FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

MOBILE INTERNET LOCATION MGR

MODEL NUMBER: iWM3140

FCC ID: PDC-FWM314XSM

REPORT NUMBER: 05U3362-1B

ISSUE DATE: JUNE 10, 2005

Prepared for AT ROAD, INC. 47071 BAYSIDE PKWY FREMONT, CA 94538, USA

Prepared by COMPLIANCE ENGINEERING SERVICES, INC. d.b.a. COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

REPORT NO: 05U3362-1B EUT: MOBILE INTERNET LOCATION MGR

Revision History

Rev.	Revisions	Revised By
В	Removed Co-Located Spurious Emissions Section	Thu
	Added Co-Located Maximum Permissible Exposure	Thu

TABLE OF CONTENTS

1.	A'	ITESTATION OF TEST RESULTS	
2.	T	EST METHODOLOGY	5
3.	FA	ACILITIES AND ACCREDITATION	5
4.	C	ALIBRATION AND UNCERTAINTY	5
4	!. <i>1</i> .	MEASURING INSTRUMENT CALIBRATION	
4	<i>!.2</i> .	MEASUREMENT UNCERTAINTY	
5.	E	QUIPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	.2.	ADDITIONAL TESTING	6
5	.3.	MAXIMUM OUTPUT POWER	6
5	.4.	DESCRIPTION OF AVAILABLE ANTENNAS	
5	5.5.	SOFTWARE AND FIRMWARE	7
5	.6.	WORST-CASE CONFIGURATION AND MODE	7
5	. 7.	MODIFICATIONS	
5	.8.	DESCRIPTION OF TEST SETUP	
6.	T	EST AND MEASUREMENT EQUIPMENT	
7.	Ll	MITS AND RESULTS	
7	7.1.	CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND	
	7.	1.1. 99% BANDWIDTH	11
	7.	1.2. PEAK OUTPUT POWER	
	7.	1.3. MAXIMUM PERMISSIBLE EXPOSURE	
	7. 7	1.4. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE	
7	, . , 2	RADIATED EMISSIONS FOR THE 2400 TO 2483 5 MHz RAND	27
/	·2· 7	2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	7.	2.2. TRANSMITTER ABOVE 1 GHz	
	7.	2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
8.	SI	CTUP PHOTOS	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	AT ROAD, INC.				
	47071 BAYSIDE PKWY				
	FREMONT, CA. 94538, US	A			
EUT DESCRIPTION:	Mobile Internet Location MC	SR			
MODEL:	iWM3140				
SERIAL NUMBER:	SERIAL NUMBER: 0503310396				
DATE TESTED:	May 15 - 16, 2005				
<u>Г</u>					
	APPLICABLE STANDA	ARDS			
STANDARD		TEST RESULTS			
FCC PART 15 SUBP	ART C	NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 42

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The iWM3140 Internet Location Manager combines GPS with an EVDO wireless data modem to provide Mobile Resource Management information. The iWM3140 uses CDMA 1xEV-DO Wireless Module that supports 3G Digital Cellular Standard and CDMA 1xRTT as well. iWM3140 also provides 802.11b connectivity between the field tech vehicle and any other 802.11b/g enabled peripheral (2.4GHz Direct Spread Spectrum 802.11b Access Point mode interoperable with WiFi/WECA clients).

The Cellular / PCS radio module is manufactured by Sierra Wireless EM5625 and WLAN radio module is manufactured by Z-Com Inc.

5.2. ADDITIONAL TESTING

The EUT WLAN module has already been tested & reported according to FCC procedures and methods, so only additional tests were conducted as follows:

- 1. <u>RF conducted output power, power spectral density, 99% bandwidth and MPE calculation:</u> all re-measured and verified.
- 2. <u>Radiated emissions:</u> all radiated emissions tests were performed and documented under this report because a higher gain of antenna is used.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows. Note that peak power is specified for 6.2.2(o):

Frequency Range Mode		Output Power	Output Power	
(MHz)		(dBm)	(mW)	
2412 - 2462	802.11b	18.15	65.31	

2400 to 2483.5 MHz Authorized Band

Note: We tested and verified that the EUT WLAN Module has the same output power as reported under Z-Com FCC report No.: RF900628R02, which used old method with RBW=VBW=3MHz, and we set it to the new method with channel integration output power measurement as indicated in this report.

Page 6 of 42

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dipole antenna with a maximum gain of 1.7 dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT is running with Hyper Terminal program from the host support equipment.

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2462 MHz.

The worst-case data rate for this channel is determined to be 11 Mb/s, based on previous experience with 802.11b WLAN product design architectures.

Thus all emissions tests were made in the 802.11b mode, 2462 MHz, 11 Mb/s.

5.7. MODIFICATIONS

Adding a round cable snap-its ferrite (Manufacturer: Fair-Rite Products Corp., Part #: 0444173551) to the DC power wires with two turns.

Page 7 of 42

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
LAPTOP	HP	ZE44200	CN25110353	DOC			
AC/DC ADAPTER	HP	PA2450U	N/A	N/A			
DC POWER SUPPLY	KRM	AEEC-350	N/A	N/A			

I/O CABLES

I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identical	Туре	Туре	Length		
		Ports					
1	AC	3	US 115V	Un-shielded	1.5m	No	
2	DC	1	DC	Un-shielded	1.5m	No	
3	Serial	1	DB9	Shielded	1m	Yes	
4	GPS	1	SMA	Shielded	5m	Yes	
5	WLAN	1	SMA	Shielded	5m	Yes	
6	GPS	1	TNC	Shielded	5m	Yes	
7	SMA	1	SMA	Shielded	.5m	No	

TEST SETUP

The EUT is a stand-alone unit. Test software from the laptop exercises the EUT via serial cable.

Page 8 of 42

SETUP DIAGRAM FOR TESTS

Page 9 of 42

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Communication Tester	R & S	CMU 200	838114/032	12/01/2005		
Peak Power Meter	Agilent	E4416A	GB41291160	02/09/2006		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	02/10/2006		
Spectrum Analyzer	Agilent	E4446A	MY43360112	01/13/2006		
Antenna, Log Periodic 200 ~ 1000 MHz	EMCO	3146	9107-3163	03/08/2006		
Antenna, Biconical	Eaton	94455-1	1214	03/08/2006		
SA Display Section 2	HP	85662A	2816A16696	05/24/2006		
Quasi-Peak Adaptor	HP	85650A	2811A01155	05/24/2006		
SA RF Section, 1.5 GHz	HP	85680B	2814A04227	2/22/06		

Page 10 of 42

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND

7.1.1.99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

No non-compliance noted:

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	15.4472
Middle	2441	15.4829
High	2480	15.4737

Page 11 of 42

99% BANDWIDTH

Page 12 of 42

Page 13 of 42

Page 14 of 42

7.1.2. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(4) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (b) (4) (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 15 of 42

RESULTS

<u>RESULTS</u>

The maximum dipole antenna gain is 1.7 dBi for other than fixed, point-to-point operations, therefore the limit is 30 dBm.

No non-compliance noted:

802.11b Mode

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	18.14	30	-11.86
Middle	2437	18.10	30	-11.90
High	2462	18.15	30	-11.85

Page 16 of 42

OUTPUT POWER (802.11b MODE)

Page 17 of 42

Page 18 of 42

Page 19 of 42

7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is exposure also apply in situations when an individual is transient through a location where occupational/controlled is potential for exposure of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 20 of 42

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 21 of 42

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	18.15	1.70	2.77

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 22 of 42

7.1.4. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of \$2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4. <i>89/</i> f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>i</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is exposure also apply in situations when an individual is transient through a location where occupational/controlled is potential for exposure of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 23 of 42

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2} / 3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = P (W) / 1000 and d (cm) = 100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

For multiple colocated transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product of each transmitter.

yields

 $d = 0.282 * \sqrt{((P1 * G1) + (P2 * G2) + ... + (Pn * Pn)) / S)}$ Equation (1) where d = distance in cmPx = Power of transmitter x in mWGx = Numeric gain of antenna x $S = \text{Power Density in mW/cm^{2}}$

Page 24 of 42

In the table below, Power and Gain are entered in units of dBm and dBi respectively, then these are converted to their linear forms prior to the summation function.

The conversions from the logarithmic form of power and gain are made using:

$P(mW) = 10 ^ (P(dBm) / 10)$ and	Equation (2)
$G (numeric) = 10 \land (G (dBi) / 10)$	Equation (3)

Equations (1), (2) and (3) and the measured peak powers are used to calculate the MPE distance.

LIMITS

From \$1.1310 Table 1 (B), S = 1.0 mW/cm²

<u>RESULTS</u>

No non-compliance noted:

CELLULAR &	WLAN
------------	------

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
FCC 22		28.99	-0.25	
802.11b		18.15	1.70	
Combined	2.75			4.94

PCS & WLAN

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
FCC 24		28.60	1.70	
802.11b		18.15	1.70	
Combined	5.0			4.31

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 25 of 42

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 15 dB (including 10 dB pad and 5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	13.27
Middle	2437	13.85
High	2462	13.22

Page 26 of 42

7.2. RADIATED EMISSIONS FOR THE 2400 TO 2483.5 MHz BAND

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. \$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 28 of 42

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 29 of 42

7.2.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

Page 30 of 42

Page 31 of 42

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)

Page 32 of 42

🔆 Agilent 10:18	641 May 16, 2005	110 (002		L	Peak Search
Restricted Band, I Ref 107 dBµV #Peak	Mode Low Ch. #Atten 0 dB		Mkr1 2.339 44.5	07 GHz 5 dBµV	Next Peak
Log 10 dB/					Next Pk Right
29.9 dB DI					Next Pk Lett
dBμV LgAv	1				Min Search
V1 S2 S3 FC	×				Pk-Pk Search
¤(1): FTun Swp					Mkr © CF
Start 2.310 00 GH #Res BW 1 MHz	lz #V	BW 10 Hz	Stop 2.390 Sweep 6.238 s (60	00 GHz 1 pts)	More 1 ct 2

Page 33 of 42

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)

Page 34 of 42

🔆 Agilent 10:29:	13 May 16, 2005	R T	Freq/Channel
Restricted Band, b Ref 107 dBµV #Peak	Mode High Ch. #Atten 0 dB	Mkr1 2.483 50 GHz 44.05 dBµ∨	Certer Freq 2.49175000 GHz
Log 10 dB/			Start Freq 2.48350000 GHz
30 1B DI			Stop Freq 2.5000000 GHz
54.0 dBμV _gAv			CF Step 1.65000000 MHz <u>Auto Ma</u>
V1 S2 53 FC			Freq Clfset 0.00000000 Hz
n(1): :Tun Swp			Signal Track ^{On <u>C</u>tt}
Start 2.483 50 GHz #Res BW 1 MHz	#VBW 10 F	Stop 2.500 00 GHz Iz Sweep 1.287 s (601 pts)	

Page 35 of 42

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 36 of 42

🔆 Agilent 10:33:	41 May 16, 2005	L	Freq/Channel		
Restricted Band, b Ref 107 dB µV #Peak	Mode High Ch. #Atten 0 dB	Mkr1 2.483 50 GHz 45.75 dBµ∨	Certer Freq 2.49175000 GHz		
Log 10 dB/ Ottst			Start Freq 2.48350000 GHz		
30 dB DI			Stop Freq 2.5000000 GHz		
64.0 dBμV			CF Step 1.6500000 MHz <u>Auto Ma</u>		
V1 S2 53 FC			Freq Clfset 0.00000000 Hz		
ait): =Tun Swp			Signal Track On <u>Cit</u>		
Start 2.483 50 GHz #Res BW 1 MHz	2 #VBW 10	Stop 2.500 00 GHz Iz Sweep 1.287 s (601 pts)			

Page 37 of 42

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

Complia	nce Ce	rtification	Services, M	lorgan l	Hill Oj	pen Fiel	l Site								
est En	gr: VIE	N TRAN													
oject	#: 05U3	362-1													
umpan IIT De	scrin	MOBILE	INTERNET	LOCA	TION	MGRW	лтн сря	3.3.6	CELL CD	MA					
UT M/	N: IWN	/13140 MC	BILE HOT	SPOT				,							
'est Ta	rget: F(CC 15.247													
Iode O	per: T	WLAN L	OW, MID, I	HICHA	NNE	LS _ HA	RMONI	C SPU	R						
est Eq	uipmen	<u>t:</u>													
EMCO Horn 1-18GHz Pre-amplifer 1-26GHz		Pre-amplifer 26-40 GHz Horn > 18 GHz							Limit						
T60; S	/N: 2238	@3m 🗸	T34 HP	8449B		-			-				-	. FCC	• 15.209
- Hi Freq	uency Cał	oles			_			_						Peak Meas	urements
2 fo	ot cable	3 foo	ot cable	4 foot	cable	12	foot cable		:	HPF	Reje	ct Filter		RBW=VBW	/=1MHz
		•	•	4_Vien	•	. 12	_Vien	-	HPF_	4.0GHz 🔻	R_00	1		<u>Average M</u> RBW=1MH	<u>leasurements</u> z ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	\mathbf{CL}	Amp	D Coit	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
OW CH	3.0	425	31.0	33.6	34	33.6	0.0	0.6	46.6	25.1	74	54	-27.4	18.0	v
.236	3.0	43.8	31.3	36.1	3.9	-33.3	0.0	0.0	51.1	39.7	74	54 54	-27.4	-10.5	V, NOISE FLOOR
.824	3.0	43.5	32.2	33.6	3.4	-33.6	0.0	0.6	47.6	36.3	74	54	- 26.4	-17.7	Н
.236	3.0	44.0	32.0	36.1	39	-33.3	0.0	0.6	51.4	39.4	74	54	-22.6	-14.6	H, NOISE FLOOR
ADD CH															
.874	3.0	43.7	31.1	33.7	3.4	-33.5	0.0	0.6	47.9	35.3	74	54	- 26.1	-18.7	v
311	3.0	42.8	31.0	36.2	39	-33.3	0.0	0.6	50.2	38.4	74	54	-23.8	-15.6	V, NOISE FLOOR
874	3.0	43.7	31.0	33.7	3.4	-33.5	0.0	0.6	47.9	35.2	74	54	-26.1	-18.8	V
311	3.0	43.8	31.6	36.2	39	-33.3	ແມ	0.0	51.2	39.0	74	54	-22.8	-15,0	H, NOISE FLOOR
псн															
924	3.0	43.7	31.3	33.7	3.5	-33.5	0.0	0.6	48.0	35.6	74	54	- 26.0	-18.4	v
386	3.0	43.9	31.9	36.2	39	-33.3	0.0	0.6	51.4	39.4	74	54	-22.6	-14.6	V, NOISE FLOOR
924 286	3.0	43.7	30.9	33.7	3.5	-33.5	0.0	0.0	48.0	35.2	74	54	-26.0	-18.8	U NOISE EL COR
. 000	3.0	44.0	31./	30.2	39	-333	0.0	0.0	54.1	37.4	/4	24	-41.9	-14.0	H, NOISE FLOUR
	NO OTI	ER EMISSIO	ONS WERE DE	TECTED	ABO	E NOISE	FLOOR AI	TER 3	RD HARMO	NIC.					
	f	Measurem	ent Frequency	у		Amp	Preamp (Gain				Avg Lim	Average I	Field Strength	1 Limit
	Dist	Distance to	Antenna			$\mathbb{D} \ \mathbb{C} \text{orr}$	Distance	Corre	ct to 3 mete	ers		Pk Lim	Peak Field	d Strength Li	mit
	Read Analyzer Reading Avg Average Field Strength @ 3 m Avg Mar Margin vs. Ave								. Average Li	mit					
	AF	Antenna Fa	actor			Peak	Calculate	d Peal	k Field Stre	ngth		Pk Mar	Margin vs	. Peak Limit	
	CL	Cable Los:	s			HPF	High Pas	s Filter	:						

Page 38 of 42

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

	FCC FCC UL, 561F MONT PHONE: (40	C, VCCI, C CSA, TU TEREY RO 18) 463-08	PLI ation Sispr, ce, V, BSMI, D AD, SAN 385 F/	AUSTEL, N HHS, NVL JOSE, CA 9 AX: (408) 4	į	Proj Rep Date& 1 Test I	ect #: ort #: Time: Engr:	05U3362 05U3362 05/16/05 VIEN TR	-		
Company: @ ROAD EUT Description: MOBILE INTERNET LOCATION MGR Test Configuration : EUT & GPS ANTENNA Type of Test: FCC CLASS B Mode of Operation: TX											
<u> </u>	A-Ste	0	B-Site	C C-Site C F				6 Worst D	ata		
Freq.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
200.10	58.50	12.03	1.88	27.20	45.21	43.50	1.71	3mH	0.00	1.00	P
200.10	56.50	12.03	1.88	27.20	43.21	43.50	-0.29	3mH	0.00	1.00	Q
400.00	51.80	15.92	2.83	27.48	43.07	46.00	-2.93	3mH	0.00	1.00	P
600.00	48.00	19.36	3.63	28.38	42.61	46.00	-3.39	3mH	0.00	1.00	P
800.00	45.50	21.70	4.27	27.84	43.63	46.00	-2.37	3mH	0.00	1.00	P
200.10	56.30	12.03	1.88	27.20	43.01	43.50	-0.49	3mV	0.00	1.00	P
200.10 Total # c	54.20 of Data: 7	12.03	1.88	27.20	40.91	43.50	-2.59	3mV	0.00	1.00	Q

Page 39 of 42

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 40 of 42

RADIATED RF MEASUREMENT SETUP

Page 41 of 42

END OF REPORT

Page 42 of 42