

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.

9.5 Dwell Time

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Span: Zero span, centered on a hopping channel.
- 4. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 5. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 6. Detector function: Peak.
- 7. Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

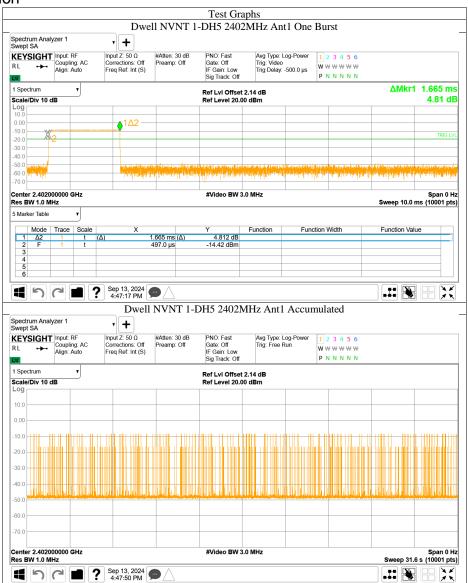
Dwell Time

Dwell time

The maximum dwell time shall be 0,4 s.

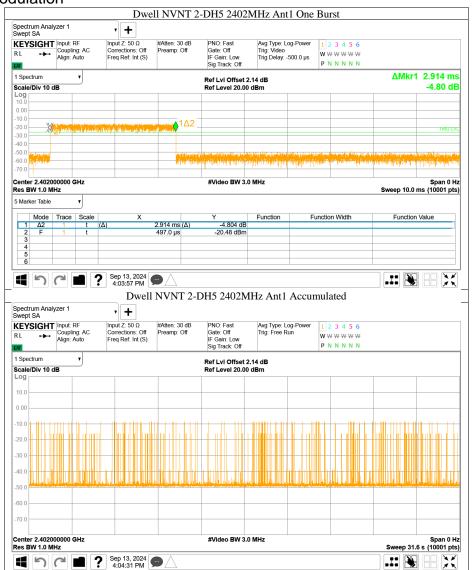
According to the Bluetooth Core Specification, the worse result (DH5 mode) was reported to show compliance.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];

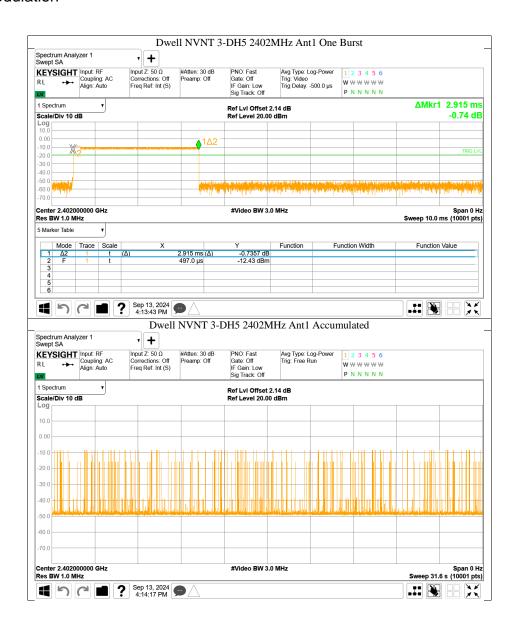

The burst width, which is directly measured, refers to the duration on one channel hop.

Test Result

		• •	oot i toodit			
Modulation	Mode	Reading (ms)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	DH5	1.665	164	273.06	< 400	Pass
π/4-DQPSK	2DH5	2.914	110	320.54	< 400	Pass
8-DPSK	3DH5	2.915	101	294.415	< 400	Pass



GFSK Modulation



π/4-DQPSK Modulation

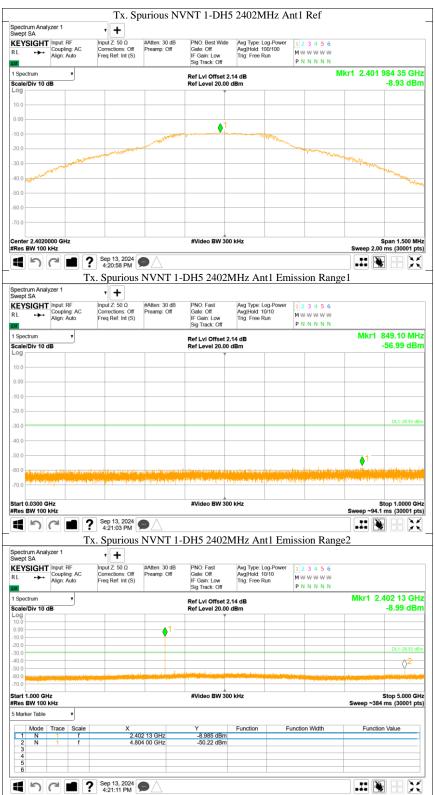
8-DPSK Modulation

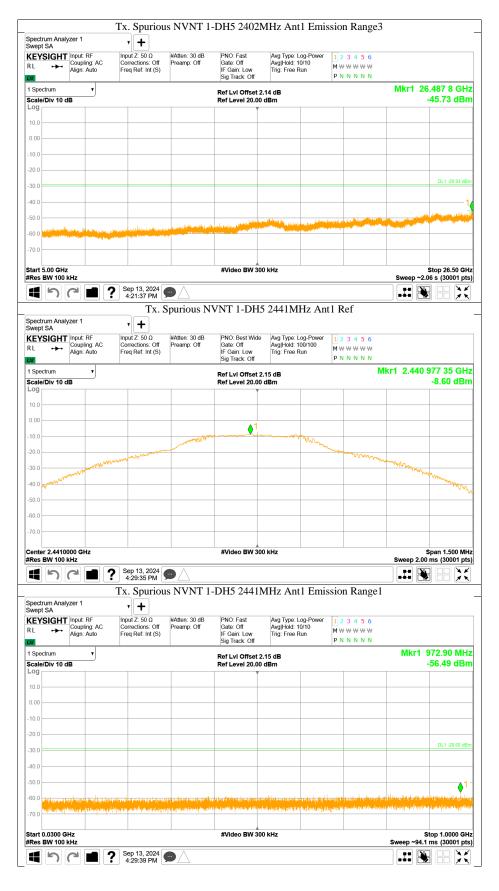
9.6 Spurious RF conducted emissions

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector, Sweep = auto, Span = wide enough to capture the peak level of the in-band emission and all spurious emissions, Trace = max hold. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

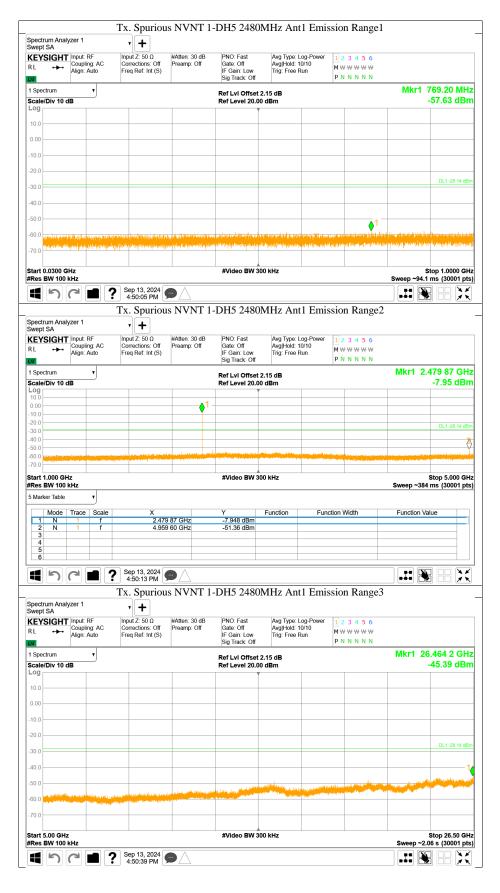
Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20


Spurious RF conducted emissions

Only the worse case (which is subject to the maximum EIRP, GFSK mode) test result is listed in

the report.



9.7 Band edge testing

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously. Set the EUT to the lowest frequency channel.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector, Trace: Max hold, Sweep time: Coupled, Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation. Allow the trace to stabilize.
- 4. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 5. Set the EUT to the highest frequency channel and repeat step 2) to 4)
- 6. Enable the EUT hopping mode, repeat the test.

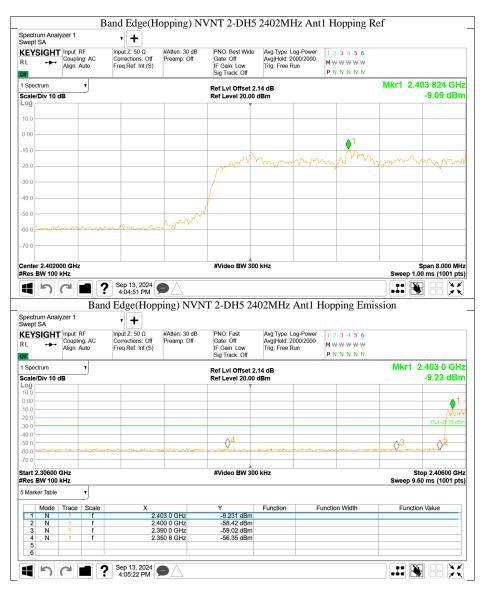
Limit:

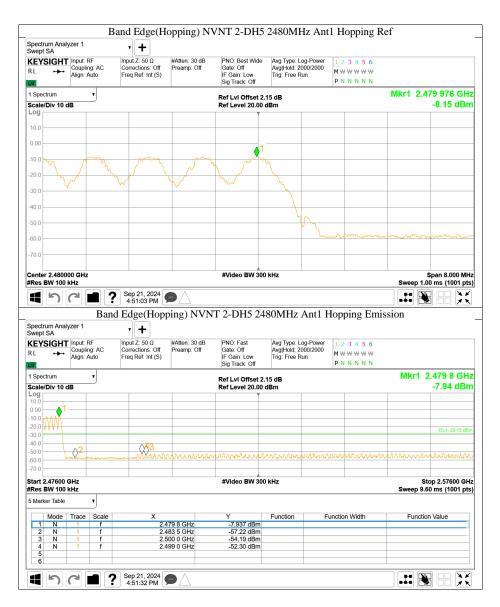
In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

Band edge testing

GFSK Modulation Test Result:

Hopping on mode:

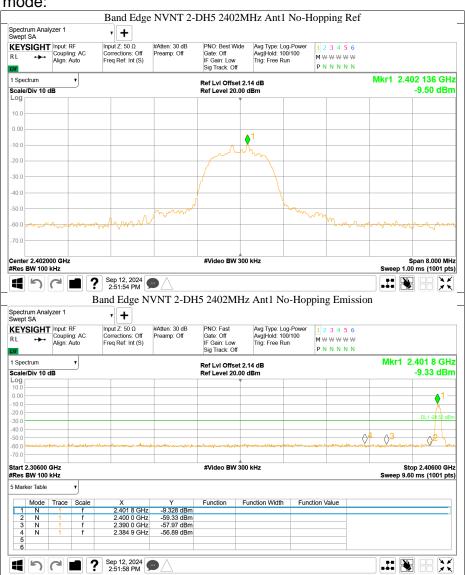




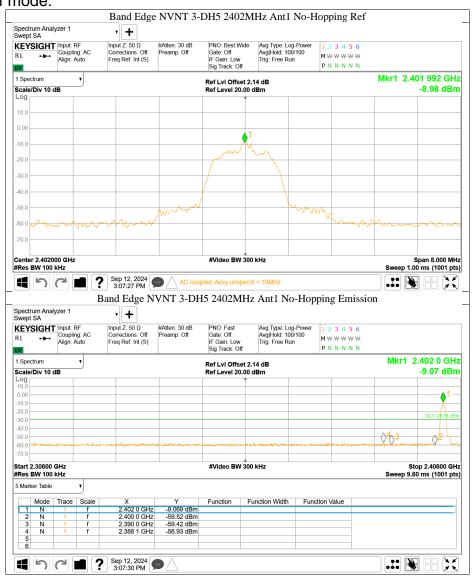
π /4-DQPSK Modulation Test Result: Hopping on mode:

8-DPSK Modulation Test Result: Hopping on mode:

GFSK Modulation Test Result: No Hopping off mode:



 π /4-DQPSK Modulation Test Result: No Hopping off mode:





8-DPSK Modulation Test Result: No Hopping off mode:

9.8 Spurious radiated emissions for transmitter and receiver

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. Use the following test receiver settings According to C63.10:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz to 120KHz for f < 1 GHz; VBW≥ RBW; Sweep = auto; Detector function = QP; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥1 GHz for peak measurement. For average measurement:

The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).

The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

7. Repeat above procedures until all frequencies measured were complete.

Spurious Radiated Emissions for Transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 & RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209 & RSS-Gen 6.13.

Frequency MHz	Field Strength µV/m	Field Strength dBµV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30 `	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Limit $3m(dB\mu V/m)=Limit 300m(dB\mu V/m)+40Log(300m/3m)$ (Below 30MHz) Note 2: Limit $3m(dB\mu V/m)=Limit 30m(dB\mu V/m)+40Log(30m/3m)$ (Below 30MHz)

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Data of measurement within frequency range 9kHz-30MHz is the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.

The only worse case (which is subject to the maximum conducted power, GFSK mode) test result is listed in the report.

Above 1GHz Transmitting spurious emission test result as below:

Bluetooth Mode GFSK Modulation 2402MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dBuV/m	
2350.86	43.40	Horizontal	74.0	PK	30.60	Pass
4803.13	40.87	Horizontal	74.0	PK	33.13	Pass
2352.47	44.72	Vertical	74.0	PK	29.28	Pass
4803.30	42.61	Vertical	74.0	PK	31.39	Pass

Bluetooth Mode GFSK Modulation 2441MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dBuV/m	
4880.98	40.53	Horizontal	74.0	PK	33.47	Pass
4883.07	41.96	Vertical	74.0	PK	32.04	Pass

Bluetooth Mode GFSK Modulation 2480MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
2484.63	42.90	Horizontal	74.0	PK	31.10	Pass
4960.43	40.29	Horizontal	74.0	PK	33.71	Pass
2484.42	43.01	Vertical	74.0	PK	30.99	Pass
4960.12	41.32	Vertical	74.0	PK	32.68	Pass

Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss -Amplifier gain
- (3) Margin = limit Corrected Reading

The worst case of Radiated Emission below 1GHz: X axis transmitting TX at 2441MHz (3DH5)

30-1000MHz Radiated Emission

EUT Information

EUT Name: CCU

Model: Lime-CCU23

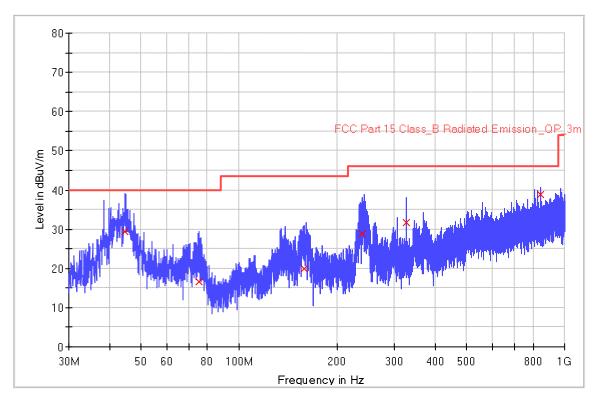
Client: Neutron Holdings, Inc.

Op Cond: Power on, TX_2480 at DH5 mode

Operator: Dinpeng XIA

Test Spec: FCC Part 15.209(a)

Comment: Horizontal Sample No: SHA-843416-2


Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
44.520000	29.4	1000.0	120.000	135.0	Н	284.0	20.4	10.6	40.0
75.160000	16.6	1000.0	120.000	124.0	Н	95.0	17.6	23.4	40.0
158.200000	19.9	1000.0	120.000	135.0	Н	166.0	21.1	23.6	43.5
239.720000	28.9	1000.0	120.000	155.0	Н	145.0	19.7	17.1	46.0
326.440000	31.8	1000.0	120.000	106.0	Н	136.0	22.7	14.2	46.0
844.800000	38.9	1000.0	120.000	204.0	Н	152.0	32.7	7.1	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report

30-1000MHz Radiated Emission

EUT Information

EUT Name: CCU

Model: Lime-CCU23

Client: Neutron Holdings, Inc.

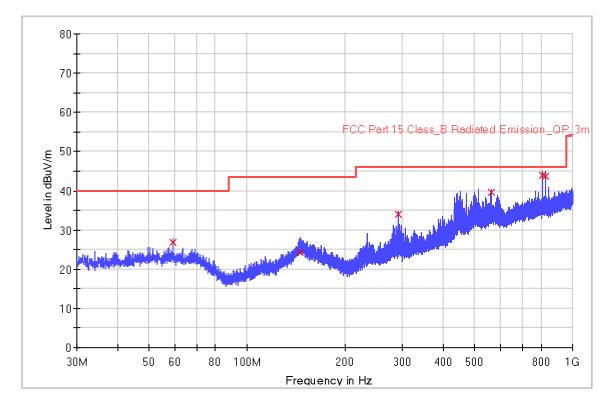
Op Cond: Power on, TX_2480 at DH5 mode

Operator: Dinpeng XIA

Test Spec: FCC Part 15.209(a)

Comment: Vertical

Sample No: SHA-843416-2


Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - PK+ (dB)	Limit - PK+ (dBuV/m)
59.160000	26.9	1000.0	120.000	100.0	v	119.0	20.7	13.1	40.0
146.120000	24.3	1000.0	120.000	100.0	v	119.0	21.0	19.2	43.5
291.120000	33.9	1000.0	120.000	100.0	V	119.0	21.6	12.1	46.0
					V				
562.640000	39.6	1000.0	120.000	100.0	•	119.0	28.3	6.4	46.0
806.440000	43.9	1000.0	120.000	100.0	٧	119.0	32.9	2.1	46.0
825.600000	43.8	1000.0	120.000	100.0	٧	119.0	32.8	2.2	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report

10 Test Equipment List

List of Test Instruments Test Site1

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
С	Signal spectrum analyzer	Agilent	N9020B	MY59050168	2024-2-19	2025-2-18
	EMI Test Receiver	Rohde & Schwarz	ESR3	101906	2024-8-1	2025-7-31
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2024-8-1	2025-7-31
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2021-9-23	2024-9-22
RE	Double-ridged waveguide horn antenna	Rohde & Schwarz	HF907	102868	2024-4-14	2027-4-13
	Pre-amplifier	Shenzhen HzEMC	HPA- 081843	HYPA23026	2024-4-16	2025-4-15
	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2024-6-26	2025-6-25
	Double Ridged Horn Antenna	ETS-Lindgren	3116C	00246076	2023-7-7	2026-7-6
	3m Semi-anechoic chamber	TDK	9X6X6		2025-4-15	2027-5-7

Measurement Software Information								
Test Item	Software	Manufacturer	Version					
С	MTS 8310	MWRFtest	3.0.0.0					
RE	EMC 32	Rohde & Schwarz	V10.50.40					

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Radiated Disturbance	9kHz to 30MHz, 3.52dB
	30MHz to 1GHz, 5.03dB (Horizontal)
	5.12dB (Vertical)
	1GHz to 18GHz, 5.49dB
	18GHz to 40GHz, 5.63dB
RF Conducted Measurement	Power related: 1.16dB
	Frequency related: 6.00×10 ⁻⁸

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3.

12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.
End of Test Report