



# **RF TEST REPORT**

| Applicant  | Espressif Systems (Shanghai)Co.,Ltd.        |
|------------|---------------------------------------------|
| FCC ID     | 2AC7Z-ESPC3MINII                            |
| Product    | Wi-Fi & Bluetooth Internet of Things Module |
| Brand      | ESPRESSIF                                   |
| Model      | ESP32-C3-MINI-1U                            |
| Report No. | R2107A0598-R1                               |
| Issue Date | April 19, 2022                              |

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 15C (2021). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Keng Tao

Prepared by: Peng Tao

ai Xu

Approved by: Kai Xu

# TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000



# ABLE OF CONTENT

| 1. Tes | st Laboratory                             | 4   |
|--------|-------------------------------------------|-----|
| 1.1.   | Notes of the test report                  | 4   |
| 1.2.   | Test facility                             | 4   |
| 1.3.   | Testing Location                          | 4   |
| 2. Ger | neral Description of Equipment under Test | 5   |
| 2.1.   | Applicant and Manufacturer Information    | 5   |
| 2.2.   | General information                       | 5   |
| 3. Арр | blied Standards                           | 6   |
| 4. Tes | st Configuration                          | 7   |
| 5. Tes | st Case Results                           | 8   |
| 5.1.   | Maximum output power                      | 8   |
| 5.2.   | 99% Bandwidth and 6dB Bandwidth           | 11  |
| 5.3.   | Band Edge                                 |     |
| 5.4.   | Power Spectral Density                    |     |
| 5.5.   | Spurious RF Conducted Emissions           |     |
| 5.6.   | Unwanted Emission                         | 59  |
| 5.7.   | Conducted Emission                        | 130 |
| 6. Mai | in Test Instruments                       | 133 |
| ANNEX  | A: The EUT Appearance                     | 134 |
| ANNEX  | B: Test Setup Photos                      | 135 |



| Number                                                                                         | Test Case                                            | Clause in FCC rules | Verdict |  |  |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|---------|--|--|--|
| 1                                                                                              | Maximum output power                                 | 15.247(b)(3)        | PASS    |  |  |  |
| 2                                                                                              | 6 dB bandwidth                                       | 15.247(a)(2)        | PASS    |  |  |  |
| 3                                                                                              | Power spectral density                               | 15.247(e)           | PASS    |  |  |  |
| 4                                                                                              | Band Edge                                            | 15.247(d)           | PASS    |  |  |  |
| 5                                                                                              | Spurious RF Conducted Emissions                      | 15.247(d)           | PASS    |  |  |  |
| 6                                                                                              | Unwanted Emissions 15.247(d),15.205,15.209 PASS      |                     |         |  |  |  |
| 7                                                                                              | Conducted Emissions                                  | 15.207              | PASS    |  |  |  |
| Date of Tes                                                                                    | ting: April 4, 2022 ~ April 12, 2022 and April 19, 2 | 2022                |         |  |  |  |
| Date of Sample Received: July14, 2021                                                          |                                                      |                     |         |  |  |  |
| Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology      |                                                      |                     |         |  |  |  |
| (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement |                                                      |                     |         |  |  |  |
| Uncertainties were not taken into account and are published for informational purposes only.   |                                                      |                     |         |  |  |  |

# Summary of measurement results

### 1. Test Laboratory

#### 1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

### 1.2. Test facility

#### FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

#### A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

#### 1.3. Testing Location

| Company:               | TA Technology (Shanghai) Co., Ltd.                 |
|------------------------|----------------------------------------------------|
| Address:               | No.145, Jintang Rd, Tangzhen Industry Park, Pudong |
| City:                  | Shanghai                                           |
| Post code:             | 201201                                             |
| Country:               | P. R. China                                        |
|                        |                                                    |
| Contact:               | Xu Kai                                             |
| Contact:<br>Telephone: | Xu Kai<br>+86-021-50791141/2/3                     |
|                        |                                                    |
| Telephone:             | +86-021-50791141/2/3                               |

# 2. General Description of Equipment under Test

### 2.1. Applicant and Manufacturer Information

| Applicant            | Espressif Systems (Shanghai) Co.,Ltd.                        |  |  |  |
|----------------------|--------------------------------------------------------------|--|--|--|
| Applicant address    | Suite 204, Block 2, 690 Bibo Road, Zhang Jiang Hi-Tech Park, |  |  |  |
| Applicant address    | Shanghai, China                                              |  |  |  |
| Manufacturer         | Espressif Systems (Shanghai) Co.,Ltd.                        |  |  |  |
| Manufacturar address | Suite 204, Block 2, 690 Bibo Road, Zhang Jiang Hi-Tech Park, |  |  |  |
| Manufacturer address | Shanghai, China                                              |  |  |  |

#### 2.2. General information

| EUT Description                              |                                                                                                           |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Model                                        | ESP32-C3-MINI-1U                                                                                          |  |  |  |
| Lab internal SN                              | R2107A0598/S01                                                                                            |  |  |  |
| Hardware Version                             | V1.2                                                                                                      |  |  |  |
| Software Version                             | V1.1.3.0                                                                                                  |  |  |  |
| Power Supply                                 | External power supply                                                                                     |  |  |  |
| Antenna Type                                 | External Antenna                                                                                          |  |  |  |
| Antenna Connector                            | IPEX (meet with the standard FCC Part 15.203 requirement)                                                 |  |  |  |
| Antenna Gain                                 | 2.33dBi                                                                                                   |  |  |  |
| additional beamforming gain                  | NA                                                                                                        |  |  |  |
| Operating Frequency Range(s)                 | 802.11b/g/n(HT20): 2412 ~ 2462 MHz<br>802.11n(HT40): 2422 ~ 2452 MHz<br>Bluetooth LE V5.0: 2402 ~2480 MHz |  |  |  |
| Modulation Type                              | 802.11b: DSSS<br>802.11g/n(HT20/HT40): OFDM<br>Bluetooth LE: GFSK                                         |  |  |  |
| Max. Conducted Power                         | Wi-Fi 2.4G: 18.01dBm<br>Bluetooth LE: 7.03dBm                                                             |  |  |  |
| Note: 1. The EUT is sent from the applicant. | e applicant to TA and the information of the EUT is declared by                                           |  |  |  |



## 3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2021) Radio Frequency Devices

ANSI C63.10 (2013)

Reference standard: KDB 558074 D01 15.247 Meas Guidance v05r02

# 4. Test Configuration

### Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

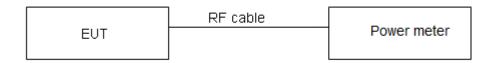
Worst-case data rates are shown as following table.

| Test Mode             | Data Rate      |
|-----------------------|----------------|
| Bluetooth(Low Energy) | 1Mbps<br>2Mbps |
| 802.11b               | 1 Mbps         |
| 802.11g               | 6 Mbps         |
| 802.11n HT20          | MCS0           |
| 802.11n HT40          | MCS0           |



### 5. Test Case Results

#### 5.1. Maximum output power


#### Ambient condition

| Temperature | Relative humidity | Pressure |  |
|-------------|-------------------|----------|--|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |  |

#### Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

#### **Test Setup**



#### Limits

Rule Part 15.247 (b) (3) specifies that " For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."



#### Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.



#### **Test Results**

| Power Index |                                                          |    |    |     |    |  |  |  |
|-------------|----------------------------------------------------------|----|----|-----|----|--|--|--|
| Channel     | Channel 802.11b 802.11g 802.11n HT20 Channel 802.11n HT4 |    |    |     |    |  |  |  |
| CH1         | 4                                                        | 24 | 28 | CH3 | 28 |  |  |  |
| CH2         | 1                                                        | 8  | 8  | CH4 | 20 |  |  |  |
| СНЗ         | 1                                                        | 8  | 0  | CH5 | 12 |  |  |  |
| CH4         | 1                                                        | 0  | 0  | CH6 | 0  |  |  |  |
| CH6         | 4                                                        | 0  | 0  | CH7 | 16 |  |  |  |
| CH8         | 1                                                        | 0  | 4  | CH8 | 24 |  |  |  |
| СН9         | 1                                                        | 12 | 8  | СН9 | 32 |  |  |  |
| CH10        | 1                                                        | 12 | 28 | 1   | 1  |  |  |  |
| CH11        | 4                                                        | 30 | 28 | 1   | 1  |  |  |  |

| Test Mode                                                              | T <sub>on</sub> (ms) | T <sub>(on+off)</sub> (ms) | Duty cycle | Duty cycle correction<br>Factor(dB) |  |  |
|------------------------------------------------------------------------|----------------------|----------------------------|------------|-------------------------------------|--|--|
| 802.11b                                                                | 1.00                 | 1.00                       | 1.00       | 0.00                                |  |  |
| 802.11g                                                                | 1.00                 | 1.00                       | 1.00       | 0.00                                |  |  |
| 802.11n HT20                                                           | 1.00                 | 1.00                       | 1.00       | 0.00                                |  |  |
| 802.11n HT40                                                           | 2.46                 | 2.50                       | 0.98       | 0.00                                |  |  |
| Bluetooth LE (1M)                                                      | 2.10                 | 2.50                       | 0.84       | 0.76                                |  |  |
| Bluetooth LE (2M)                                                      | 1.06                 | 1.87                       | 0.57       | 2.47                                |  |  |
| Note: when Duty cycle≥0.98, Duty cycle correction Factor not required. |                      |                            |            |                                     |  |  |

| Test Mode | Carrier frequency<br>(MHz) )/ Channel | Average Power<br>Measured<br>(dBm) | Average Power<br>with duty factor<br>(dBm) | Limit<br>(dBm) | Conclusion |
|-----------|---------------------------------------|------------------------------------|--------------------------------------------|----------------|------------|
|           | 2412/CH 1                             | 17.65                              | 17.65                                      | 30             | PASS       |
| 802.11b   | 2437/CH 6                             | 17.58                              | 17.58                                      | 30             | PASS       |
|           | 2462/CH11                             | 17.93                              | 17.93                                      | 30             | PASS       |
|           | 2412/CH 1                             | 11.89                              | 11.89                                      | 30             | PASS       |
|           | 2417/CH 2                             | 15.85                              | 15.85                                      | 30             | PASS       |
| 802.11g   | 2422/CH 3                             | 15.97                              | 15.97                                      | 30             | PASS       |
|           | 2427/CH 4                             | 18.01                              | 18.01                                      | 30             | PASS       |
|           | 2437/CH 6                             | 17.68                              | 17.68                                      | 30             | PASS       |
|           | 2447/CH 8                             | 17.89                              | 17.89                                      | 30             | PASS       |

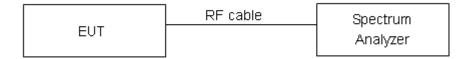


| 2452/CH 9 15.50 15.50 30 PASS   2457/CH 10 15.58 15.58 30 PASS   2462/CH11 10.80 10.80 30 PASS   2462/CH11 9.92 9.92 30 PASS   2417/CH 2 15.09 15.09 30 PASS   2422/CH 3 16.77 16.77 30 PASS   2447/CH 8 16.91 16.91 30 PASS   2447/CH 8 16.91 16.91 30 PASS   2452/CH 9 16.15 16.15 30 PASS   2452/CH 10 15.49 30 PASS   2442/CH1 10.33 10.33 30 PASS   2442/CH3 9.14 9.14 30 PASS   2442/CH4 11.22 11.22 30 PASS                                                                                                                                                | - KF lest       | Report                                                                                      |       | Kep   | 011 NO KZ 10 | 7 A0000-ICI |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|-------|-------|--------------|-------------|--|
| 2462/CH1110.8010.8030PASS2412/CH 19.929.9230PASS2417/CH 215.0915.0930PASS2422/CH 316.7716.7730PASS2422/CH 316.7716.7730PASS2437/CH 616.8016.8030PASS2447/CH 816.9116.9130PASS2452/CH 916.1516.1530PASS2452/CH 1015.4915.4930PASS2452/CH 1015.4910.3330PASS2462/CH1110.3310.3330PASS2462/CH1110.3310.3330PASS2462/CH111.2211.2230PASS2422/CH39.149.1430PASS2422/CH411.2211.2230PASS2422/CH513.2313.2330PASS2422/CH616.1416.1430PASS2422/CH712.1412.1430PASS2422/CH712.1410.3930PASS2442/CH712.1410.3930PASS2442/CH76.096.8530PASS2442/CH76.136.8930PASS2440/CH196.136.8930PASS2440/CH196.136.8930PASS2440/CH196.136.8930PASS2402/CH03.926.3930PASS3 |                 | 2452/CH 9                                                                                   | 15.50 | 15.50 | 30           | PASS        |  |
| 802.11n 2412/CH 1 9.92 30 PASS   2417/CH 2 15.09 15.09 30 PASS   2422/CH 3 16.77 16.77 30 PASS   2422/CH 3 16.77 16.77 30 PASS   2422/CH 3 16.71 16.77 30 PASS   2437/CH 6 16.80 16.80 30 PASS   2452/CH 9 16.15 16.15 30 PASS   2457/CH 10 15.49 30 PASS   2452/CH 9 16.15 16.15 30 PASS   2452/CH 10 15.49 15.49 30 PASS   242/CH1 10.33 10.33 30 PASS   242/CH3 9.14 9.14 30 PASS   242/CH4 11.22 11.22 30 PASS   2432/CH5 13.23 13.23 30 PASS   2442/CH7 12.14 16.14 30 PASS   2442/CH6 10.39                                                                                                                                                  |                 | 2457/CH 10                                                                                  | 15.58 | 15.58 | 30           | PASS        |  |
| 2417/CH 215.0915.0930PASS2422/CH 316.7716.7730PASS2437/CH 616.8016.8030PASS2437/CH 816.9116.9130PASS2447/CH 816.9116.9130PASS2452/CH 916.1516.1530PASS2452/CH 1015.4915.4930PASS2462/CH1110.3310.3330PASS2462/CH1110.3310.3330PASS2422/CH39.149.1430PASS2422/CH39.149.1430PASS2422/CH313.2313.2330PASS2432/CH513.2313.2330PASS2432/CH513.2313.2330PASS2432/CH513.2310.3930PASS2432/CH616.1416.1430PASS2432/CH513.2313.2330PASS2432/CH513.2330PASS2432/CH616.1416.14302432/CH712.1412.14302432/CH712.1413.9302442/CH716.196.89302440/CH196.136.8930102480/CH396.277.0330112480/CH396.277.0330112480/CH396.277.033012240/CH03.926.693013248          |                 | 2462/CH11                                                                                   | 10.80 | 10.80 | 30           | PASS        |  |
| 2422/CH 3 16.77 16.77 30 PASS   802.11n 2437/CH 6 16.80 16.80 30 PASS   2447/CH 8 16.91 16.91 30 PASS   2452/CH 9 16.15 16.15 30 PASS   2452/CH 10 15.49 16.15 30 PASS   2452/CH 10 15.49 30 PASS   2462/CH11 10.33 10.33 30 PASS   2462/CH3 9.14 9.14 30 PASS   2427/CH4 11.22 11.22 30 PASS   2427/CH4 11.22 11.22 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 6.09 6.85 30 PASS   1(Low Energy)                                                                                                                                              |                 | 2412/CH 1                                                                                   | 9.92  | 9.92  | 30           | PASS        |  |
| 802.11n 2437/CH 6 16.80 16.80 30 PASS   2447/CH 8 16.91 16.91 30 PASS   2452/CH 9 16.15 16.15 30 PASS   2457/CH 10 15.49 30 PASS   2452/CH 11 10.33 10.33 30 PASS   2462/CH11 10.33 10.33 30 PASS   2422/CH3 9.14 9.14 30 PASS   2422/CH3 11.22 11.22 30 PASS   2427/CH4 11.22 11.23 30 PASS   2437/CH6 16.14 16.14 30 PASS   2443/CH7 12.14 12.14 30 PASS   2447/CH8 10.39 30 PASS   2440/CH19 6.13                                                                                                                                                        |                 | 2417/CH 2                                                                                   | 15.09 | 15.09 | 30           | PASS        |  |
| HT20 2447/CH 8 16.91 16.91 30 PASS   2452/CH 9 16.15 16.15 30 PASS   2452/CH 10 15.49 16.15 30 PASS   2452/CH 10 15.49 30 PASS   2462/CH11 10.33 10.33 30 PASS   2462/CH11 10.33 10.33 30 PASS   2422/CH3 9.14 9.14 30 PASS   2422/CH4 11.22 11.22 30 PASS   2422/CH3 9.14 9.14 30 PASS   2422/CH4 11.22 11.22 30 PASS   2427/CH4 11.22 11.22 30 PASS   2443/CH5 13.23 13.23 30 PASS   2447/CH8 10.39 10.39 30 PASS   2447/CH8 10.39 10.39 30 PASS   2445/CH9 8.39 8.39 30 PASS   (Low Energy) <                                                                                                                                                   |                 | 2422/CH 3                                                                                   | 16.77 | 16.77 | 30           | PASS        |  |
| Bluetooth 16.51 16.51 16.51 16.51   2452/CH 9 16.15 16.15 30 PASS   2457/CH 10 15.49 30 PASS   2462/CH11 10.33 10.33 30 PASS   2462/CH3 9.14 9.14 30 PASS   2422/CH3 9.14 9.14 30 PASS   2422/CH3 9.14 9.14 30 PASS   2422/CH3 9.14 9.14 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 12.14 13.9 30 PASS   2442/CH9 8.39 8.39 30 PASS   2452/CH9 8.39 8.39 30 PASS   110.00 2402/CH0 6.09<                                                                                                                                                       | 802.11n         | 2437/CH 6                                                                                   | 16.80 | 16.80 | 30           | PASS        |  |
| 2457/CH 10 15.49 30 PASS   2462/CH11 10.33 10.33 30 PASS   2462/CH11 10.33 10.33 30 PASS   2422/CH3 9.14 9.14 30 PASS   2427/CH4 11.22 11.22 30 PASS   2432/CH5 13.23 13.23 30 PASS   2437/CH6 16.14 16.14 30 PASS   2437/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 12.14 10.39 30 PASS   2442/CH9 8.39 8.39 30 PASS   2452/CH9 8.39 30 PASS   10.09 6.69 30 PASS   11/Low Energy 2402/CH0 6.13 6.89 30 PASS   11/Low Energy 2402/CH0 3.92 6.39 30 PASS   11/Low Energy 2402/CH0                                                                                                                                           | HT20            | 2447/CH 8                                                                                   | 16.91 | 16.91 | 30           | PASS        |  |
| 2462/CH11 10.33 10.33 30 PASS   2422/CH3 9.14 9.14 30 PASS   2422/CH4 11.22 11.22 30 PASS   2427/CH4 11.22 11.22 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 12.14 10.39 30 PASS   2447/CH8 10.39 10.39 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 16.39 8.39 30 PASS   2440/CH8 10.39 10.39 30 PASS   (Low Energy) 2440/CH19 6.13 6.89 30 PASS   Muetooth 2402/CH0 3.92 6.39 30 PASS   Muetooth 2402/CH19 4.22 6.69 30                                                                                                                                                 |                 | 2452/CH 9                                                                                   | 16.15 | 16.15 | 30           | PASS        |  |
| 2422/CH3 9.14 9.14 30 PASS   2427/CH4 11.22 11.22 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 16.39 10.39 30 PASS   2440/CH8 10.39 8.39 30 PASS   11/Low Energy 2480/CH39 6.27 7.03 30 PASS   Bluetooth<br>(Low Energy) 2402/CH0 3.92 6.39 30 PASS   2440/CH19 4.22 6.69 30 PASS<                                                                                                                                   |                 | 2457/CH 10                                                                                  | 15.49 | 15.49 | 30           | PASS        |  |
| 802.11n 2427/CH4 11.22 11.22 30 PASS   2432/CH5 13.23 13.23 30 PASS   2432/CH6 16.14 16.14 30 PASS   2437/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 12.14 10.39 30 PASS   2447/CH8 10.39 10.39 30 PASS   2452/CH9 8.39 8.39 30 PASS   Bluetooth<br>(Low Energy)<br>(1M) 2402/CH0 6.09 6.85 30 PASS   Bluetooth<br>(Low Energy)<br>(2M) 2402/CH0 3.92 6.39 30 PASS   Quito CH19 4.22 6.69 30 PASS   Quito CH19 4.22 6.69 30 PASS   Quito CH19 4.47 6.94 30 PASS                                                                                                                                                             |                 | 2462/CH11                                                                                   | 10.33 | 10.33 | 30           | PASS        |  |
| 802.11n 2432/CH5 13.23 13.23 30 PASS   2437/CH6 16.14 16.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2447/CH8 10.39 10.39 30 PASS   2452/CH9 8.39 8.39 30 PASS   Bluetooth<br>(Low Energy)<br>(1M) 2402/CH0 6.09 6.85 30 PASS   Bluetooth<br>(Low Energy)<br>(1M) 2480/CH39 6.27 7.03 30 PASS   Bluetooth<br>(Low Energy)<br>(2M) 2440/CH19 4.22 6.69 30 PASS   2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                                                         |                 | 2422/CH3                                                                                    | 9.14  | 9.14  | 30           | PASS        |  |
| 802.11n 2437/CH6 16.14 16.14 30 PASS   140 2442/CH7 12.14 12.14 30 PASS   2442/CH7 12.14 12.14 30 PASS   2447/CH8 10.39 10.39 30 PASS   2452/CH9 8.39 8.39 30 PASS   Bluetooth 2402/CH0 6.09 6.85 30 PASS   (Low Energy) 2440/CH19 6.13 6.89 30 PASS   Bluetooth 2402/CH0 3.92 6.39 30 PASS   Bluetooth 2402/CH0 3.92 6.39 30 PASS   (Low Energy) 2440/CH19 4.22 6.69 30 PASS   (Low Energy) 2440/CH19 4.22 6.69 30 PASS   (2M) 2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                        |                 | 2427/CH4                                                                                    | 11.22 | 11.22 | 30           | PASS        |  |
| HT402437/CH616.1416.1430PASS2442/CH712.1412.1430PASS2447/CH810.3910.3930PASS2452/CH98.398.3930PASSBluetooth2402/CH06.096.8530PASS(Low Energy)2440/CH196.136.8930PASSBluetooth2402/CH03.926.3930PASS(1M)2480/CH396.277.0330PASSBluetooth2402/CH03.926.3930PASS(Low Energy)2440/CH194.226.6930PASS(2M)2480/CH394.476.9430PASS                                                                                                                                                                                                                                                                                                                        |                 | 2432/CH5                                                                                    | 13.23 | 13.23 | 30           | PASS        |  |
| 2442/CH7 12.14 12.14 30 PASS   2447/CH8 10.39 10.39 30 PASS   2452/CH9 8.39 8.39 30 PASS   Bluetooth<br>(Low Energy)<br>(1M) 2440/CH19 6.13 6.89 30 PASS   Bluetooth<br>(Low Energy)<br>(1M) 2480/CH39 6.27 7.03 30 PASS   Bluetooth<br>(Low Energy)<br>(2M) 2440/CH19 4.22 6.69 30 PASS   Clow Energy)<br>(2M) 2440/CH19 4.22 6.69 30 PASS                                                                                                                                                                                                                                                                                                        |                 | 2437/CH6                                                                                    | 16.14 | 16.14 | 30           | PASS        |  |
| 2452/CH9 8.39 8.39 30 PASS   Bluetooth 2402/CH0 6.09 6.85 30 PASS   (Low Energy) 2440/CH19 6.13 6.89 30 PASS   (1M) 2480/CH39 6.27 7.03 30 PASS   Bluetooth 2402/CH0 3.92 6.39 30 PASS   (1M) 2480/CH19 4.22 6.69 30 PASS   (Low Energy) 2440/CH19 4.22 6.69 30 PASS   (2M) 2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                                                                                                                                                                            | 11140           | 2442/CH7                                                                                    | 12.14 | 12.14 | 30           | PASS        |  |
| Bluetooth<br>(Low Energy) 2402/CH0 6.09 6.85 30 PASS   (1M) 2440/CH19 6.13 6.89 30 PASS   (1M) 2480/CH39 6.27 7.03 30 PASS   Bluetooth<br>(Low Energy) 2402/CH0 3.92 6.39 30 PASS   (Low Energy) 2440/CH19 4.22 6.69 30 PASS   (2M) 2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                                                                                                                                                                                                                    |                 | 2447/CH8                                                                                    | 10.39 | 10.39 | 30           | PASS        |  |
| Didetoon 2440/CH19 6.13 6.89 30 PASS   (1M) 2480/CH39 6.27 7.03 30 PASS   Bluetooth 2402/CH0 3.92 6.39 30 PASS   (Low Energy) 2440/CH19 4.22 6.69 30 PASS   (Low Energy) 2440/CH19 4.22 6.69 30 PASS   (2M) 2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 2452/CH9                                                                                    | 8.39  | 8.39  | 30           | PASS        |  |
| (1M)2480/CH396.277.0330PASSBluetooth<br>(Low Energy)<br>(2M)2440/CH193.926.3930PASS2440/CH194.226.6930PASS2480/CH394.476.9430PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bluetooth       | 2402/CH0                                                                                    | 6.09  | 6.85  | 30           | PASS        |  |
| Bluetooth<br>(Low Energy) 2400/CH19 3.92 6.39 30 PASS   (2M) 2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Low Energy)    | 2440/CH19                                                                                   | 6.13  | 6.89  | 30           | PASS        |  |
| Indecoding 2440/CH19 4.22 6.69 30 PASS   (2M) 2480/CH39 4.47 6.94 30 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1M)            | 2480/CH39                                                                                   | 6.27  | 7.03  | 30           | PASS        |  |
| (Low Energy)<br>(2M)2440/CH194.226.6930PASS2480/CH394.476.9430PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 2402/CH0                                                                                    | 3.92  | 6.39  | 30           | PASS        |  |
| 2480/CI139 4.47 0.94 30 FA33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 2440/CH19                                                                                   | 4.22  | 6.69  | 30           | PASS        |  |
| Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2M)            | 2480/CH39                                                                                   | 4.47  | 6.94  | 30           | PASS        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: Average P | Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor |       |       |              |             |  |



#### 5.2. 99% Bandwidth and 6dB Bandwidth

#### Ambient condition


| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |

#### Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

#### Test Setup



#### Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

|  | minimum 6 dB bandwidth | ≥ 500 kHz |
|--|------------------------|-----------|
|--|------------------------|-----------|

#### **Measurement Uncertainty**

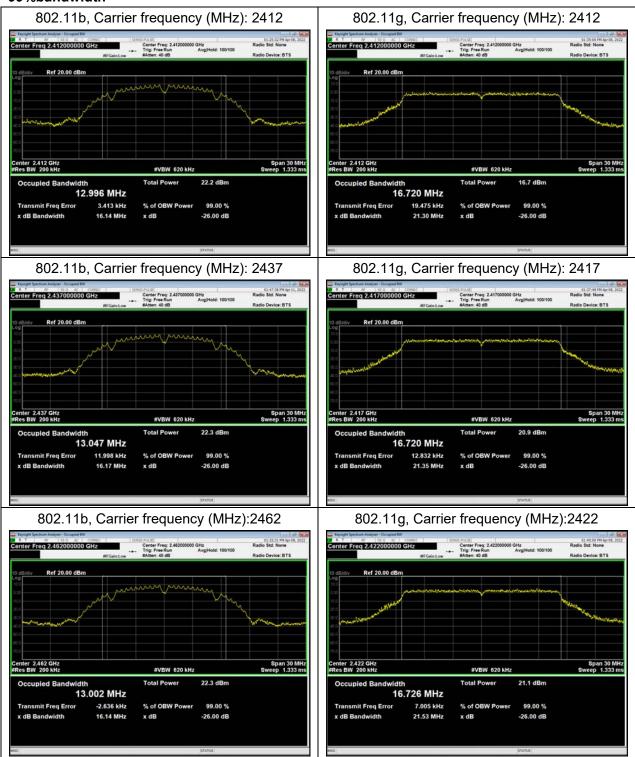
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.



#### **Test Results:**

| Test Mode | Carrier frequency<br>(MHz) | 99%<br>bandwidth<br>(MHz) | Minimum 6 dB<br>bandwidth<br>(MHz) | Limit<br>(kHz) | Conclusion |
|-----------|----------------------------|---------------------------|------------------------------------|----------------|------------|
|           | 2412                       | 12.996                    | 8.60                               | 500            | PASS       |
| 802.11b   | 2437                       | 13.047                    | 9.02                               | 500            | PASS       |
|           | 2462                       | 13.002                    | 9.54                               | 500            | PASS       |
|           | 2412                       | 16.720                    | 16.35                              | 500            | PASS       |
|           | 2417                       | 16.720                    | 16.35                              | 500            | PASS       |
|           | 2422                       | 16.726                    | 16.37                              | 500            | PASS       |
|           | 2427                       | 16.753                    | 16.57                              | 500            | PASS       |
| 802.11g   | 2437                       | 16.814                    | 16.38                              | 500            | PASS       |
|           | 2447                       | 16.755                    | 16.54                              | 500            | PASS       |
|           | 2452                       | 16.717                    | 16.34                              | 500            | PASS       |
|           | 2457                       | 16.735                    | 16.36                              | 500            | PASS       |
|           | 2462                       | 16.703                    | 16.38                              | 500            | PASS       |
|           | 2412                       | 17.871                    | 17.61                              | 500            | PASS       |
|           | 2417                       | 17.867                    | 17.67                              | 500            | PASS       |
|           | 2422                       | 17.900                    | 17.56                              | 500            | PASS       |
| 802.11n   | 2437                       | 17.909                    | 17.56                              | 500            | PASS       |
| HT20      | 2447                       | 17.912                    | 17.60                              | 500            | PASS       |
|           | 2452                       | 17.882                    | 17.60                              | 500            | PASS       |
|           | 2457                       | 17.867                    | 17.59                              | 500            | PASS       |
|           | 2462                       | 17.888                    | 17.59                              | 500            | PASS       |
|           | 2422                       | 35.189                    | 32.61                              | 500            | PASS       |
|           | 2427                       | 35.233                    | 32.56                              | 500            | PASS       |
| 802.11n   | 2432                       | 35.195                    | 32.64                              | 500            | PASS       |
| HT40      | 2437                       | 35.188                    | 32.93                              | 500            | PASS       |
|           | 2442                       | 35.179                    | 32.64                              | 500            | PASS       |
|           | 2447                       | 35.190                    | 32.60                              | 500            | PASS       |

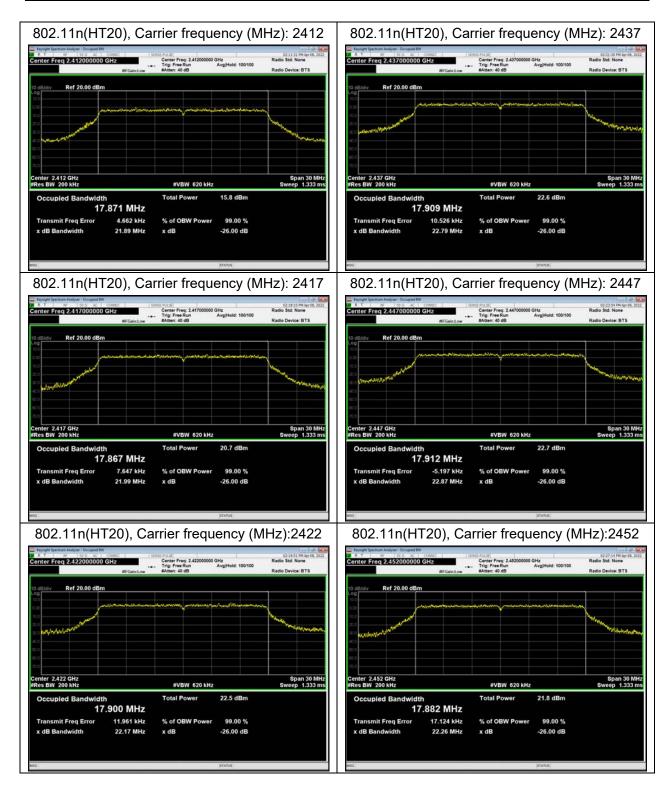
TA Technology (Shanghai) Co., Ltd.TA-MB-04-005RPage 12 of 135This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.




RF Test Report

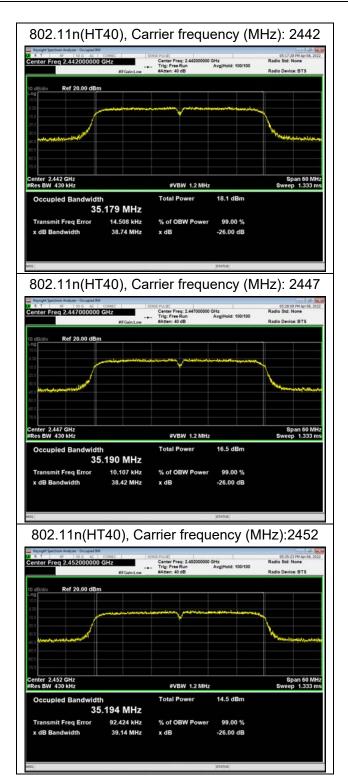
| RF Test Rep  | ort  |        | Re    | port No.: R210 | 7A0598-R1 |
|--------------|------|--------|-------|----------------|-----------|
|              | 2452 | 35.194 | 33.77 | 500            | PASS      |
| Bluetooth    | 2402 | 1.035  | 0.65  | 500            | PASS      |
| (Low Energy) | 2440 | 1.035  | 0.63  | 500            | PASS      |
| (1M)         | 2480 | 1.031  | 0.64  | 500            | PASS      |
| Bluetooth    | 2402 | 2.030  | 1.08  | 500            | PASS      |
| (Low Energy) | 2440 | 2.044  | 1.13  | 500            | PASS      |
| (2M)         | 2480 | 2.048  | 1.057 | 500            | PASS      |

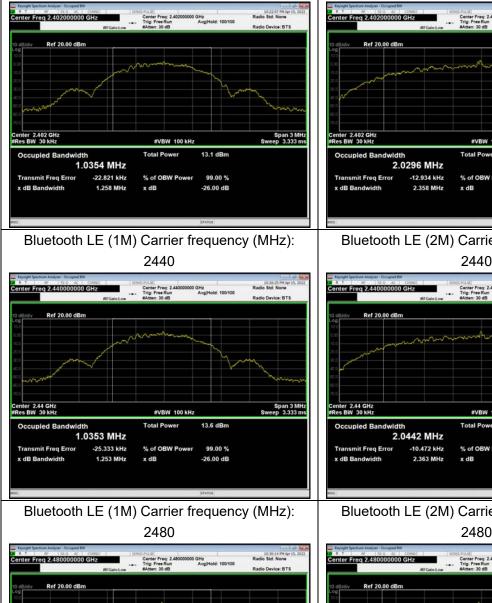



99%bandwidth


















**RF Test Report** 

Bluetooth LE (1M) Carrier frequency (MHz):

2402

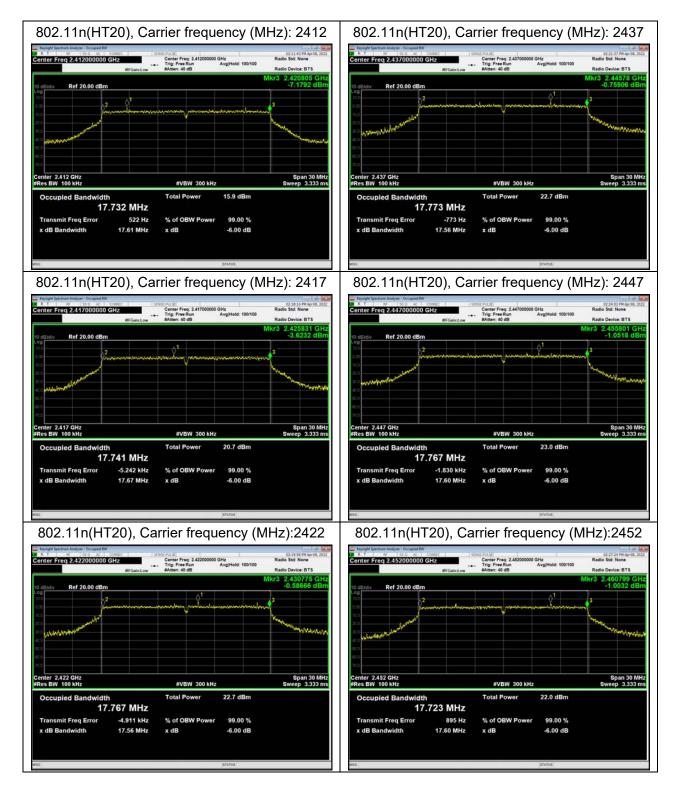
Report No.: R2107A0598-R1

10:34:40 PM Apr 15, 2022 Radio Std: None

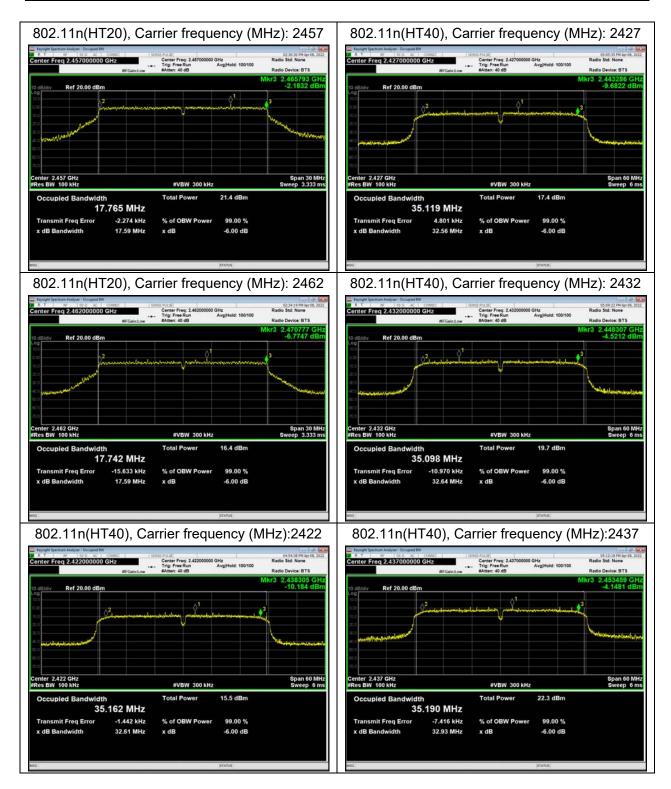
vice: BTS

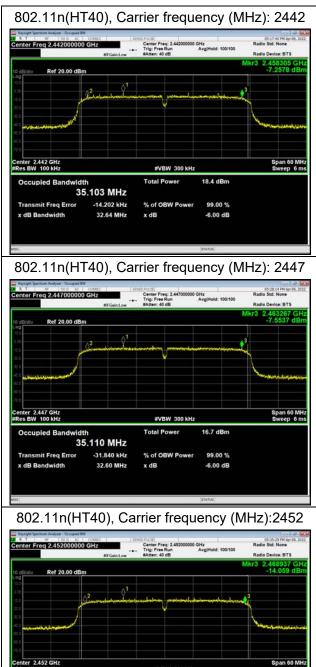
Bluetooth LE (2M) Carrier frequency (MHz):

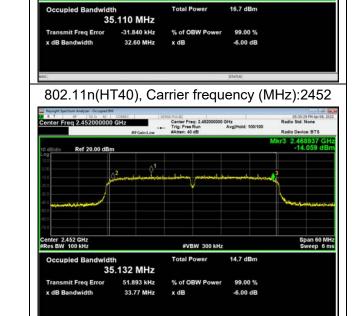
2402


Span 3 MH ep 3.333 n #VBW 100 kHz Swa Total Power 13.4 dBm 99.00 % % of OBW Power -26.00 dB Bluetooth LE (2M) Carrier frequency (MHz): 2440 10:37:13 PM Apr 15, 202 Radio Std: None Center Freq: 2.440 Trig: Free Run 00 GHz Avg/Hold: 100/100 ice: BTS Span 3 MH ep 3.333 n #VBW 100 kHz 13.4 dBm Total Powe % of OBW Power 99.00 % -26.00 dB Bluetooth LE (2M) Carrier frequency (MHz): 2480 10:39:54 PH Ap Radio Std: None Center Freq: 2.48 Trig: Free Run nter 2.48 GHz es BW 30 kHz Span 3 MH ep 3.333 m enter 2.48 GHz Res BW 30 kHz Span 3 MH ep 3.333 m Sw #VBW 100 kHz #VBW 100 kHz Sv Total Powe 13.6 dBm Total Powe 13.2 dBm Occupied Ba 2.0476 MHz 1.0312 MHz -22.232 kHz -16.998 kHz t Freq Er % of OBW Power 99.00 % nit Freq Error % of OBW Power 99.00 % Tra 1.242 MHz x dB -26.00 dB x dB Bandy 2.416 MHz x dB -26.00 dB

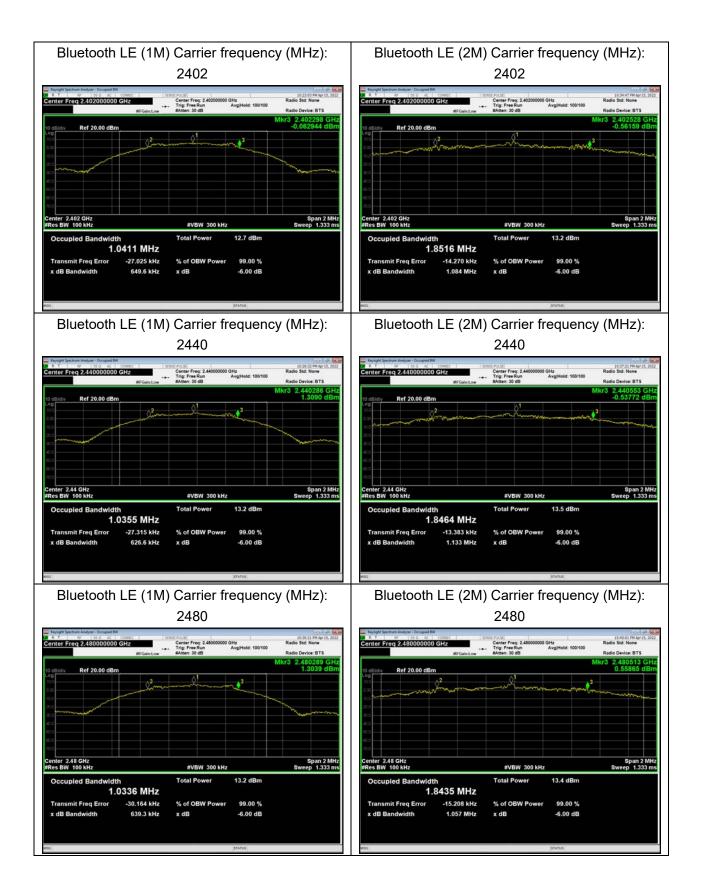










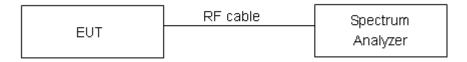









#### 5.3. Band Edge


#### Ambient condition

| Temperature | Relative humidity | Pressure |  |
|-------------|-------------------|----------|--|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |  |

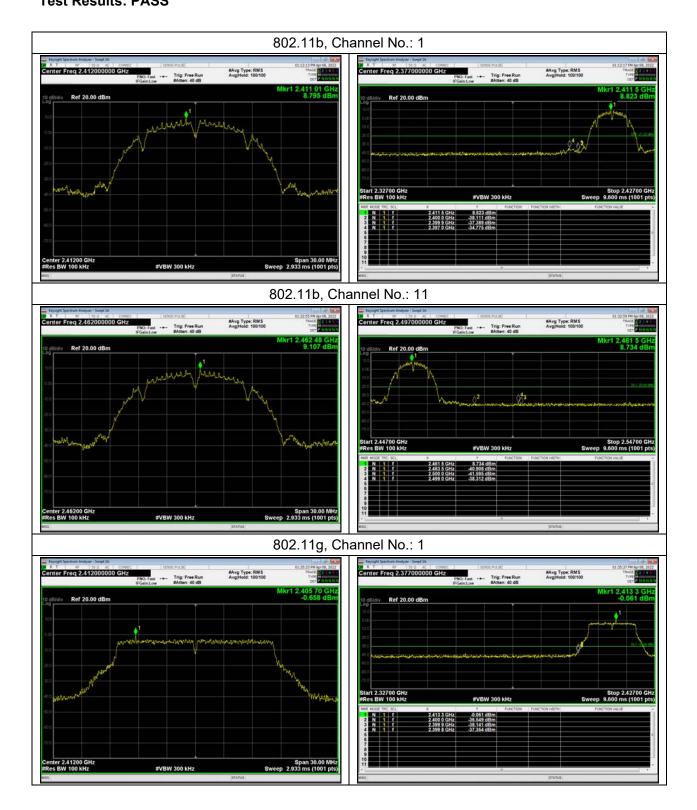
#### Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

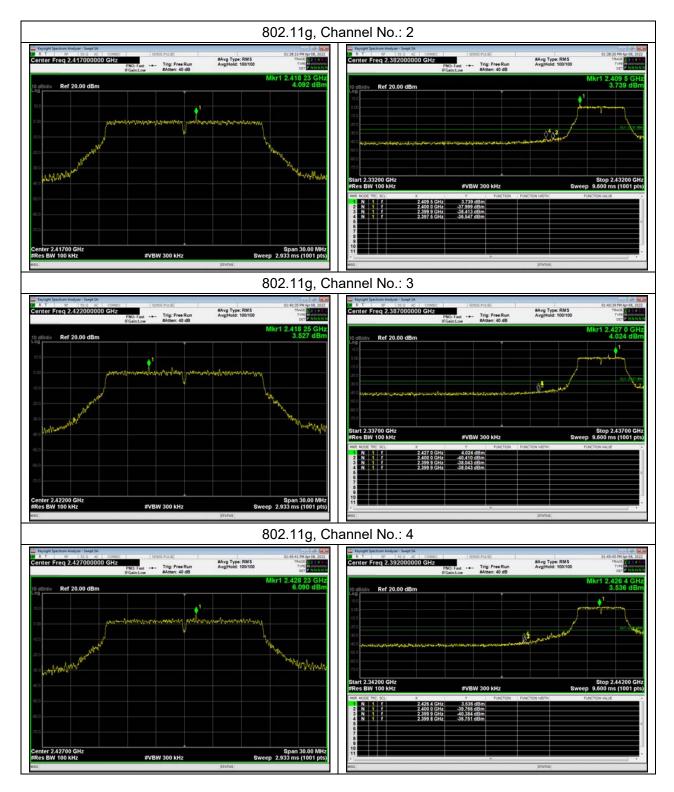
#### Test Setup



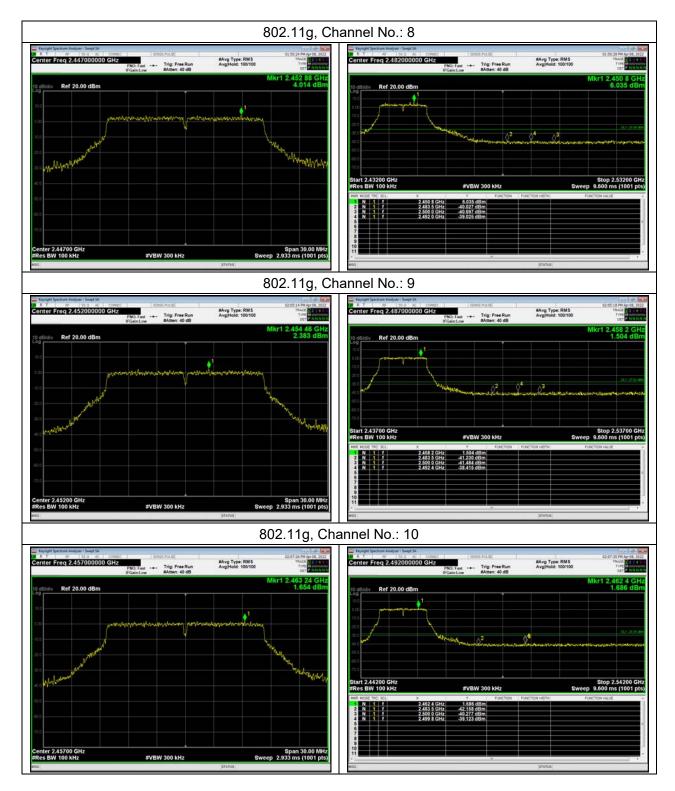
#### Limits


Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

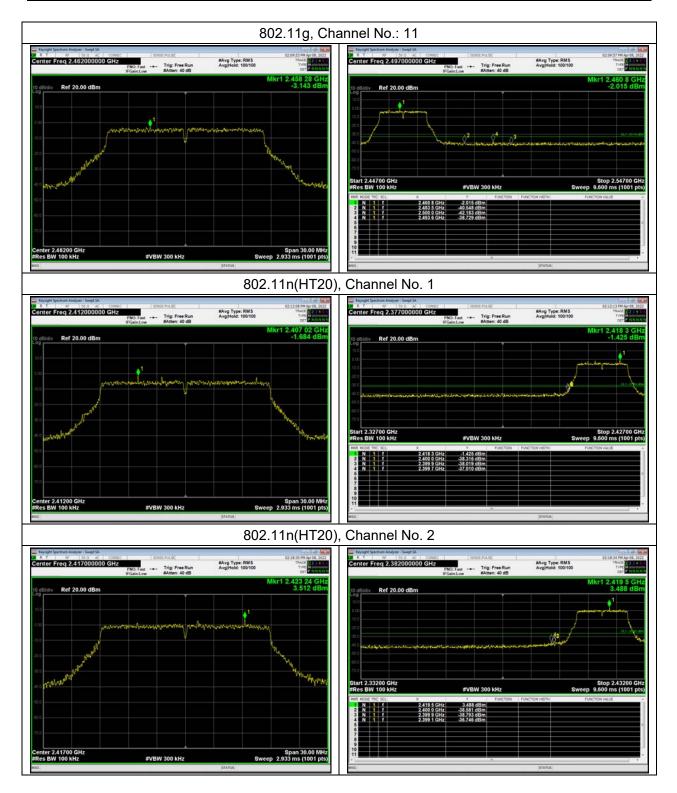
#### Measurement Uncertainty

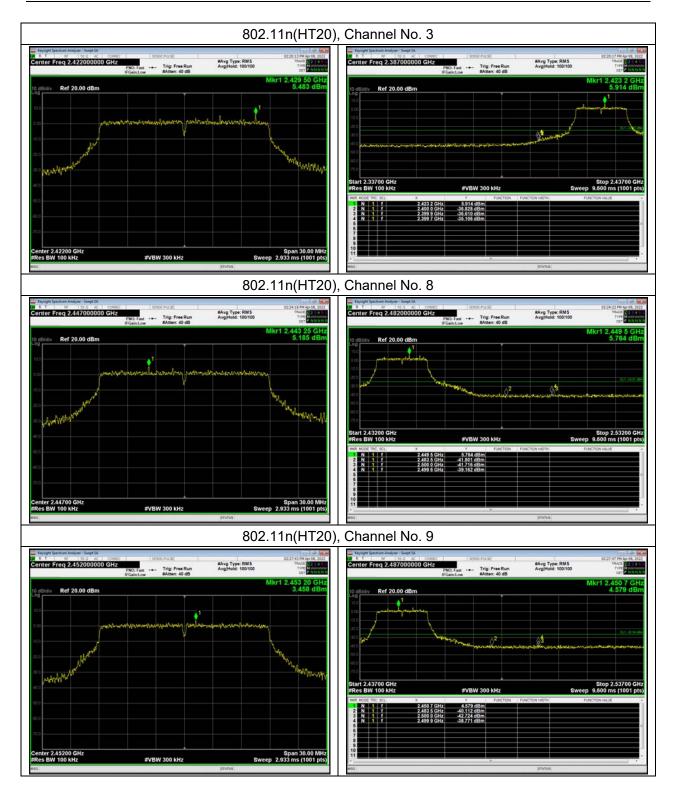

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

| Frequency | Uncertainty |  |
|-----------|-------------|--|
| 2GHz-3GHz | 1.407 dB    |  |

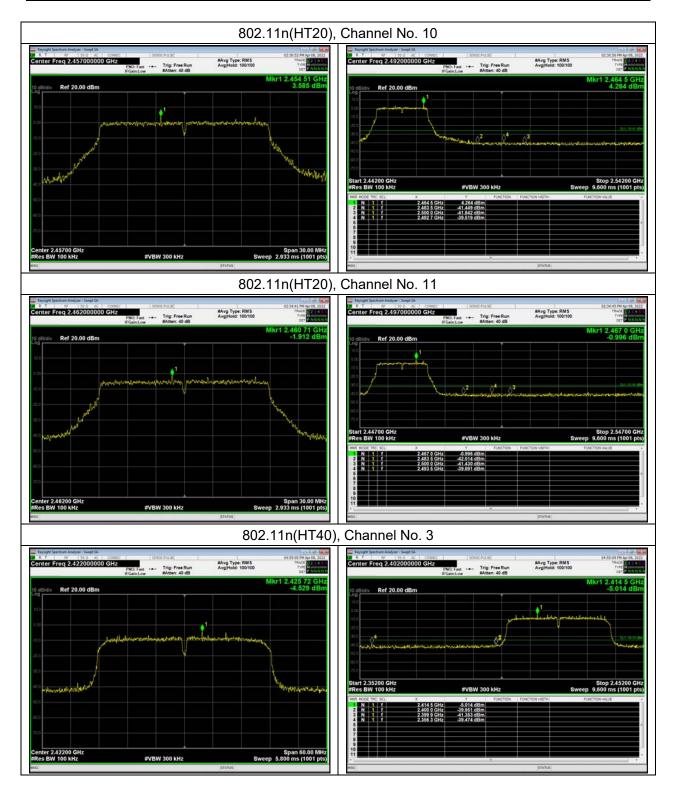

RF Test Report Test Results: PASS



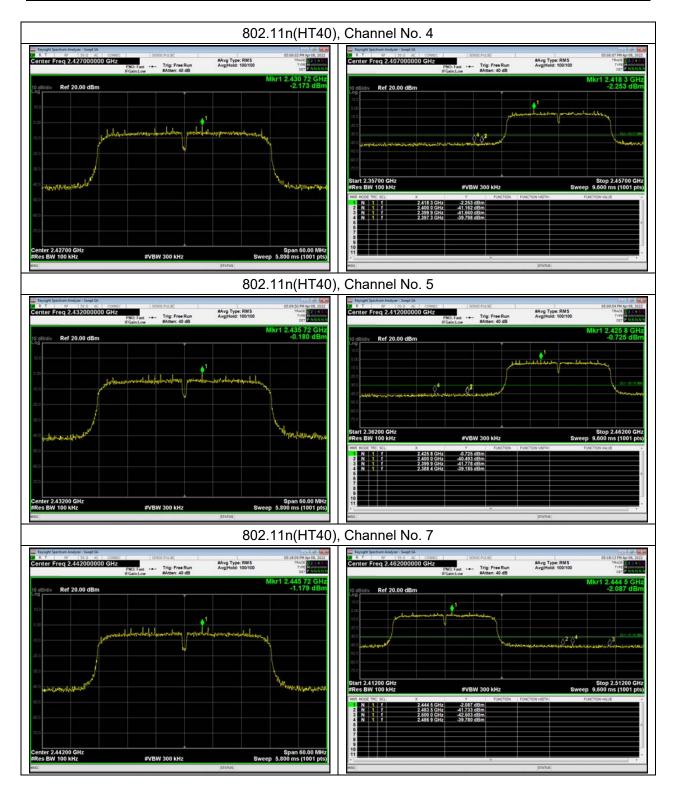


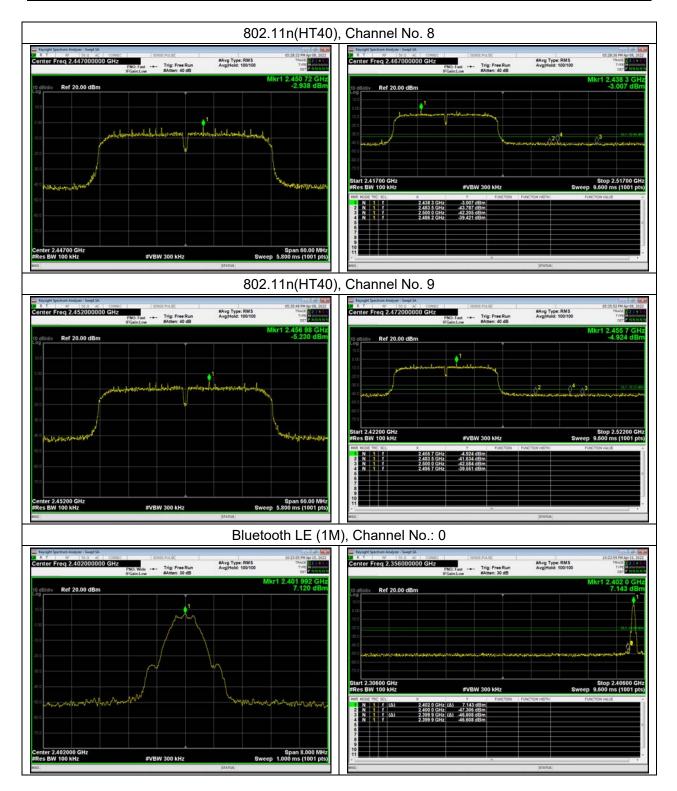


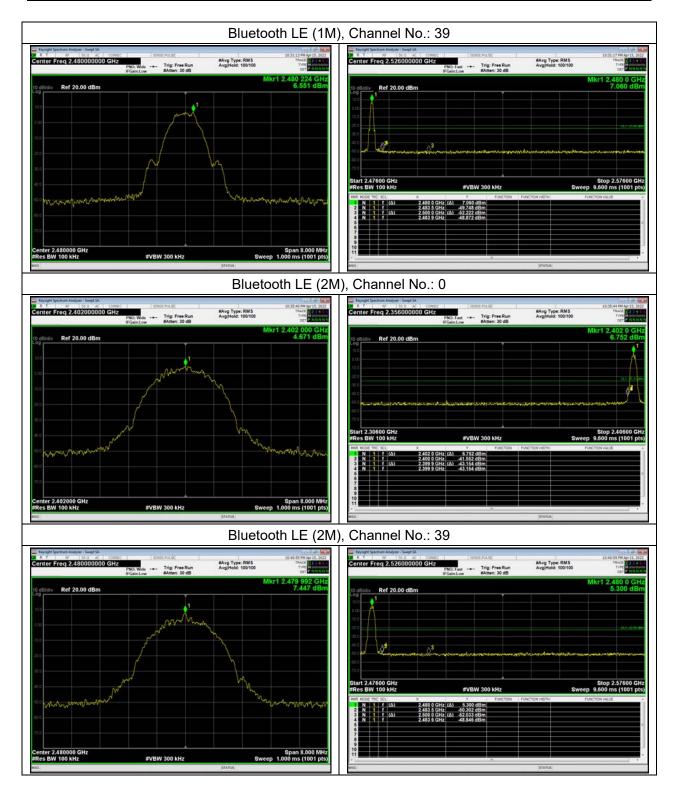



















#### 5.4. Power Spectral Density

#### Ambient condition

| Temperature | Relative humidity | Pressure |  |
|-------------|-------------------|----------|--|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |  |

#### Method of Measurement

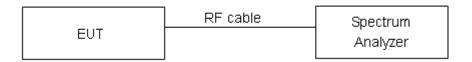
During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss.

The EUT is max power transmission with proper modulation.

Method AVGPSD-1 was used for this test.

- a) Set instrument center frequency to DTS channel center frequency
- b) Set span to at least 1.5 times the OBW
- c) Set RBW to:3kHz≤RBW≤100kHz
- d) Set VBW≥[3x RBW]
- e) Detector=power averaging (rms) or sample detector (when rms not available)
- f) Ensure that the number of measurement points in the sweep 2[2 X span/RBWT]
- g) Sweep time auto couple
- h) Employ trace averaging (rms) mode over a minimum of 100 traces
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Method AVGPSD-2 was used for this test.


- a) Measure the duty cycle (D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c) Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz << RBW << 100Kh
- e) Set VBW≥[3x RBW]
- f) Detector= power averaging (rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep 2[2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging (rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level



I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time

m) If measured value exceeds requirement specified by regulatory agency then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

# Test setup



# Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

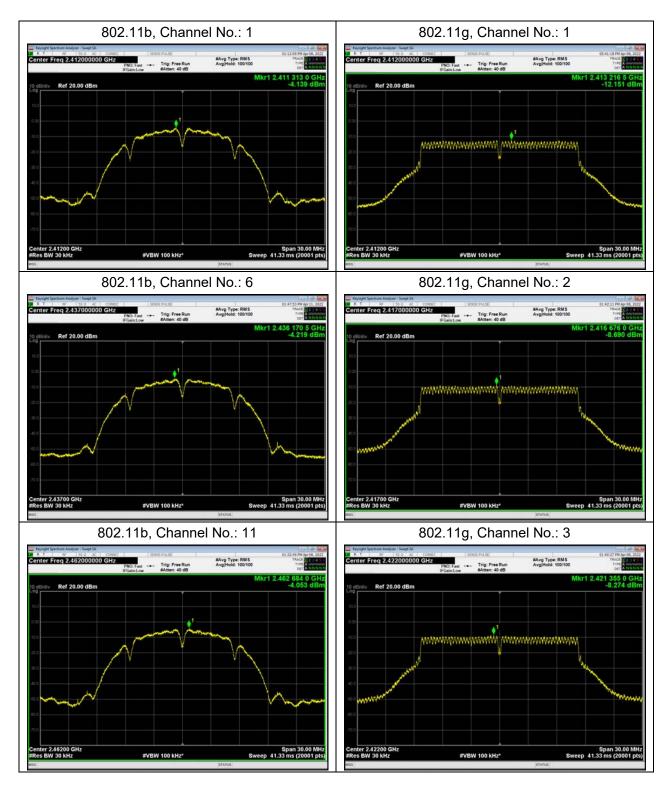
|--|

# **Measurement Uncertainty**

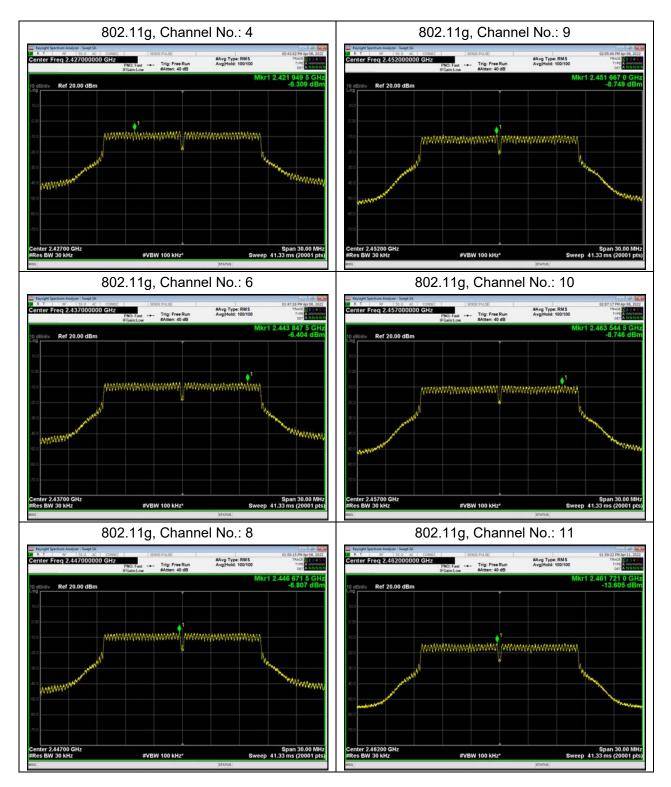
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

RF Test Report

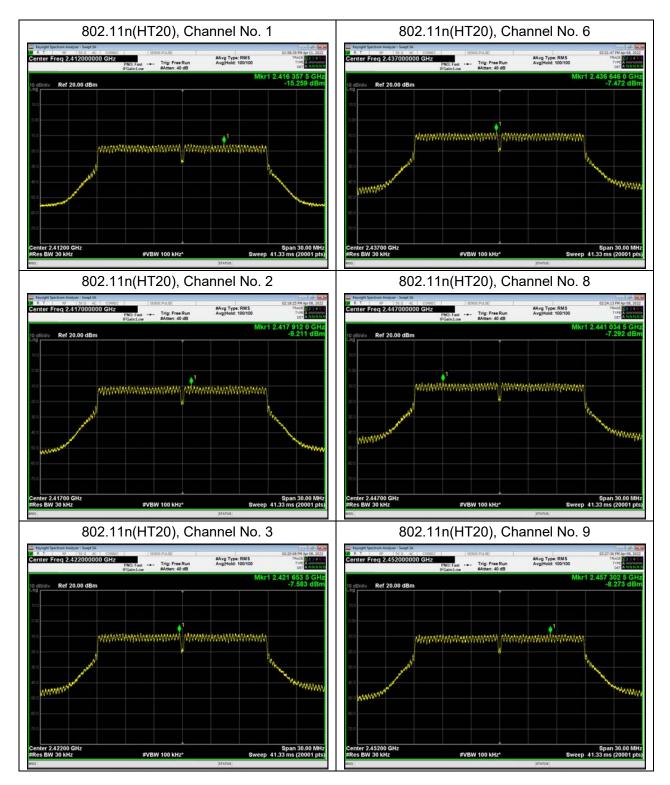
#### Test Results:


| Test Mode       | Channel<br>Number | Read Value<br>(dBm /<br>30kHz) | Power Spectral<br>Density<br>(dBm / 3kHz) | Limit<br>(dBm / 3kHz) | Conclusion |
|-----------------|-------------------|--------------------------------|-------------------------------------------|-----------------------|------------|
|                 | 1                 | -4.14                          | -14.14                                    | 8                     | PASS       |
| 802.11b         | 6                 | -4.22                          | -14.22                                    | 8                     | PASS       |
|                 | 11                | -4.05                          | -14.05                                    | 8                     | PASS       |
|                 | 1                 | -12.15                         | -22.15                                    | 8                     | PASS       |
|                 | 2                 | -8.69                          | -18.69                                    | 8                     | PASS       |
|                 | 3                 | -8.27                          | -18.27                                    | 8                     | PASS       |
|                 | 4                 | -6.31                          | -16.31                                    | 8                     | PASS       |
| 802.11g         | 6                 | -6.40                          | -16.40                                    | 8                     | PASS       |
|                 | 8                 | -6.81                          | -16.81                                    | 8                     | PASS       |
| 802.11n<br>HT20 | 9                 | -8.75                          | -18.75                                    | 8                     | PASS       |
|                 | 10                | -8.75                          | -18.75                                    | 8                     | PASS       |
|                 | 11                | -13.61                         | -23.61                                    | 8                     | PASS       |
|                 | 1                 | -15.26                         | -25.26                                    | 8                     | PASS       |
|                 | 2                 | -9.21                          | -19.21                                    | 8                     | PASS       |
|                 | 3                 | -7.58                          | -17.58                                    | 8                     | PASS       |
|                 | 6                 | -7.47                          | -17.47                                    | 8                     | PASS       |
|                 | 8                 | -7.29                          | -17.29                                    | 8                     | PASS       |
|                 | 9                 | -8.27                          | -18.27                                    | 8                     | PASS       |
|                 | 10                | -9.02                          | -19.02                                    | 8                     | PASS       |
|                 | 11                | -13.97                         | -23.97                                    | 8                     | PASS       |
|                 | 3                 | -17.08                         | -27.08                                    | 8                     | PASS       |
|                 | 4                 | -15.30                         | -25.30                                    | 8                     | PASS       |
|                 | 5                 | -12.80                         | -22.80                                    | 8                     | PASS       |
| 802.11n<br>HT40 | 6                 | -10.53                         | -20.53                                    | 8                     | PASS       |
|                 | 7                 | -14.28                         | -24.28                                    | 8                     | PASS       |
|                 | 8                 | -15.82                         | -25.82                                    | 8                     | PASS       |
|                 | 9                 | -17.81                         | -27.81                                    | 8                     | PASS       |

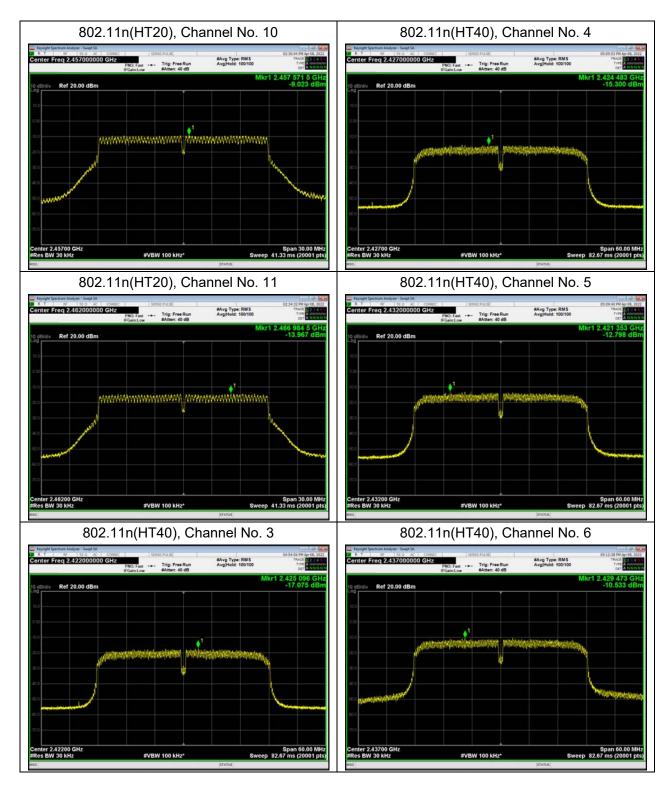


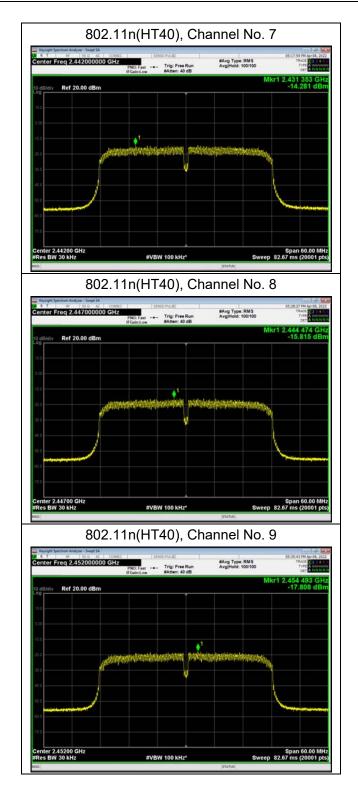

Note: Power Spectral Density =Read Value+Duty cycle correction factor+10\*log10(3/30)

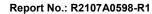
| Test Mode                                                             | Channel<br>Number | Read Value<br>(dBm / 3kHz) | Power Spectral<br>Density<br>(dBm / 3kHz) | Limit<br>(dBm / 3kHz) | Conclusion |  |
|-----------------------------------------------------------------------|-------------------|----------------------------|-------------------------------------------|-----------------------|------------|--|
| Bluetooth                                                             | 0                 | -14.10                     | 8                                         | PASS                  |            |  |
| (Low Energy) 19 -14.56 -13.80 8 PASS                                  |                   |                            |                                           |                       |            |  |
| (1M) 39 -14.53 -13.77 8 PASS                                          |                   |                            |                                           |                       |            |  |
| Bluetooth 0 -17.39 -14.92 8 PASS                                      |                   |                            |                                           |                       |            |  |
| (Low Energy)<br>(2M)                                                  | 19                | -17.63                     | -15.16                                    | 8                     | PASS       |  |
|                                                                       | 39                | -17.28                     | -14.81                                    | 8                     | PASS       |  |
| Note: Power Spectral Density =Read Value+Duty cycle correction factor |                   |                            |                                           |                       |            |  |



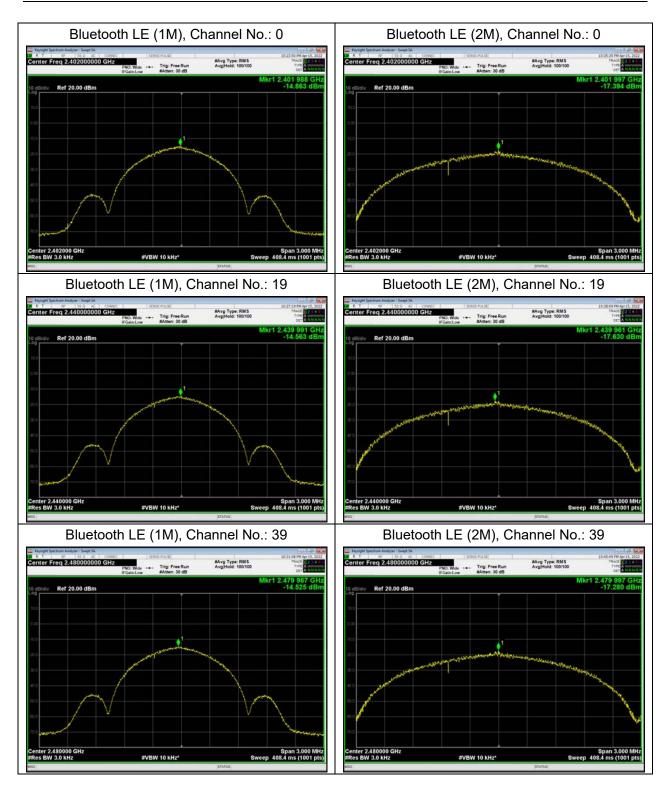

















# 5.5. Spurious RF Conducted Emissions

### Ambient condition

| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |

### **Method of Measurement**

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

# Test setup

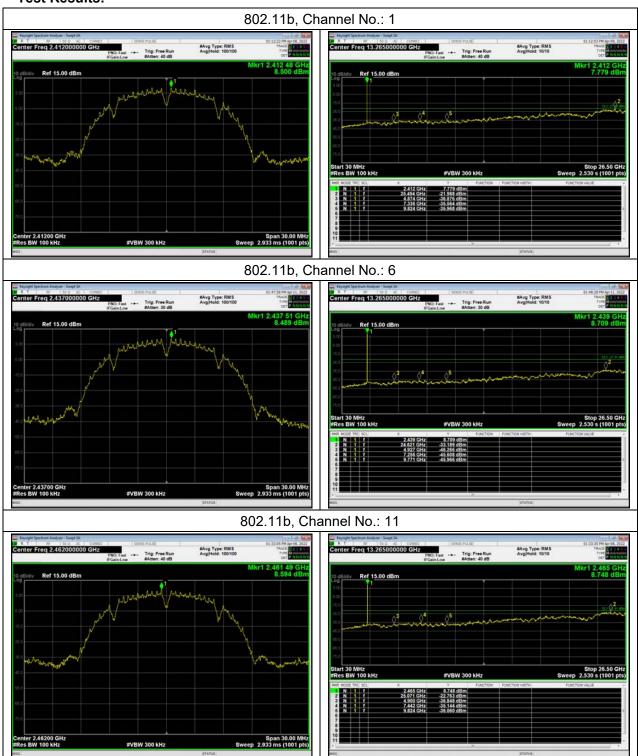


# Limits

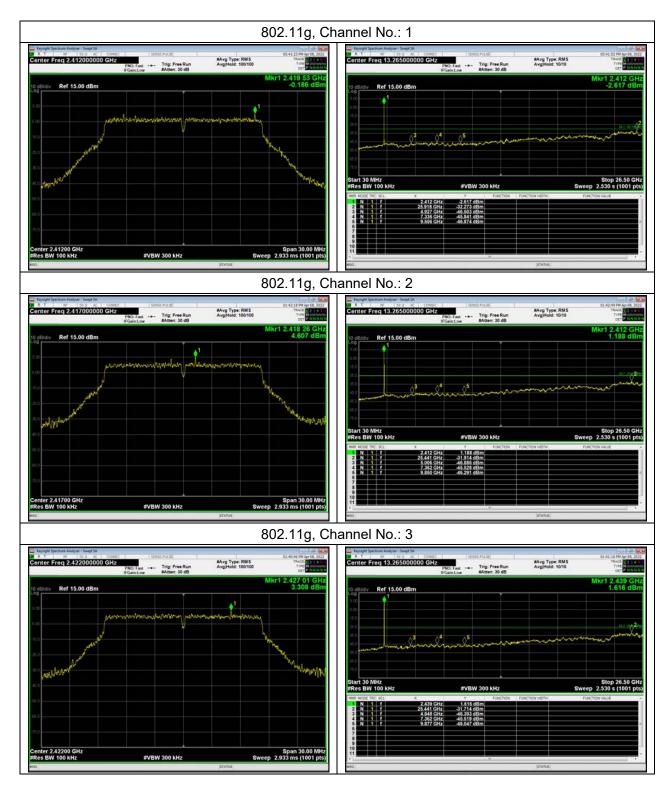
Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. "

| Test Mode | Carrier frequency<br>(MHz) | Reference value (dBm) | Limit  |
|-----------|----------------------------|-----------------------|--------|
|           | 2412                       | 8.50                  | -21.50 |
| 802.11b   | 2437                       | 8.49                  | -21.51 |
|           | 2462                       | 8.59                  | -21.41 |
|           | 2412                       | -0.19                 | -30.19 |
| 802.11g   | 2417                       | 4.61                  | -25.39 |
|           | 2422                       | 3.31                  | -26.69 |
|           | 2427                       | 6.45                  | -23.55 |
|           | 2437                       | 6.33                  | -23.67 |
|           | 2447                       | 6.65                  | -23.35 |
|           | 2452                       | 3.95                  | -26.05 |
|           | 2457                       | 3.94                  | -26.06 |
|           | 2462                       | -0.32                 | -30.32 |

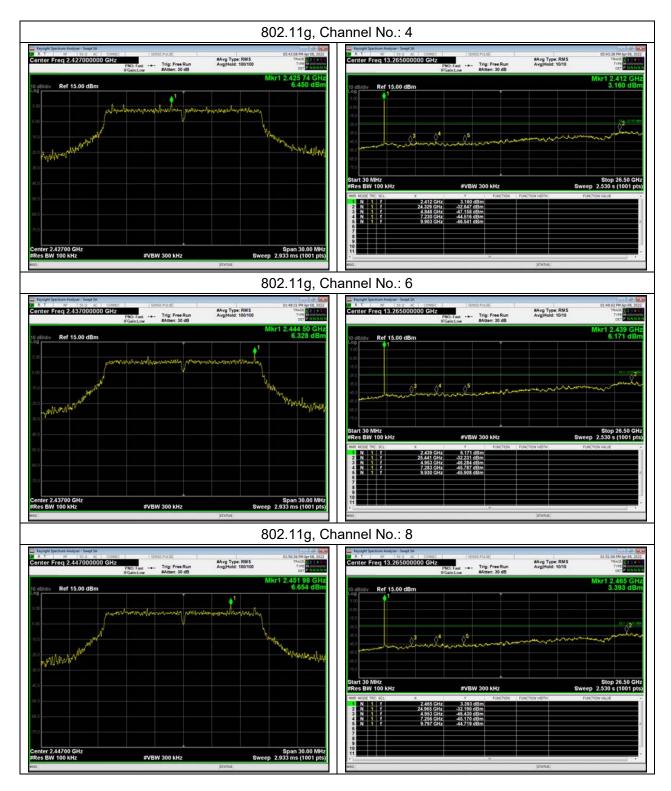
| RF Test Report            |      | R     | eport No.: R2107A05 |
|---------------------------|------|-------|---------------------|
|                           | 2412 | -1.84 | -31.84              |
|                           | 2417 | 3.87  | -26.13              |
|                           | 2422 | 5.19  | -24.81              |
| 802.11n                   | 2437 | 5.86  | -24.14              |
| HT20                      | 2447 | 5.74  | -24.26              |
|                           | 2452 | 5.03  | -24.97              |
|                           | 2457 | 4.52  | -25.48              |
|                           | 2462 | -0.10 | -30.10              |
|                           | 2422 | -4.46 | -34.46              |
|                           | 2427 | -2.50 | -32.50              |
| 802.11n<br>HT40           | 2432 | -0.53 | -30.53              |
|                           | 2437 | 2.23  | -27.77              |
|                           | 2442 | -1.39 | -31.39              |
|                           | 2447 | -3.31 | -33.31              |
|                           | 2452 | -5.35 | -35.35              |
| Bluetooth<br>(Low Energy) | 2402 | 6.73  | -23.27              |
|                           | 2440 | 6.75  | -23.25              |
| (1M)                      | 2480 | 7.58  | -22.42              |
| Bluetooth<br>(Low Energy) | 2402 | 6.33  | -23.67              |
|                           | 2440 | 7.93  | -22.07              |
| (2M)                      | 2480 | 6.02  | -23.98              |


# **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


| Frequency   | Uncertainty |  |
|-------------|-------------|--|
| 100kHz-2GHz | 0.684 dB    |  |
| 2GHz-26GHz  | 1.407 dB    |  |

RF Test Report


Test Results:









