

TEST REPORT

Applicant Name: Address:

Report Number: FCC ID: JEM ACCESSORIES INC. 32 Brunswick Avenue, Edison, New Jersey, United States, 08817 2401S26488E-RF-00B 2AHAS-XBS91083

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type:	BT RGB SPEAKER WITH MIC
Model No.:	XBS9-1083
Multiple Model(s) No.:	N/A
Trade Mark:	N/A
Date Received:	2024-04-30
Issue Date:	2024-11-08

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

GaLa Liu

Gala Liu RF Engineer

Approved By:

Michelle Zen

Michelle Zeng RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk " \mathbf{v} ".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF003

Page 1 of 55

Version 4.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
Test Methodology	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
REQUIREMENTS AND TEST PROCEDURES	11
AC LINE CONDUCTED EMISSIONS	11
UNWANTED EMISSION FREQUENCIES AND RESTRICTED BANDS	
6 DB EMISSION BANDWIDTH	
PEAK OUTPUT POWER MEASUREMENT	
100 kHz Bandwidth of Frequency Band Edge	
POWER SPECTRAL DENSITY DUTY CYCLE	
TEST DATA AND RESULTS	
AC LINE CONDUCTED EMISSIONS	
UNWANTED EMISSION FREQUENCIES AND RESTRICTED BANDS RF CONDUCTED DATA	
DTS BANDWIDTH	
OCCUPIED CHANNEL BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
MAXIMUM POWER SPECTRAL DENSITY	
BAND EDGE MEASUREMENTS	50
DUTY CYCLE	51
ANTENNA REQUIREMENT	
RF EXPOSURE EVALUATION	53
EUT PHOTOGRAPHS	54
TEST SETUP PHOTOGRAPHS	55

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401S26488E-RF-00B	Original Report	2024-11-08

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	2402~2480MHz	
Maximum Conducted Output Peak Power	-6.61dBm(for antenna 0)	
Modulation Technique	GFSK	
Antenna Specification [#]	1.70dBi (provided by the applicant)	
Voltage Range	DC 5V from USB port or DC 3.7V from battery	
Sample serial number	2KRH-1 for Conducted and Radiated Emissions Test 2KRH-1 for RF Conducted Test (Assigned by BACL, Shenzhen)	
Sample/EUT Status	Good condition	
Adapter Information	N/A	

Objective

This report is in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.247 rules.

Test Methodology

All tests and measurements indicated in this document were performed in accordance ANSI C63.10-2013.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		•	Uncertainty
Occupied Channel Bandwidth		Bandwidth	±5%
RF output power, conducted		conducted	0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz-150kHz	3.94dB(k=2, 95% level of confidence)
Emissions		150kHz-30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)		4.48dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical) 200MHz~1000MHz (Horizontal)		4.55dB(k=2, 95% level of confidence)
Radiated Emissions			4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
		1GHz - 6GHz	5.35dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.16dB(k=2, 95% level of confidence)
Temperature		re	±1°C
	Humidity		$\pm 1\%$
Supply voltages		ges	$\pm 0.4\%$

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

EUT Exercise Software

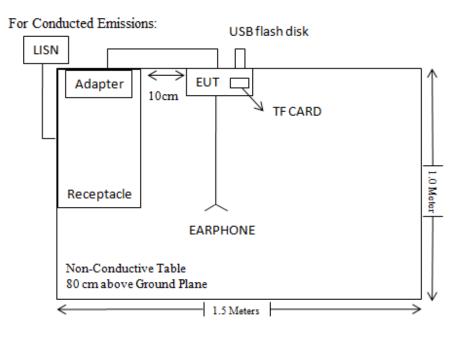
Exercise Software [#]	BT-Tool v1.1.0		
	Power	Level [#]	
Mode	Low Channel	Middle Channel	High Channel
BLE 1M	5	5	5

Special Accessories

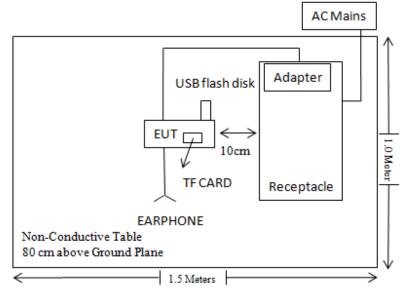
No special accessory.

Equipment Modifications

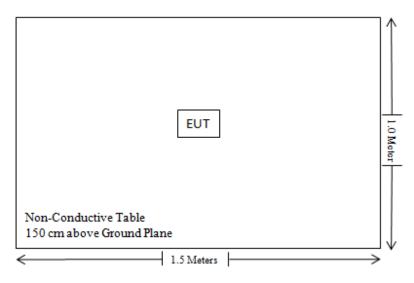
No modification was made to the EUT tested.


Manufacturer	Description Model		Serial Number	
XED	Adapter	XED-UL050100CU	unknown	
SANDISK	TF CARD	SDSQUNC-032G- ZN3MN	41311661269	
SANDISK	USB flash disk	SDCZ73-128G-Z35	2145507	
pisen	Earphone	unknown	unknown	
Bull	Receptacle	unknown	unknown	

Support Equipment List and Details


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	1	EUT	Receptacle
Un-shielding Detachable AC Cable	1.0	Receptacle	LISN/AC Mains
Un-shielding Detachable Cable	1	EUT	Earphone


Block Diagram of Test Setup

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

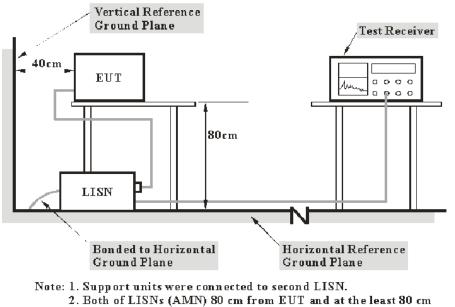
FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	PASS
FCC §15.207(a)	AC Line Conducted Emissions	PASS
FCC §15.205,§15.209,§15.247(d)	Radiated Spurious Emission	PASS
FCC §15.207(a)(2)	6dB Emission Bandwidth	PASS
FCC §15.247(b)(1)	Maximum Conducted Output Power	PASS
FCC §15.247(d)	100 kHz Bandwidth of Frequency Band Edge	PASS
FCC §15.247(e)	Power Spectral Density	PASS
FCC 15.247 (i), §1.1307 (b) (1) & §2.1093	RF Exposure	PASS

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted Emissio	on Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
		Radiated Emission	n Test		
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
BACL	Active Loop Antenna	1313-1A	4031911	2024/03/21	2025/03/20
Unknown	Cable	Chamber Cable 1	F-03-EM236	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17
Schwarzbeck	Horn Antenna	BBHA9120D(120 1)	1143	2023/07/26	2026/07/25
Unknown	RF Cable	KMSE	735	2024/06/18	2025/06/17
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17
SNSD	2.4G Band Reject filter	BSF2402- 2480MN-0898- 001	2.4G filter	2024/06/27	2025/06/26
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
		RF Conducted	ſest		
Rohde&Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/01/16	2025/01/15
R&S	Spectrum Analyzer	FSU26	200120	2024/01/08	2025/01/07
MARCONI	10dB Attenuator	6534/3	2942	2024/06/27	2025/06/26
Unknown	RF Cable	65475	01670515	2024/06/27	2025/06/26

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

TR-EM-RF003


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC§15.207

EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Bay Area Compliance Laboratories Corp. (Shenzhen)

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

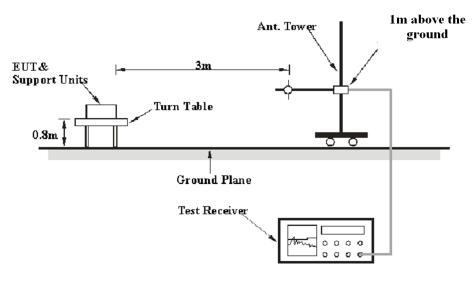
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

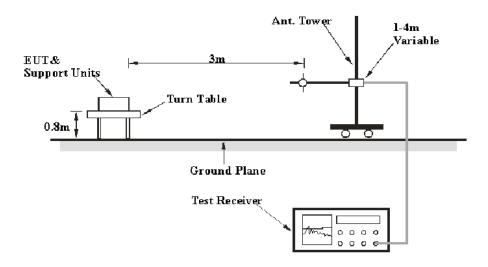
The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

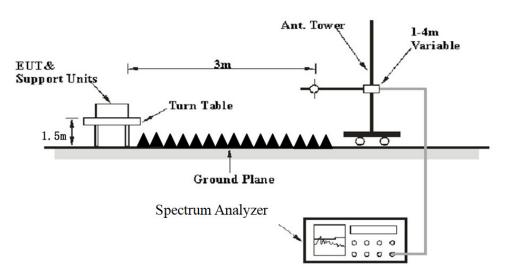
Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).


Unwanted Emission Frequencies and Restricted Bands

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.205, FCC 15.209, FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
9 kHz – 150 kHz	/	/	200 Hz	QP
9 KHZ – 150 KHZ	300 Hz	1 kHz	/	РК
150 kHz – 30 MHz	/	/	9 kHz	QP
130 KHz - 30 WHz	10 kHz	30 kHz	/	РК
30 MHz – 1000 MHz	/	/	120 kHz	QP
30 MHZ – 1000 MHZ	100 kHz	300 kHz	/	РК

1-25GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton, not less than 5 kHz

TR-EM-RF003

Bay Area Compliance Laboratories Corp. (Shenzhen)

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
AV	>98%	1MHz	10 Hz
AV	<98%	1MHz	≥1/Ton

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

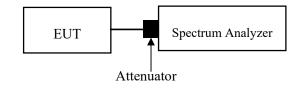
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

6 dB Emission Bandwidth

Standard Applicable

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.


Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- a. Set RBW = 100 kHz.
- b. Set the VBW \geq [3×RBW].
- c. Detector = peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

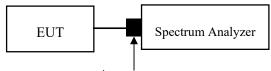
The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. Procedure as below

- a. The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- d. Step a) through step c) might require iteration to adjust within the specified range.
- e. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f. Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g. If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h. The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

TR-EM-RF003

Page 16 of 55

Peak Output Power Measurement


Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

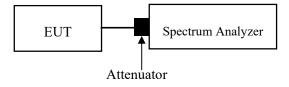
- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.
- 4. Set the RBW \geq DTS bandwidth.
- 5. Set the VBW \geq [3 × RBW].
- 6. Set span $\geq [3 \times \text{RBW}]$.
- 7. Sweep time = auto couple.
- 8. Detector = peak.
- 9. Trace mode = max hold.
- 10. Allow the trace to stabilize.
- 11. Use peak marker function to determine the peak amplitude level.

Attenuator

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by clie nt or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/ or RF cable loss

100 kHz Bandwidth of Frequency Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required

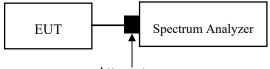
Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Set the RBW =100 kHz.
- 2. Set the VBW \geq 3×RBW.
- 3. Detector = peak
- 4. Sweep time = auto couple.
- 5. Trace mode=max hold
- 6. All trace to fully stabilize
- 7. Use the peak marker function to determine the maximum amplitude level. Ensure that amplitude of all unwanted emissions outside of the authorized frequency band(excluding restricted frequency bands) is attenuated by at least the minimum requirement specified in 11.11. Report the three highest emissions relative to the limit.

Power Spectral Density

Applicable Standard


According to FCC §15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set analyzer center frequency to DTS channel center frequency
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Set the RBW to: $3kHz \leq RBW \leq 100 kHz$.
- 5. Set the VBW \geq 3 × RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

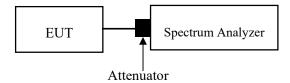
Attenuator

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by clie nt or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/ or RF cable loss

Duty Cycle

Test Procedure

According to ANSI C63.10-2013 Section 11.6


The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

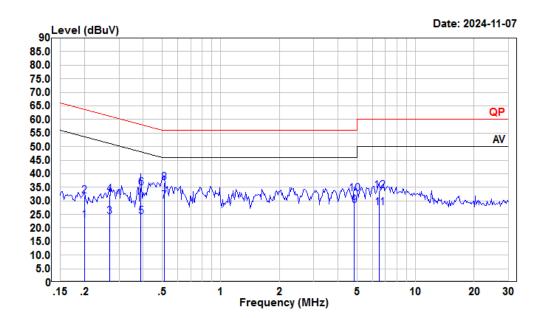
1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \mu s$.)

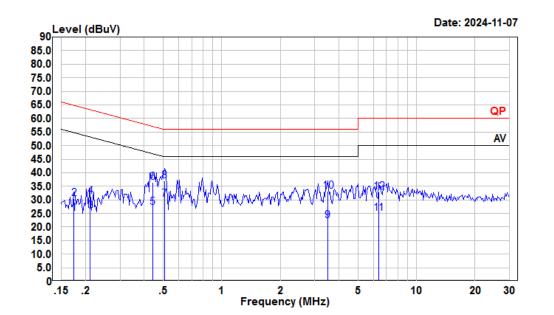
TEST DATA AND RESULTS


AC Line Conducted Emissions

Environmental Conditions

Temperature (°C)	24	Relative Humidity (%)	44		
ATM Pressure (kPa)	101	Test engineer	Macy shi		
Test date	2024/11/07				
EUT operation mode	Transmitting(Maximum output power mode, BLE 1M, Low Channel)				

Bay Area Compliance Laboratories Corp. (Shenzhen)

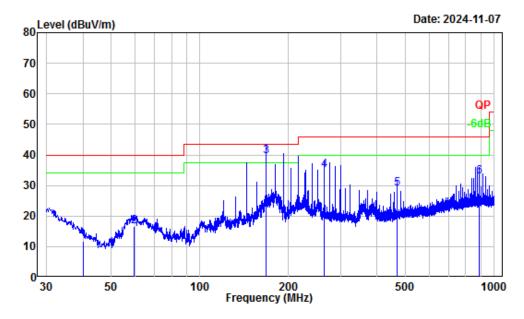

120V 60 Hz, Line

Condition:	Line
Project :	2401S26488E-RF
tester :	Macy.shi
Note :	BLE

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.200	2.02	22.91	10.80	10.09	53.62	-30.71	Average
2	0.200	10.99	31.88	10.80	10.09	63.62	-31.74	QP
3	0.269	3.36	24.15	10.70	10.09	51.16	-27.01	Average
4	0.269	11.46	32.25	10.70	10.09	61.16	-28.91	QP
5	0.389	3.55	24.23	10.58	10.10	48.08	-23.85	Average
6	0.389	14.20	34.88	10.58	10.10	58.08	-23.20	QP
7	0.513	9.20	29.84	10.50	10.14	46.00	-16.16	Average
8	0.513	16.07	36.71	10.50	10.14	56.00	-19.29	QP
9	4.848	7.66	28.21	10.37	10.18	46.00	-17.79	Average
10	4.848	12.16	32.71	10.37	10.18	56.00	-23.29	QP
11	6.523	6.72	27.38	10.47	10.19	50.00	-22.62	Average
12	6.523	13.10	33.76	10.47	10.19	60.00	-26.24	QP

120V 60 Hz, neutral

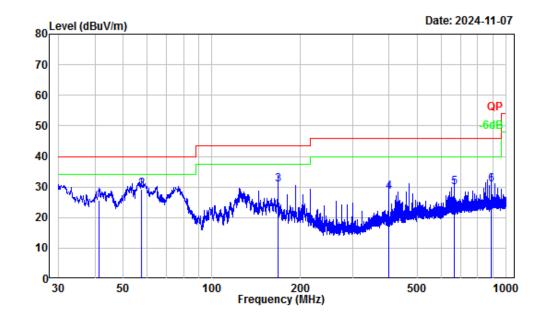
Condition:	Neutral
Project :	2401S26488E-RF
tester :	Macy.shi
Note :	BLE


		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.174	4.40	25.00	10.50	10.10	54.77	-29.77	Average
2	0.174	9.91	30.51	10.50	10.10	64.77	-34.26	QP
3	0.211	5.34	25.85	10.42	10.09	53.18	-27.33	Average
4	0.211	10.80	31.31	10.42	10.09	63.18	-31.87	QP
5	0.442	6.38	27.16	10.66	10.12	47.02	-19.86	Average
6	0.442	15.68	36.46	10.66	10.12	57.02	-20.56	QP
7	0.507	9.26	30.10	10.70	10.14	46.00	-15.90	Average
8	0.507	16.17	37.01	10.70	10.14	56.00	-18.99	QP
9	3.491	1.73	22.32	10.40	10.19	46.00	-23.68	Average
10	3.491	12.67	33.26	10.40	10.19	56.00	-22.74	QP
11	6.386	4.25	25.09	10.65	10.19	50.00	-24.91	Average
12	6.386	12.05	32.89	10.65	10.19	60.00	-27.11	QP

Unwanted Emission Frequencies and Restricted Bands

Environmental Conditions

Temperature (°C)	22-24	Relative Humidity (%)	44-47		
ATM Pressure (kPa):	101	Test engineer:	Carl Zhu&Karl Xu		
Test date:	2024/11/07~2024/11/08				
EUT operation mode:	Below 1GHz: Transmitting(Maximum output power mode, BLE 1M, Low Channel) Above 1GHz: Transmitting				
Note:	 After pre-scan in the X, Y and Z axes of orientation, the worst case z-axis of orientation were recorded. For the radiated spurious emission below 30MHz, the emissions are 20dB below the limit or the noise floor which are not recorded. 				


Below 1GHz:

30MHz-1GHz Horizontal

Site	:	Chamber A
Condition	:	3m Horizontal
Project Number	:	2401526488E-RF
Test Mode	:	Transmitting
Tester	:	Carl Zhu

	E.e.e.	F			Limit		Damanla
	Freq	Factor	Level	Level	Line	Limit	кетагк
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.19	-12.50	24.16	11.66	40.00	-28.34	QP
2	59.59	-18.16	34.84	16.68	40.00	-23.32	QP
3	167.98	-13.00	52.59	39.59	43.50	-3.91	QP
4		-12.36	47.44	35.08	46.00	-10.92	QP
5	467.96	-6.84	35.69	28.85	46.00	-17.15	QP
6	888.09	-1.41	34.36	32.95	46.00	-13.05	QP

30MHz-1GHz Vertical

Site :	Chamber A
Condition :	3m Vertical
Project Number:	2401526488E-RF
Test Mode :	Transmitting
Tester :	Carl Zhu

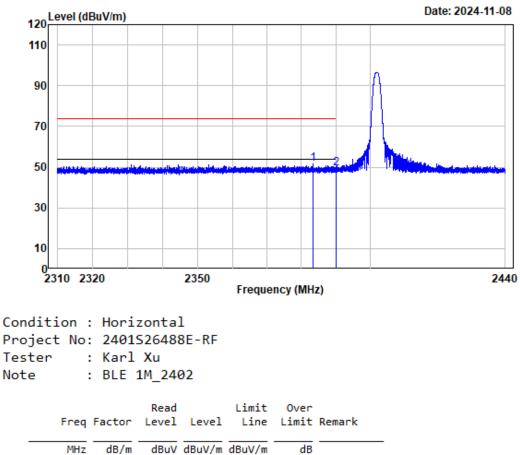
					Limit		
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.40	-13.39	38.92	25.53	40.00	-14.47	QP
	57.52	-18.27	47.51	29.24	40.00	-10.76	QP
3	167.98	-13.00	43.69	30.69	43.50	-12.81	QP
4	399.93	-8.41	36.77	28.36	46.00	-17.64	QP
5	666.56	-3.86	33.69	29.83	46.00	-16.17	QP
6	888.09	-1.41	32.32	30.91	46.00	-15.09	QP

Above 1GHz:

-	Receiver				Corrected	.				
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
BLE 1M										
Low Channel										
4804	51.94	РК	Н	2.42	54.36	74	-19.64			
4804	43.17	AV	Н	2.42	45.59	54	-8.41			
4804	51.77	РК	V	2.42	54.19	74	-19.81			
4804	40.21	AV	V	2.42	42.63	54	-11.37			
		•	Middle	Channel						
4880	52.09	РК	Н	2.58	54.67	74	-19.33			
4880	43.25	AV	Н	2.58	45.83	54	-8.17			
4880	52.81	РК	V	2.58	55.39	74	-18.61			
4880	41.27	AV	V	2.58	43.85	54	-10.15			
		•	High C	hannel						
4960	53.31	РК	Н	2.68	55.99	74	-18.01			
4960	43.63	AV	Н	2.68	46.31	54	-7.69			
4960	54.04	РК	V	2.68	56.72	74	-17.28			
4960	41.26	AV	V	2.68	43.94	54	-10.06			

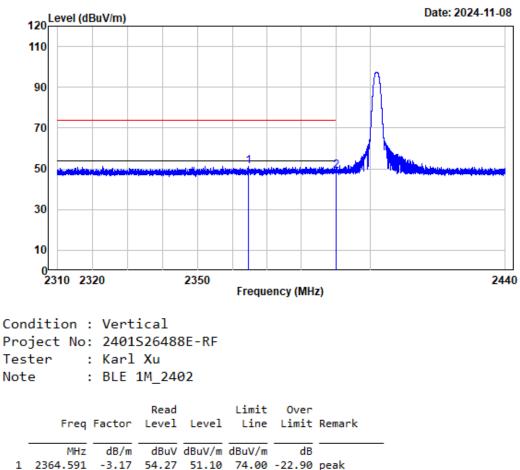
Note:

 $Corrected \ Factor = Antenna \ factor \ (RX) + Cable \ Loss - Amplifier \ Factor$

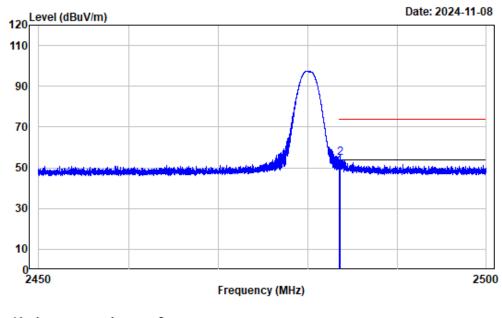

Corrected Amplitude/Level = Corrected Factor + Reading

Margin = Corrected Amplitude/Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

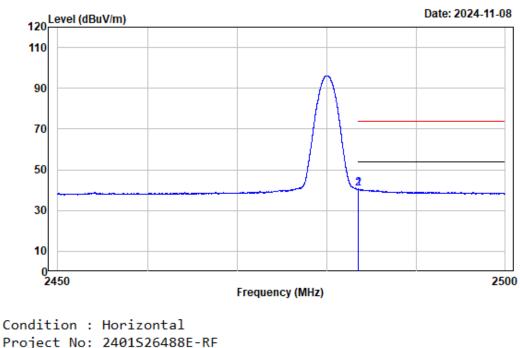

Test plots

Horizontal



1	2383.281	-3.20	54.96	51.76	74.00	-22.24 peak	
2	2390.000	-3.20	52.58	49.38	74.00	-24.62 Peak	

1	2364.591	-3.17	54.27	51.10	74.00	-22.90	реак
2	2390.000	-3.20	51.95	48.75	74.00	-25.25	Peak

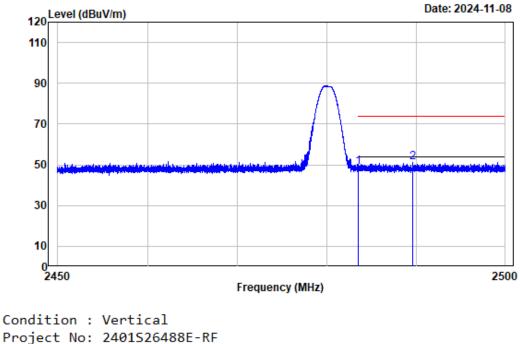


Horizontal-Peak

Condition : Horizontal Project No: 2401526488E-RF Tester : Karl Xu Note : BLE 1M_2480

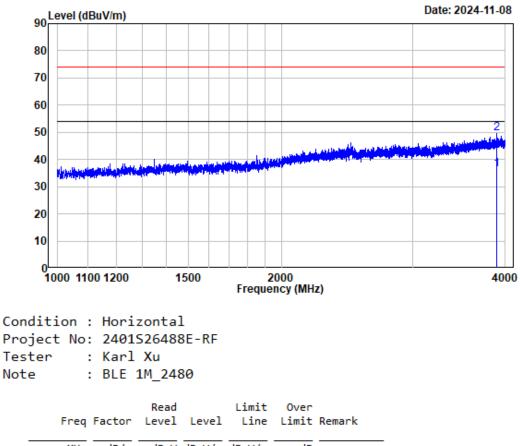
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-3.17	53.99	50.82	74.00	-23.18	Peak
2	2483.610	-3.17	58.05	54.88	74.00	-19.12	Peak

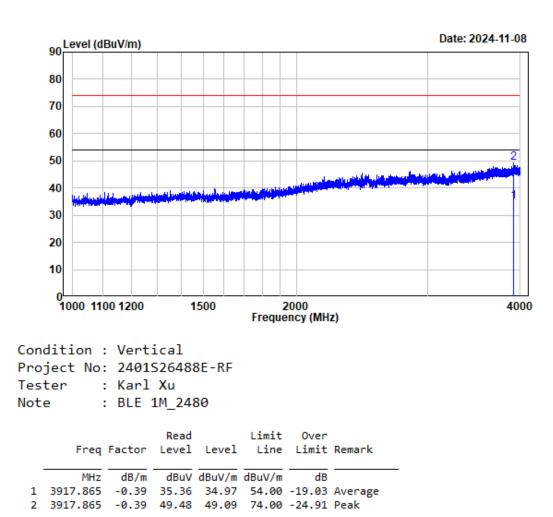
TR-EM-RF003


Horizontal-Average

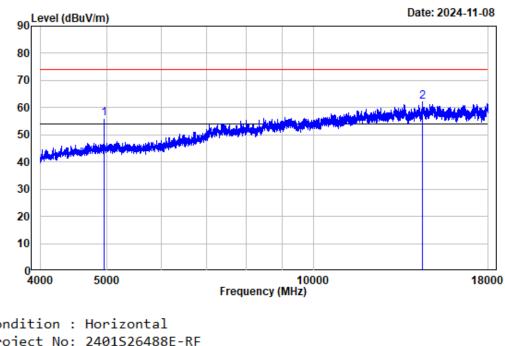
Condition : Horizontal Project No: 2401S26488E-RF Tester : Karl Xu Note : BLE 1M_2480_AV

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.498	-3.17	43.73	40.56	54.00	-13.44	Average
2	2483.500	-3.17	43.73	40.56	54.00	-13.44	Average


Note: Spectrum analyzer setting: RBW=1 MHz, VBW=5 kHz

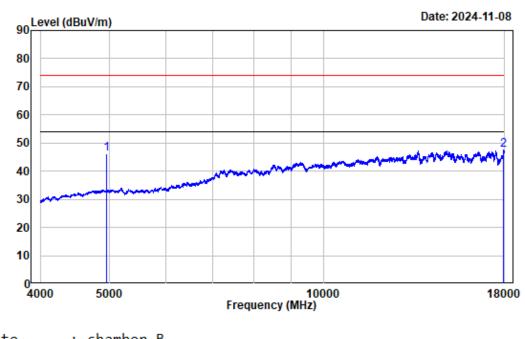

```
Project No: 2401S26488E-RF
Tester : Karl Xu
Note : BLE 1M_2480
Read Limit Over
```

	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2483.500	-3.17	51.86	48.69	74.00	-25.31	Peak	
2	2489.561	-3.18	54.29	51.11	74.00	-22.89	Peak	



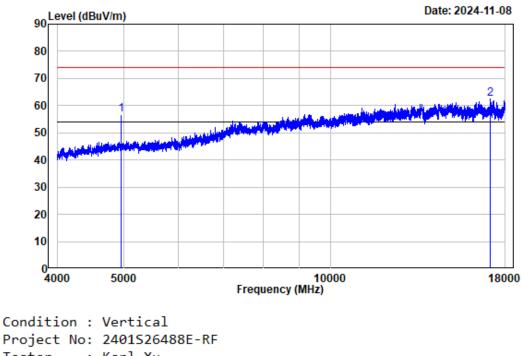
1-4GHz- Horizontal

	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV			dB	
1	3895.362						Average
	3895.362						


1-4GHz-Vertical

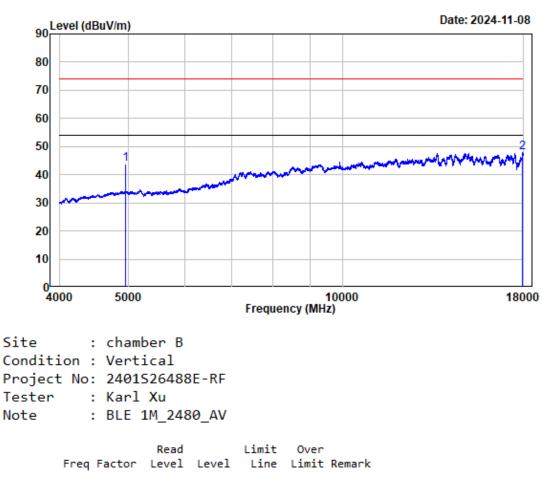
4-18GHz- Horizontal-Peak

Condition : Horizontal Project No: 2401526488E-RF Tester : Karl Xu Note : BLE 1M_2480

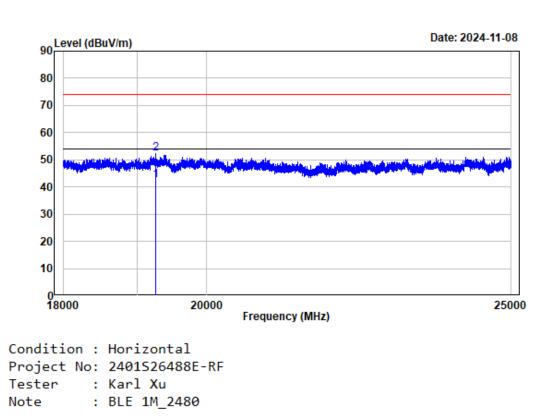

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4960.000	2.68	53.31	55.99	74.00	-18.01	Peak
2	14450.560	17.36	44.81	62.17	74.00	-11.83	Peak

4-18GHz-Horizontal-Average

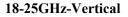
Site :	chamber B
Condition :	Horizontal
Project No:	2401526488E-RF
Tester :	Karl Xu
Note :	BLE 1M_2480_AV

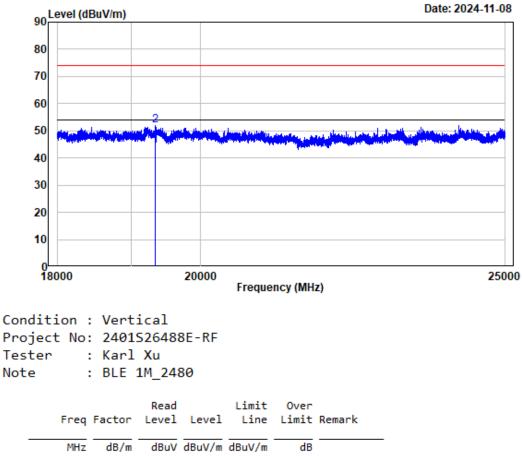

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4960.000	2.68	43.63	46.31	54.00	-7.69	Average
2	17950.990	24.28	23.36	47.64	54.00	-6.36	Average

4-18GHz- Vertical-Peak


Project No: 2401526488E-RF Tester : Karl Xu Note : BLE 1M_2480

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4960.000	2.68	54.04	56.72	74.00	-17.28	Peak
2	17102.140	18.03	44.32	62.35	74.00	-11.65	Peak


4-18GHz-Vertical-Average


	11 Eq	ractor	LEVEL	LEVEL	LTHE	LIMIC	Kellial K
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4960.000	2.68	41.26	43.94	54.00	-10.06	Average
2	17950.990	24.28	23.58	47.86	54.00	-6.14	Average

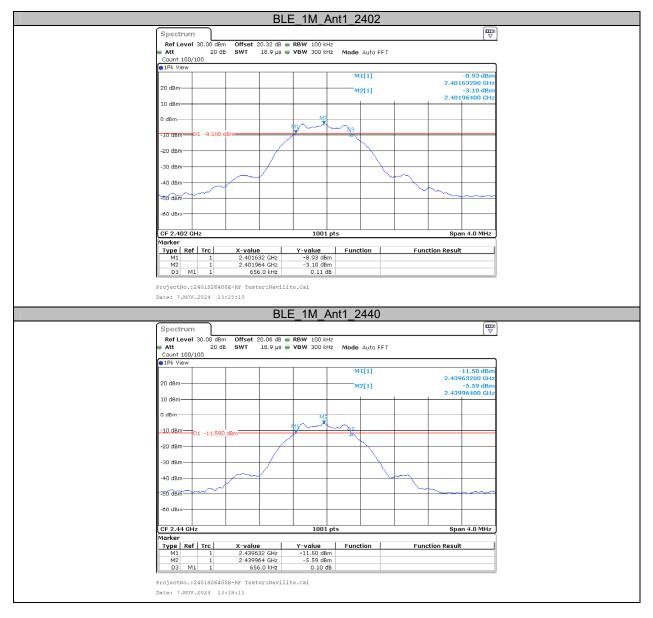
18-25GHz- Horizontal

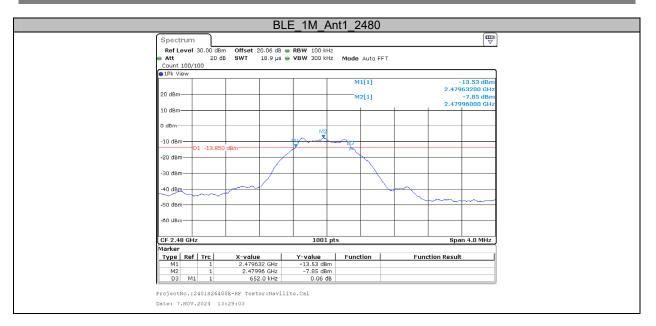
	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	19261.030	15.24	27.35	42.59	54.00	-11.41	Average	
2	19261.030	15.24	37.22	52.46	74.00	-21.54	Peak	

1 19341.540	15.15	29.31	44.46	54.00	-9.54	Average
2 19341.540	15.15	36.86	52.01	74.00	-21.99	Peak

RF Conducted data

Test Information:

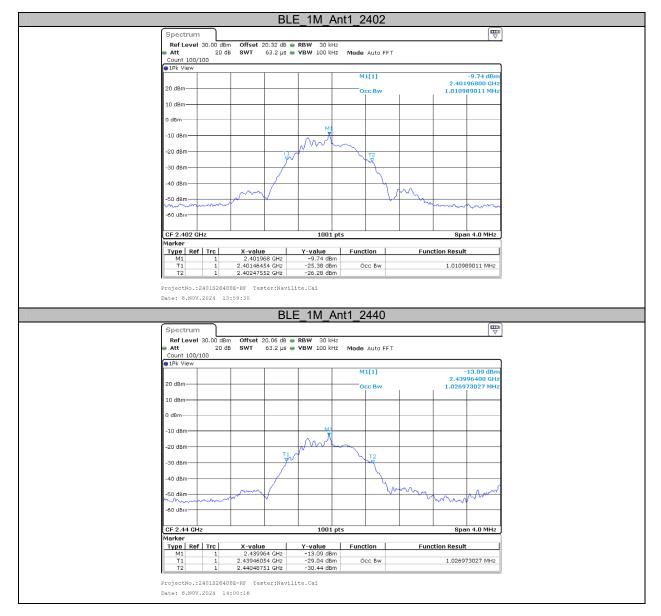

Sample No.:	2KRH-1	Test Date:	2024/11/7~2024/11/8
Test Site:	RF	Test Mode:	Transmitting
Tester:	Navilite Cai	Test Result:	N/A


Environmental Conditions:

Temperature: (°C):25~27Relative Humidity:ATM Pressure: (kPa)1	101
--	-----

DTS Bandwidth Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.656	0.5	PASS
BLE_1M	Ant1	2440	0.656	0.5	PASS
		2480	0.652	0.5	PASS



Occupied Channel Bandwidth Test Result

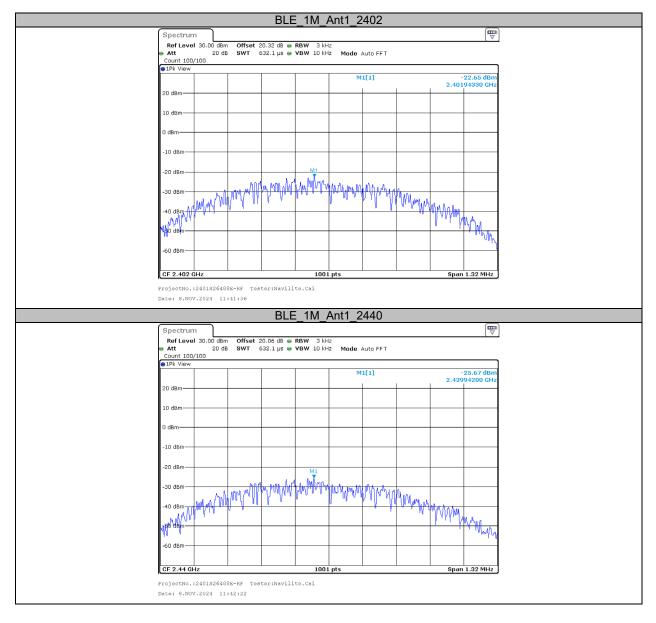
Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.011		
BLE_1M	Ant1	2440	1.027		
		2480	1.031		

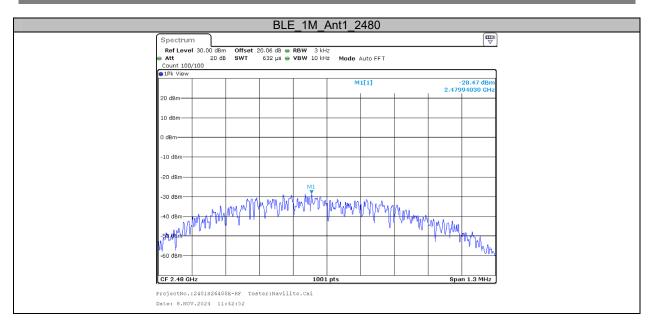
Test Graphs

TR-EM-RF003

Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
		2402	-6.61	≤30	PASS
BLE_1M	Ant1	2440	-9.09	≤30	PASS
_		2480	-12.12	≤30	PASS


Test Graphs Peak


					nt1_2	402		
Spectru	n							
Ref Leve Att	al 30.00 dBr 20 d		20.32 dB 👄	RBW 3 MH	2			
Count 100)/100	5 301	I ms 🖶	VBW 10 MH	2 Mode	Auto Sweep		
●1Pk View		1	1					
					IMI:	[1]	2.401	-6.61 dBm 92010 GHz
20 dBm-								
10 10								
10 dBm								
0 dBm								
				M1				
-10 dBm—	-						 ~	
-20 dBm-								ma
20000								marile
-30 dBm-								
-40 dBm—								
-50 dBm-								
-60 dBm								
	CU2			1001	pts		 Spa	n 8.0 MHz
CF 2.402 ProjectNo. Date: 8.NC	:240152648							
ProjectNo.	:240152648			.te.Cai E_1M_A	nt1_2	440		
ProjectNo. Date: 8.NO	:240152648 v.2024 11	:41:30	BLE	E_1M_A		440	_	
ProjectNo. Date: 8.NO Spectrum Ref Leve Att	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	2		_	
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A	2			(œ ⊽
ProjectNo. Date: 8.NO Spectrum Ref Leve Att	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Z Mode	Auto Sweep		-9.09 dBm
ProjectNo. Date: 8.NO Spectrum RefLeve Att Count 100 • 1Pk View	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Z Mode		 2.440	
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Z Mode	Auto Sweep	 2.440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum RefLeve Att Count 100 • 1Pk View	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Z Mode	Auto Sweep	2.440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 10 dBm- 10 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Z Mode	Auto Sweep	2,440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 1Pk View 20 dBm	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 PIPk View 20 dBm- 10 dBm- 0 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Z Mode	Auto Sweep	2.440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 10 dBm- 10 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 PIPk View 20 dBm- 10 dBm- 0 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	 2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 8.NO Ref Leve Att Count 100 1Pk View 20 dBm- 10 dBm- -10 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 8.NO Ref Leve Att Count 100 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	 2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 8.NO Ref Leve Att Count 100 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 5.NO Spectrui Ref Leve Att Count 100 10 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 8.NO Spectrum Ref Leve Att Count 100 9 1Pk View 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	:240152648 V.2024 11 n sl 30.00 dBr 20 d	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	z Mode M	Auto Sweep	2.440	-9.09 dBm 63140 GHz
ProjectNo. Date: 5.NO Spectrui Ref Leve Att Count 100 10 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm-	:240152646 vv.2024 11 m al 30.00 dBr 20 d y/100	:41:30	BLE 20.06 dB •	E_1M_A RBW 3 MH	2 Mode 3 M. M1	Auto Sweep	2.440	-9.09 dBm 63140 GHz

Spectrum	BLE_1M_Ant1_2480		_
	.06 dB ● RBW 3 MHz 1 ms ● VBW 10 MHz Mode Auto Sweep		
1Pk View			
	M1[1]	-12.12 dBm 2.47992810 GHz	
20 dBm			
10 dBm			
0 dBm			
-10 dBm	M		
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.48 GHz	1001 pts	Span 8.0 MHz	
ProjectNo.:2401526488E-RF Test	er:Navilite.Cai		

Maximum power spectral density **Test Result**

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-22.65	≤8.00	PASS
BLE_1M	Ant1	2440	-25.67	≤8.00	PASS
		2480	-28.47	≤8.00	PASS

Band edge measurements

Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Factor[dB]	1/T [Hz]	RBW Setting[Hz]
BLE_1M	Ant1	2440	0.40	0.62	64.52	1.90	2500	3000

20 dB 👄 SW	set 20.06 dB ● T 5 ms ● G:VID	RBW 10 MHz VBW 10 MHz	M2[1]	-1	(∰) 0.66 dBm
			M2[1]	-1	0.66 dBm
			M1[1]	-1	625.00 µs 0.44 dBm 24500 ms
M1 D1 M	M2				
	u uhroc	านใน	weatlag	coulor caudio	ipn
CF 2.44 GHz Marker		1001 pts 500.0 µs			00.0 µs/
1 M1 1		Y-value F -10.44 dBm 0.25 dB -10.66 dBm	Function	Function Result	
e	TRS -15.700 dBm upper upper transmitter upper	TRG -15.700 dBm Image: Comparison of the second se	TRG -15.700 dBm Image: Constraint of the second se	TRG -15.700 dBm Image: Constraint of the second se	TRG -15.700 dBm Image Image

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has an internal antenna arrangement, which was permanently attached, the antenna gain[#] is 1.7dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

RF EXPOSURE EVALUATION

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt[n]{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power (dBm)	Max tune-up conducted power (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
Bluetooth	2402-2480	5.5	3.55	5	1.1	3	Yes
BLE	2402-2480	-6	0.25	5	0.1	3	Yes

Note:

1. The Max tune-up conducted power[#] was declared and provided by the applicant

2. Bluetooth and BLE can't transmit simultaneously

Result: Compliant

EUT PHOTOGRAPHS

Please refer to the attachment 2401S26488E-RF External photo and 2401S26488E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401S26488E-RF-00A Test Setup photo.

***** END OF REPORT *****

TR-EM-RF003