
NVNT	b	2462	-59.46	-30	Pass	
	g	2412	-49.01	-30	Pass	
NVNT	g	2462	-46.26	-30	Pass	
NVNT	n20	2412	-50.89	-30	Pass	
NVNT	n20	2462	-49.72	-30	Pass	
	n40	2422	-43.04	-30	Pass	
NVNT	n40	2452	-43.50	-30	Pass	

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page	61	of	101

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT230921E031

Page 62 of 101

Band Edge NVNT b 2462MHz Ref 🔤 Keysight S 03:29:50 PM Oct 23, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 2.461 52 GHz 3.648 dBm Ref Offset 2.87 dB Ref 20.00 dBm 10 dB/div Loa AAAM MAAAAAA mm M M Mar and Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT b 2462MHz Emission er - Swept SA Keysight Sp d R 03:30:22 PM Oc Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.497000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low -----Mkr1 2.461 5 GHz 3.645 dBm Ref Offset 2.87 dB Ref 20.00 dBm 10 dB/div Log **r** ()²⁴ \Diamond^3 Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION 1 f 1 f 1 f -56.502 dBm -57.574 dBm -55.811 dBm 2.500 0 GHz 2.484 1 GHz N 10 11 STATUS

Band Edge NVNT g 2412MHz Ref 11:35:42 AM Oct 23, TRACE Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freq 2.412000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 2.409 51 GHz -1.602 dBm Ref Offset 2.72 dB Ref 20.00 dBm <mark>≜</mark>1 MMMM Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight Sp K/R

10 dB/div Log

ww

Band Edge NVNT g 2412MHz Emission

R RE !							- ē
	50 Ω AC	SENSE:I	NT	ALIGN AUTO	Len Dum		14 AM Oct 23, 2
enter Freq 2.377	7000000 GHz	PNO: Fast 🛶 Trig	a: Free Run	Avg Type Avg Hold:			TYPE
			ten: 30 dB				DET PNN
						Mkr1 2.4	109 5 C
Ref Offse							.585 dE
0 dB/div Ref 20.0	00 dBm					-1	.585 UL
10.0			Ť				
						1	
00.0						and the second second	****
10.0						<mark></mark>	
20.0							
30.0							
40.0				A4	and a		
50.0				23 more	~r~		
50.0 Marter mart	and an and from the states and the	awyound a frances and	manner	anne fre have a free the second			
70.0							
			k				
tart 2.32700 GHz		-#2 (D) W 0.0	A 1.11-		•	stop 2 p 9.600 m	.42700 G
						.0 9.000.011	
Res BW 100 kHz		#VBW 30	U KHZ		01100		5 (1001)
	Х	Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	5 (1001)
KR MODE TRC SCL	2.409 5 GHz	۲ -1.585 dBm		FUNCTION WIDTH		•	5 (1001)
	2.409 5 GHz 2.400 0 GHz	-1.585 dBm -37.662 dBm		FUNCTION WIDTH		•	5 (1001)
KR MODE TRC SCL	2.409 5 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	5 (1001)
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	5 (1001)
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6 6 6	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	5 (1001)
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6 6 6 7 8 8 8 9 9 1 1	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	5 (1001)
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm		FUNCTION WIDTH		•	5 (1001)
Image: Model Trcl Scl Image: Non-Image:	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm	FUNCTION			•	
3 N 1 f 4 N 1 f 5 6 7 8	2.409 5 GHz 2.400 0 GHz 2.390 0 GHz	Y -1.585 dBm -37.662 dBm -52.920 dBm	FUNCTION	FUNCTION WIDTH		•	

Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.459 51 GHz -2.362 dBm Ref Offset 2.87 dB Ref 20.00 dBm 10 dB/div Loa <u>1</u> ŵ . M "tow W Www www. Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2462MHz Emission er - Swept SA Keysight Sp 11:41:41 AM Oc (I R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.497000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low -----Mkr1 2.459 5 GHz -2.353 dBm Ref Offset 2.87 dB Ref 20.00 dBm 10 dB/div Log **r** 1 mon wind -A<mark>3</mark> Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION 1 f 1 f 1 f 2.459 5 GHz 2.483 5 GHz 2.500 0 GHz 2.483 6 GHz -2.353 dBm -49.821 dBm -56.020 dBm -48.628 dBm N 10 11 STATUS

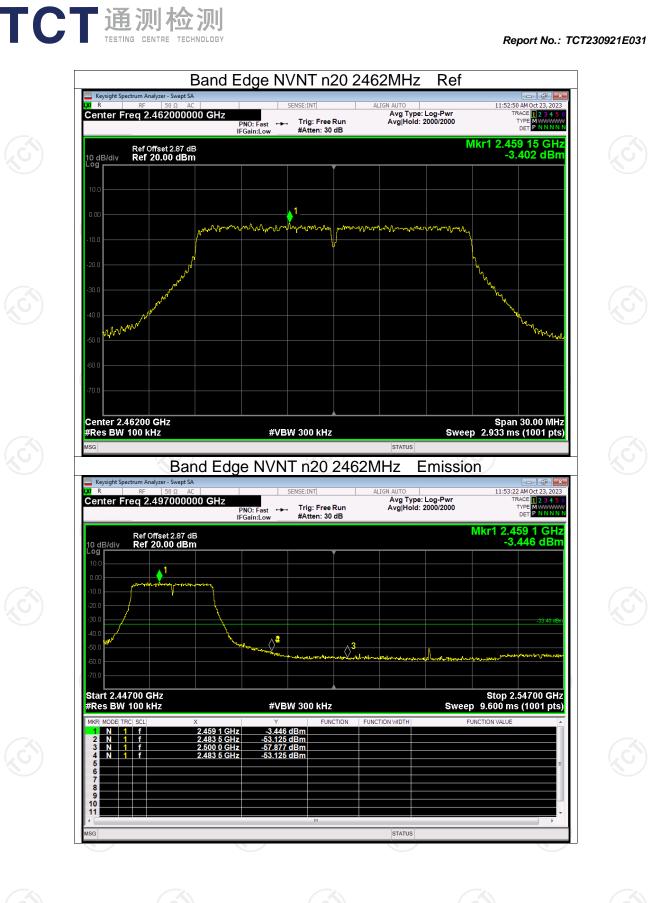
Band Edge NVNT g 2462MHz

Ref

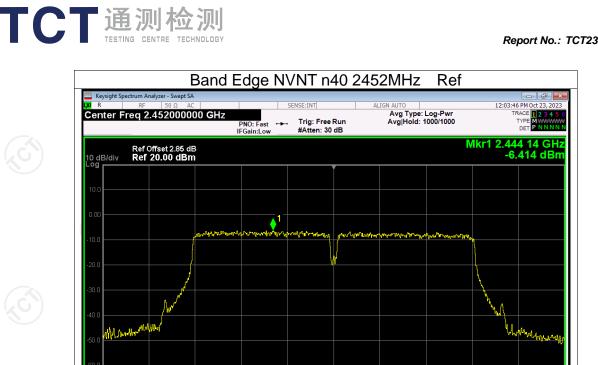
Avg Type: Log-Pwr Avg|Hold: 2000/2000

🔤 Keysight S

Center Freg 2.462000000 GHz


K/R


Report No.: TCT230921E031


11:41:09 AM Oct 23, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N

TYP DE

STATUS Band Edge NVNT n40 2452MHz Emission

#VBW 300 kHz

🔤 Keysight Sp

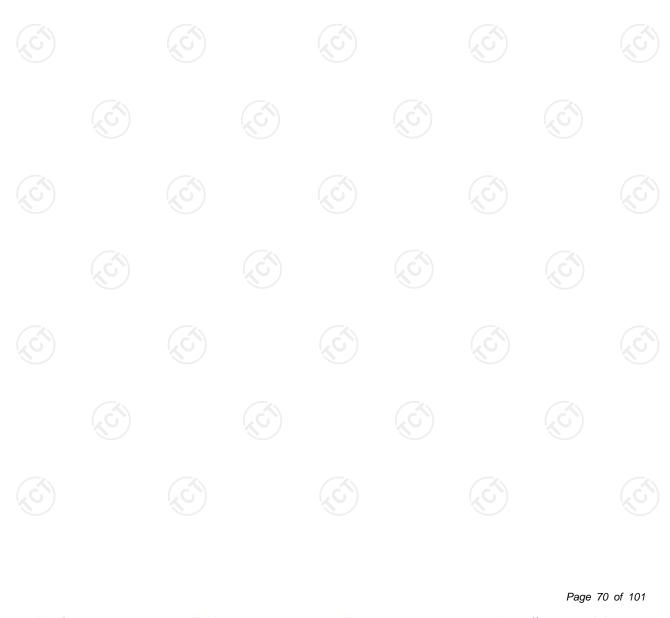
10 dB/div Loa

1 sulla alland

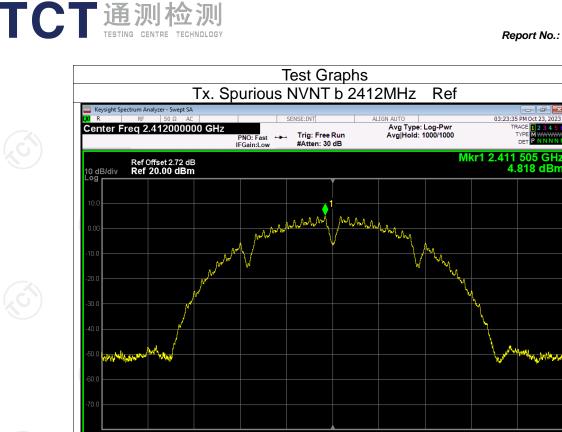
Center 2.45200 GHz #Res BW 100 kHz

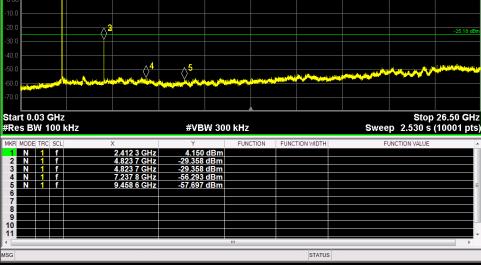
K/R

Report No.: TCT230921E031


Span 60.00 MHz Sweep 5.800 ms (1001 pts)

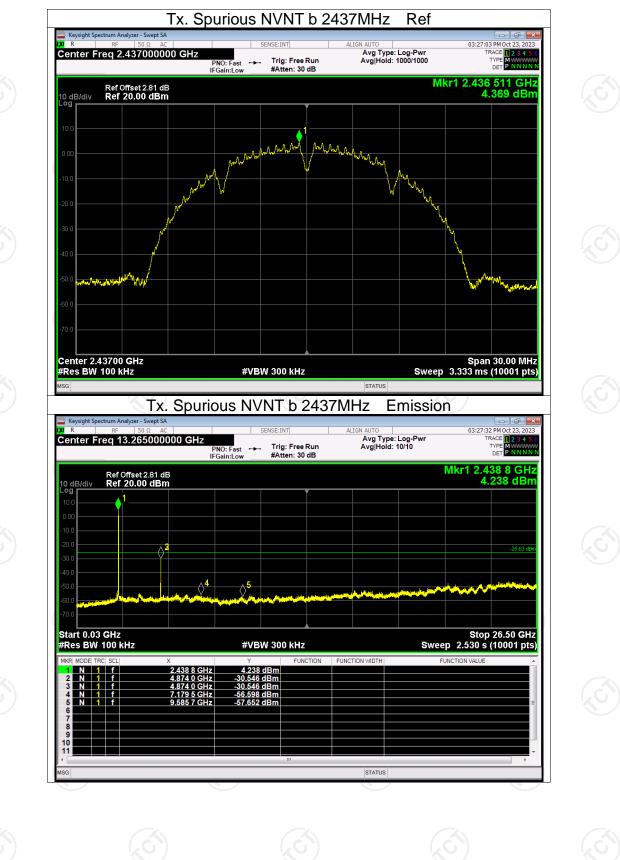
Page 69 of 101


Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	b	2412	-34.17	-30	Pass		
NVNT	b	2437	-34.91	-30	Pass		
NVNT	b	2462	-33.82	-30	Pass		
NVNT	g	2412	-39.79	-30	Pass		
NVNT	g	2437	-39.12	-30	Pass		
NVNT	g	2462	-38.58	-30	Pass		
NVNT 🖉	n20	2412	-40.93	-30	Pass		
NVNT	n20	2437	-40.44	-30	Pass		
NVNT	n20	2462	-41.33	-30	Pass		
NVNT	n40	2422	-39.93	-30	Pass		
NVNT	n40	2437	-39.83	-30	Pass		
NVNT	n40	2452	-39.54	-30	Pass		

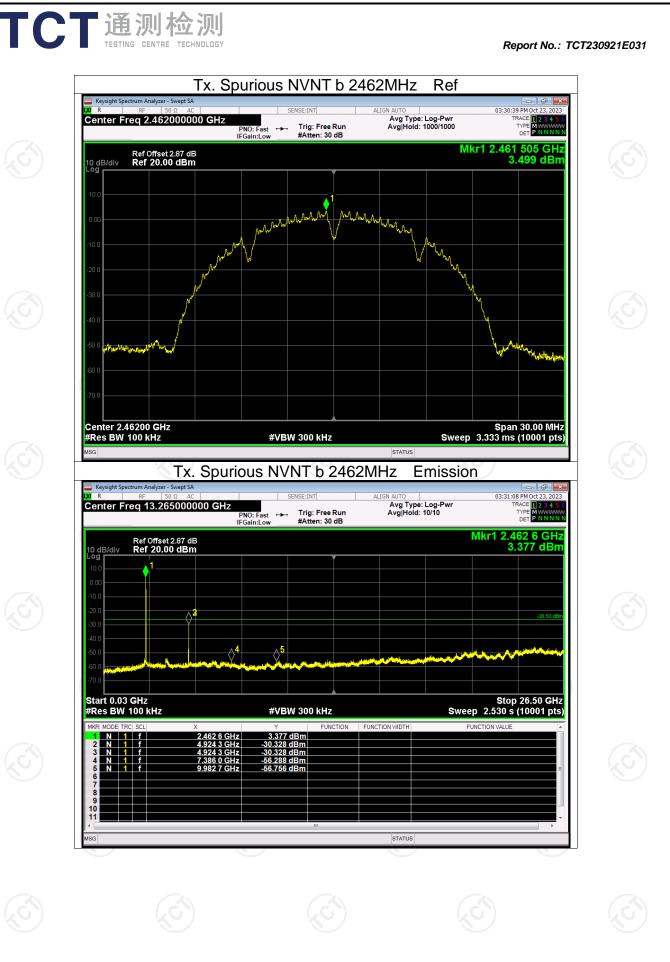

Conducted RF Spurious Emission

TCT通测检测 TESTING CENTRE TECHNOLOGY

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 71 of 101


Report No.: TCT230921E031

12345 MWWWW

Report No.: TCT230921E031

Page 72 of 101

Page 73 of 101

STATUS

Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.409 513 GHz -1.650 dBm Ref Offset 2.72 dB Ref 20.00 dBm 10 dB/div Loa <mark>≜</mark>1 nun Wyd MMM MMW Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 3.333 ms (10001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT g 2412MHz Emission er - Swept SA Keysight Sp 1:37:02 AM Oct (I R Avg Type: Log-Pw Avg|Hold: 10/10 Center Freg 13.265000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast IFGain:Low Mkr1 2.414 9 GHz -2.094 dBm Ref Offset 2.72 dB Ref 20.00 dBm 10 dB/div Log **r** \Diamond \diamond^{5} Start 0.03 GHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.530 s (10001 pts) #VBW 300 kHz FUNCTION WIDTH **FION** N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f 2.414 9 GHz 4.823 7 GHz 4.823 7 GHz 7.235 1 GHz 9.477 1 GHz -2.094 dBm -41.443 dBm -41.443 dBm -56.432 dBm -56.467 dBm 456780

Tx. Spurious NVNT g 2412MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S

Center Freg 2.412000000 GHz

K/R

Report No.: TCT230921E031

36:29 AM Oct 23, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N

TYP

Ref

Avg Type: Log-Pwr Avg|Hold: 1000/1000

🔤 Keysight S 12 3 4 TRACE 1 2 3 4 TYPE M K/R Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.437000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 2.434 513 GHz -1.567 dBm Ref Offset 2.81 dB Ref 20.00 dBm 10 dB/div Loa <mark>♦</mark>1 wind MAMAN W MMM MMW Center 2.43700 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 3.333 ms (10001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT g 2437MHz Emission er - Swept SA Keysight Sp (I R :39:08 AM Oct Avg Type: Log-Pw Avg|Hold: 10/10 Center Freg 13.265000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low Mkr1 2.433 5 GHz -1.683 dBm Ref Offset 2.81 dB Ref 20.00 dBm 10 dB/div Log **r** \Diamond ♦ Start 0.03 GHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.530 s (10001 pts) #VBW 300 kHz FUNCTION WIDTH TION
 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f
 2.433 5 GHz 4.871 4 GHz 4.871 4 GHz 7.118 7 GHz 9.569 8 GHz -1.683 dBm -40.697 dBm -40.697 dBm -56.431 dBm -57.981 dBm 456780 STATUS

Tx. Spurious NVNT g 2437MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT230921E031

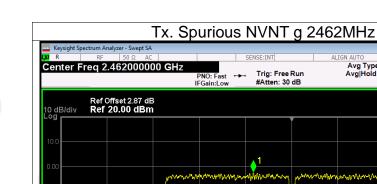
Ref

MMM WY MMW/ mun Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 3.333 ms (10001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT g 2462MHz Emission er - Swept SA

Trig: Free Run #Atten: 30 dB

PNO: Fast IFGain:Low


Page 76 of 101

Keysight Sp

Center Freg 13.265000000 GHz

(I R

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT230921E031

11:41:57 AM Oct 23, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N

TYP

Mkr1 2.459 513 GHz -2.443 dBm

1:42:25 AM Oct

TYPE

12345 MWWWW PNNNN

Ref

Maman

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Area.

Avg Type: Log-Pw Avg|Hold: 10/10