

FCC Radio Test Report

FCC ID: HBW1595

: BTL-FCCP-1-2303T057 Report No. Equipment : Smart Video Intercom - L

Model Name : CAPXLV2 **Brand Name** : Liftmaster

Applicant : Chamberlain Group LLC, The

Address : 300 Windsor Dr, Oak Brook, Illinois, United States, 60523

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2023/3/20

Date of Test : 2023/6/15 ~ 2023/8/24

Issued Date : 2023/9/28

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

: Eddie Lee, Engineer Prepared by

Approved by

Testing Laboratory

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2303T057 Page 2 of 92 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 2.1 **DESCRIPTION OF EUT** 10 **TEST MODES** 2.2 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 15 3 AC POWER LINE CONDUCTED EMISSIONS TEST 16 3.1 LIMIT 16 3.2 **TEST PROCEDURE** 16 **DEVIATION FROM TEST STANDARD** 3.3 16 **TEST SETUP** 17 3.4 3.5 **TEST RESULT** 17 RADIATED EMISSIONS TEST 4 18 4.1 LIMIT 18 4.2 **TEST PROCEDURE** 19 4.3 **DEVIATION FROM TEST STANDARD** 19 4.4 **TEST SETUP** 19 4.5 **EUT OPERATING CONDITIONS** 20 TEST RESULT - BELOW 30 MHZ 4.6 21 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 21 4.8 TEST RESULT - ABOVE 1 GHZ 21 5 NUMBER OF HOPPING CHANNEL 22 5.1 **APPLIED PROCEDURES** 22 **TEST PROCEDURE** 5.2 22 5.3 **DEVIATION FROM STANDARD** 22 5.4 **TEST SETUP** 22 **EUT OPERATION CONDITIONS** 22 5.5 5.6 **TEST RESULTS** 22 6 AVERAGE TIME OF OCCUPANCY 23 6.1 APPLIED PROCEDURES / LIMIT 23 6.2 **TEST PROCEDURE** 23 **DEVIATION FROM STANDARD** 6.3 23 6.4 **TEST SETUP** 23 6.5 **EUT OPERATION CONDITIONS** 23 6.6 **TEST RESULTS** 23 7 HOPPING CHANNEL SEPARATION MEASUREMENT 24 7.1 APPLIED PROCEDURES / LIMIT 24 **TEST PROCEDURE** 7.2 24 7.3 **DEVIATION FROM STANDARD** 24 7.4 **TEST SETUP** 24 7.5 **TEST RESULTS** 24 **BANDWIDTH TEST** 8 25

8.1	APP	LIED PROCEDURES	25
8.2	TES	T PROCEDURE	25
8.3	DEV	IATION FROM STANDARD	25
8.4	TES	T SETUP	25
8.5	EUT	OPERATION CONDITIONS	25
8.6	TES	T RESULTS	25
9	OUTPU	JT POWER TEST	26
9.1	APP	LIED PROCEDURES / LIMIT	26
9.2	TES	T PROCEDURE	26
9.3	DEV	IATION FROM STANDARD	26
9.4	TES	T SETUP	26
9.5	EUT	OPERATION CONDITIONS	26
9.6	TES	T RESULTS	26
10	ANTEN	INA CONDUCTED SPURIOUS EMISSION	27
10.1	APP	LIED PROCEDURES / LIMIT	27
10.2	TES	T PROCEDURE	27
10.3	DEV	IATION FROM STANDARD	27
10.4	TES	T SETUP	27
10.5	EUT	OPERATION CONDITIONS	27
10.6	TES	T RESULTS	27
11	LIST O	F MEASURING EQUIPMENTS	28
12	EUT TE	EST PHOTO	31
13	EUT PH	HOTOS	31
APPEND	OIX A	AC POWER LINE CONDUCTED EMISSIONS	32
APPEND	DIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	37
APPEND	DIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	42
APPEND	DIX D	NUMBER OF HOPPING CHANNEL	75
APPEND	DIX E	AVERAGE TIME OF OCCUPANCY	77
APPEND	OIX F	HOPPING CHANNEL SEPARATION MEASUREMENT	80
APPEND	OIX G	BANDWIDTH	83
APPEND	NX H	OUTPUT POWER	86
APPEND	IXIO	ANTENNA CONDUCTED SPURIOUS EMISSION	88

Project No.: 2303T057 Page 4 of 92 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2303T057	R00	Original Report.	2023/9/13	Invalid
BTL-FCCP-1-2303T057	R01	Revised report to address TCB's comments.	2023/9/28	Valid

Project No.: 2303T057 Page 5 of 92 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass	
15.247 (b)(1)	Output Power	APPENDIX H	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass	
15.203	Antenna Requirement		Pass	

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2303T057 Page 6 of 92 Report Version: R01

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) C05 □ CB08 □ CB11 SR10 ☐ SR11 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 Ucispr requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CDZT	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

4 1001 1	
Test Item	U (dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

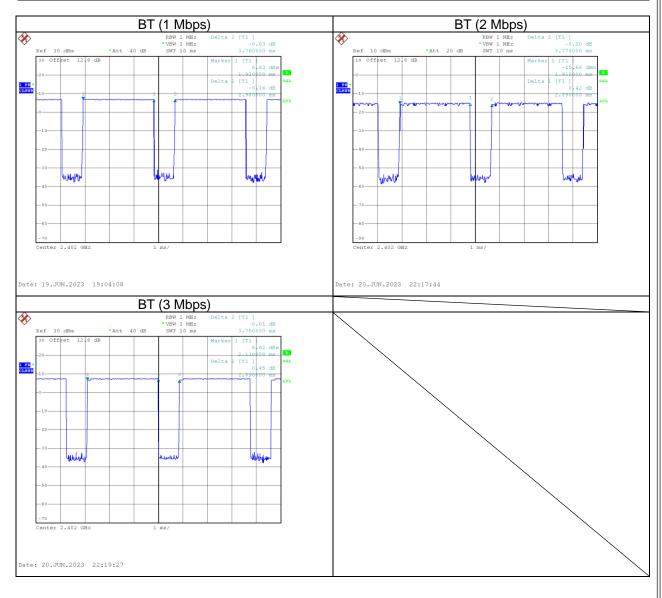
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Project No.: 2303T057 Page 7 of 92 Report Version: R01

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 54 %	AC 120V	Cora Lin
Radiated emissions below 1 GHz	Refer to data	AC 120V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Mark Wang
Number of Hopping Frequency	24.5 °C, 53 %	AC 120V	Jay Tien
Average Time of Occupancy	24.5 °C, 53 %	AC 120V	Jay Tien
Hopping Channel Separation	24.5 °C, 53 %	AC 120V	Jay Tien
Bandwidth	24.5 °C, 53 %	AC 120V	Jay Tien
Output Power	24.5 °C, 53 %	AC 120V	Jay Tien
Antenna conducted Spurious Emission	24.5 °C, 53 %	AC 120V	Jay Tien


Project No.: 2303T057 Page 8 of 92 Report Version: R01

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
iviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (2 Mbps)	2.890	1	2.890	3.770	76.66%	1.15
BT (3 Mbps)	2.890	1	2.890	3.750	77.07%	1.13

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

E au dia aa a a t	Conset Violes Intereses I
Equipment	Smart Video Intercom - L
Model Name	CAPXLV2
Brand Name	Liftmaster
Model Difference	N/A
Dower Course	DC voltage supplied from AC/DC adapter.
Power Source	2. DC voltage supplied from PoE.
Dower Dating	1. I/P: 100-240V~ 50/60Hz 1.5A O/P: 24.0V3.0A, 72.0W
Power Rating	2. DC 48V
Products Covered	1 * Adapter: Shenzhen GEAO Technology Co Ltd / QX72W240300D3
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
	1 Mbps: 6.53 dBm (0.0045 W)
Output Power Max.	2 Mbps: 7.67 dBm (0.0058 W)
	3 Mbps: 7.74 dBm (0.0059 W)
Operating Software	PuTTY Release 0.62
Test Model	CAPXLV2
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480

Project No.: 2303T057 Page 10 of 92 Report Version: R01

25	2427	52	2454	
26	2428	53	2455	

(3) Table for Filed Antenna:

Group I:

Antenna	Manufacture	Part No.	Type	Connector	Gain (dBi)
External	Radiation	C0289-ANG0011	Dipole	SMA	2.94
antenna	Technology, Inc.	C0209-ANG0011	Dipole	SIVIA	2.94

Group II:

Antenna	Manufacture	Part No.	Type	Connector	Gain (dBi)
Built-in	Quectel	YF0011RA	FPC	I-PEX	2.1
antenna	Quectei	TOUTIKA	FFC	I-PEX	3.1

NOTE: The EUT includes two groups of antenna, for Radiated External antenna and Built-in antenna are evaluated, for other test items only the worst case Built-in antenna is recorded.

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Project No.: 2303T057 Page 11 of 92 Report Version: R01

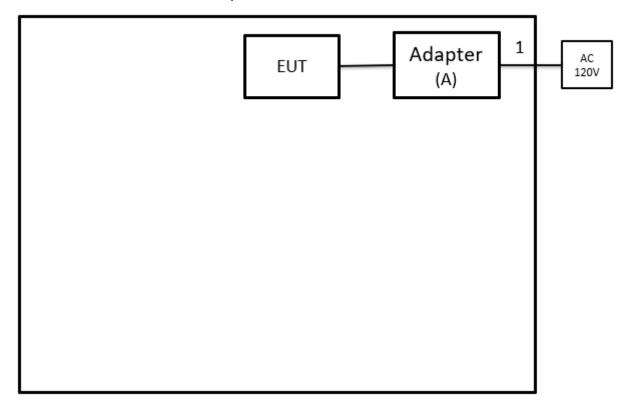
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

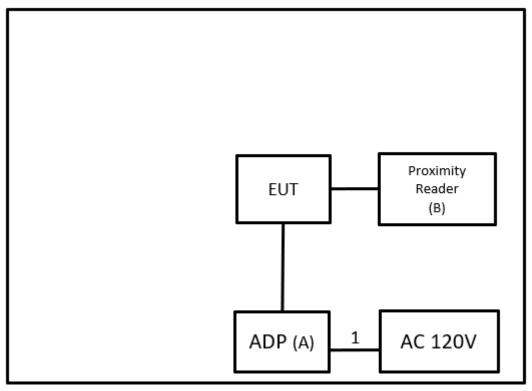
NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
- (3) For AC Power line conducted emissions and transmitter radiated emissions (below 1GHz), POE mode and adapter mode are evaluated, adapter mode is found to be the worst case and used for final test.
- (4) For AC Power line conducted emissions and transmitter radiated emissions (below 1GHz), both POE mode and adapter mode are evaluated. For the other test item, only adapter mode is used.

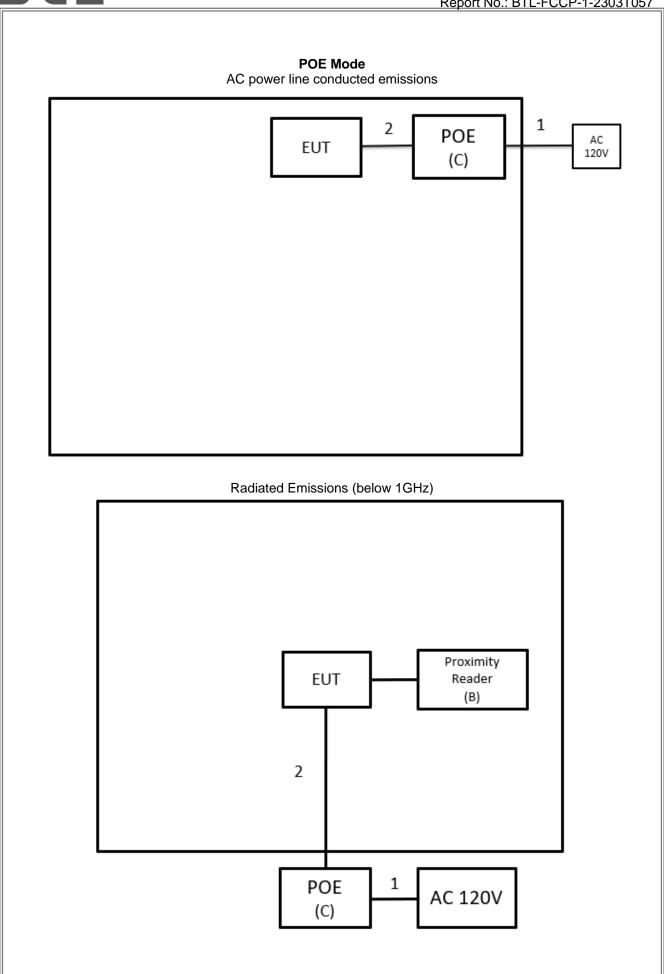
Project No.: 2303T057 Page 12 of 92 Report Version: R01



2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED


Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

Adapter Mode


AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	Adapter	Shenzhen GEAO Technology Co Ltd	QX72W240300D3	N/A	Supplied by test requester.
В	Proximity Reader	AWID	SR-2400	N/A	Supplied by test requester.
С	POE	HUAWEI	PoE35-54A	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	1.1m	Power Cord	Supplied by test requester.
2	No	No	10m	RJ45 Cable	Furnished by test lab.

Project No.: 2303T057 Page 15 of 92 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	•	60	=	-18.33

The following table is the setting of the receiver.

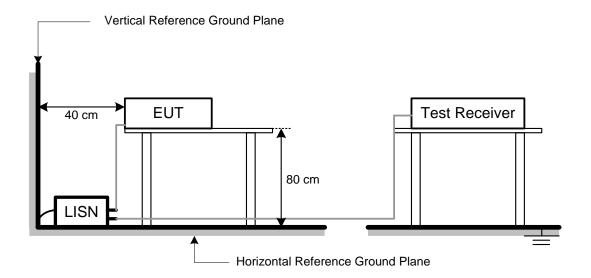
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2303T057 Page 16 of 92 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

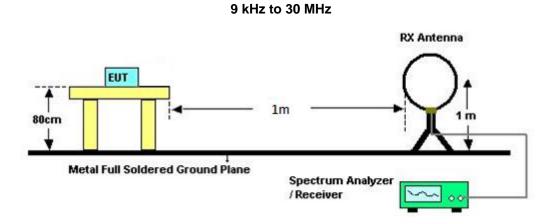
Measurement Value		Limit Value		Margin Level
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Mode	VBW(Hz)
BT (1M)	360
BT (2M)	360
BT (3M)	360

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2303T057 Page 18 of 92 Report Version: R01

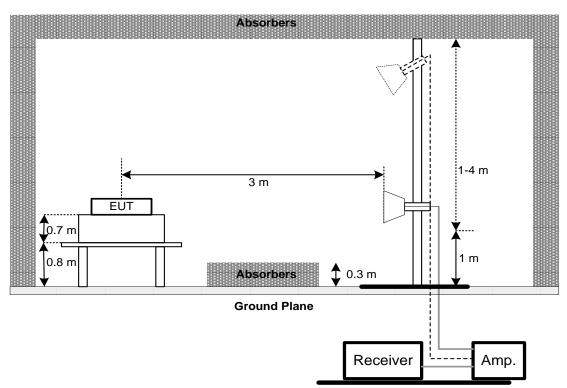

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP



Absorbers

Ground Plane

Receiver Amp.

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2303T057 Page 21 of 92 Report Version: R01

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2303T057 Page 22 of 92 Report Version: R01

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number)*0.4

For Normal Mode (79 Channel):

DH1 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH3 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (1600/2)*8/(channel number)

DH3 Time Solt: Reading * (1600/4)*8/(channel number)

DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

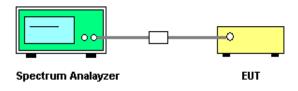
Project No.: 2303T057 Page 23 of 92 Report Version: R01

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2303T057 Page 24 of 92 Report Version: R01

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)	
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

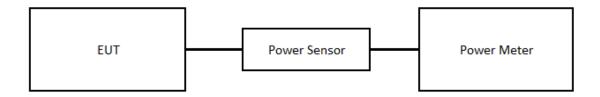
Please refer to the APPENDIX G.

Project No.: 2303T057 Page 25 of 92 Report Version: R01

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2303T057 Page 26 of 92 Report Version: R01

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2303T057 Page 27 of 92 Report Version: R01

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27		
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	220331	2023/3/30	2024/3/29		
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Radiated Emissions - 30 MHz to 1 GHz								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18			
2	Test Cable	EMCI	EMC104-SM-SM- 1000	180810	2023/7/10	2024/7/9			
3	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13			
4	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13			
5	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23			
6	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2023/5/9	2024/5/8			
7	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2023/5/9	2024/5/8			
8	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

Project No.: 2303T057 Page 28 of 92 Report Version: R01

	Redicted Emissions Above 4 CHr								
	Radiated Emissions - Above 1 GHz								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18			
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6			
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2022/9/28	2023/9/27			
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29			
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2023/3/14	2024/3/13			
6	Test Cable	EMCI	EMC104-SM-SM- 1000	180810	2023/7/10	2024/7/9			
7	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13			
8	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13			
9	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23			
10	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18			
11	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2023/5/12	2024/5/11			
12	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2023/5/12	2024/5/11			
13	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2023/5/9	2024/5/8			
14	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2023/5/9	2024/5/8			
15	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13			
16	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13			
17	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

	Number of Hopping Frequency						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/7	

	Average Time of Occupancy						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/7	

	Hopping Channel Separation						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/7	

	Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/7	

	Output Power							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Power Meter	Keysight	8990B	MY51000517	2023/3/15	2024/3/14		
2	Power Sensor	Keysight	N1923A	MY58310005	2023/3/15	2024/3/14		

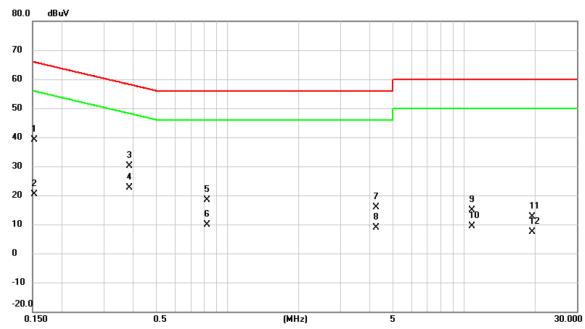
	Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/7	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2303T057 Page 30 of 92 Report Version: R01

12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2303T057-FCCP-1 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2303T057-2 (APPENDIX-EUT PHOTOS).

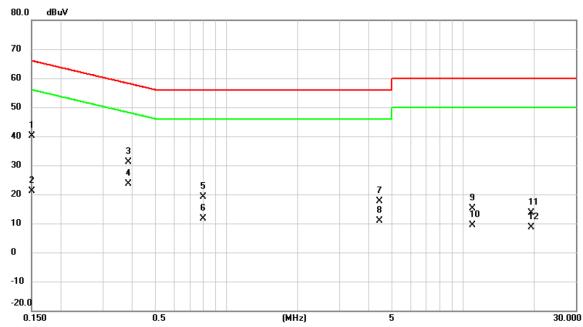
Project No.: 2303T057 Page 31 of 92 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2303T057 Page 32 of 92 Report Version: R01

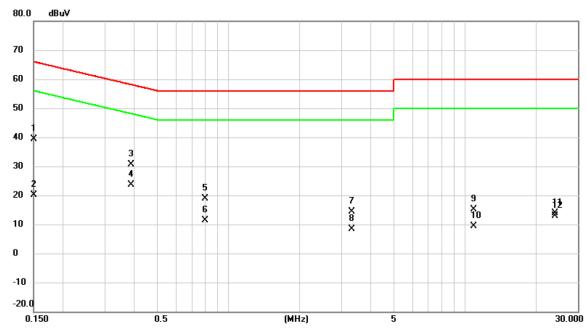
Test Mode	Normal	Tested Date	2023/6/15
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	39.08	0.04	39.12	65.88	-26.76	QP	
2		0.1522	20.30	0.04	20.34	55.88	-35.54	AVG	
3		0.3840	30.19	0.02	30.21	58.19	-27.98	QP	
4	*	0.3840	22.51	0.02	22.53	48.19	-25.66	AVG	
5		0.8205	18.43	0.01	18.44	56.00	-37.56	QP	
6		0.8205	9.86	0.01	9.87	46.00	-36.13	AVG	
7		4.2585	15.94	0.05	15.99	56.00	-40.01	QP	
8		4.2585	8.89	0.05	8.94	46.00	-37.06	AVG	
9		10.8195	14.85	0.12	14.97	60.00	-45.03	QP	
10		10.8195	9.32	0.12	9.44	50.00	-40.56	AVG	
11		19.4888	12.53	0.18	12.71	60.00	-47.29	QP	
12		19.4888	7.17	0.18	7.35	50.00	-42.65	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

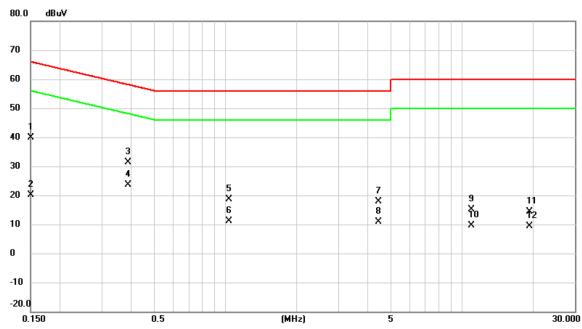
Т	est Mode	Normal	Tested Date	2023/6/15
Т	est Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	40.05	0.04	40.09	66.00	-25.91	QP	
2		0.1500	21.16	0.04	21.20	56.00	-34.80	AVG	
3		0.3862	31.07	0.02	31.09	58.15	-27.06	QP	
4	*	0.3862	23.66	0.02	23.68	48.15	-24.47	AVG	
5		0.7980	19.12	0.01	19.13	56.00	-36.87	QP	
6		0.7980	11.53	0.01	11.54	46.00	-34.46	AVG	
7		4.4340	17.69	0.05	17.74	56.00	-38.26	QP	
8		4.4340	10.85	0.05	10.90	46.00	-35.10	AVG	
9		10.9748	15.08	0.13	15.21	60.00	-44.79	QP	
10		10.9748	9.33	0.13	9.46	50.00	-40.54	AVG	
11		19.4190	13.51	0.18	13.69	60.00	-46.31	QP	
12		19.4190	8.54	0.18	8.72	50.00	-41.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/6/15
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	39.38	0.04	39.42	66.00	-26.58	QP	
2		0.1500	20.07	0.04	20.11	56.00	-35.89	AVG	
3		0.3885	30.56	0.02	30.58	58.10	-27.52	QP	
4	*	0.3885	23.59	0.02	23.61	48.10	-24.49	AVG	
5		0.7957	18.75	0.01	18.76	56.00	-37.24	QP	
6		0.7957	11.26	0.01	11.27	46.00	-34.73	AVG	
7		3.3203	14.42	0.05	14.47	56.00	-41.53	QP	
8		3.3203	8.35	0.05	8.40	46.00	-37.60	AVG	
9		10.9073	15.07	0.13	15.20	60.00	-44.80	QP	
10		10.9073	9.34	0.13	9.47	50.00	-40.53	AVG	
11		24.0540	13.62	0.23	13.85	60.00	-46.15	QP	
12		24.0540	12.69	0.23	12.92	50.00	-37.08	AVG	

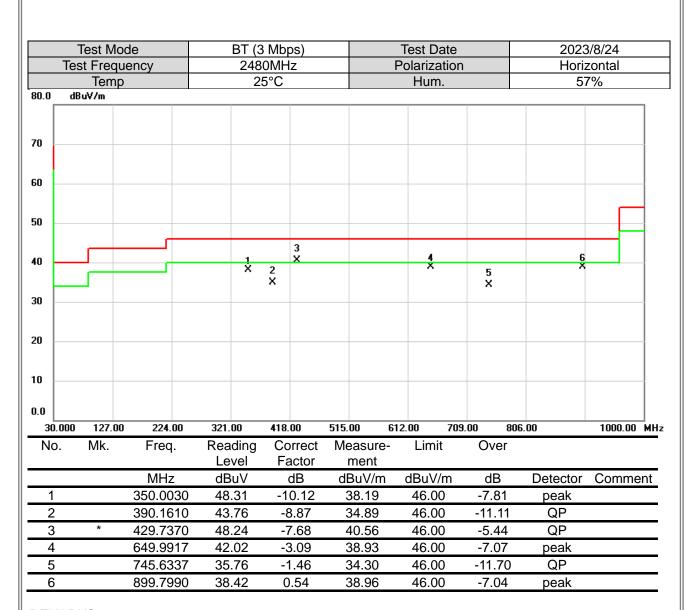
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/6/15
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	39.83	0.04	39.87	66.00	-26.13	QP	
2		0.1500	20.19	0.04	20.23	56.00	-35.77	AVG	
3		0.3885	31.26	0.02	31.28	58.10	-26.82	QP	
4	*	0.3885	23.49	0.02	23.51	48.10	-24.59	AVG	
5		1.0387	18.51	0.01	18.52	56.00	-37.48	QP	
6		1.0387	11.15	0.01	11.16	46.00	-34.84	AVG	
7		4.4385	17.73	0.05	17.78	56.00	-38.22	QP	
8		4.4385	10.87	0.05	10.92	46.00	-35.08	AVG	
9		10.9703	14.89	0.13	15.02	60.00	-44.98	QP	
10		10.9703	9.50	0.13	9.63	50.00	-40.37	AVG	
11		19.2930	14.32	0.18	14.50	60.00	-45.50	QP	
12		19.2930	9.24	0.18	9.42	50.00	-40.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2303T057 Page 37 of 92 Report Version: R01

For External Antenna: Test Mode BT (3 Mbps) **Test Date** 2023/8/24 Test Frequency 2480MHz Polarization Vertical 25°C Hum. 57% Temp dBuV/m 70 60 50 3 3 2 х 40 30 20 10 0.0 224.00 321.00 418.00 515.00 709.00 806.00 1000.00 MHz 30.000 127.00 612.00 Mk. Reading Correct Measure-Limit No. Freq. Over Level Factor ment MHz dBuV dΒ dBuV/m dBuV/m dB Comment Detector 37.6953 43.46 -11.99 40.00 -8.53 1 31.47 peak 2 388.2857 48.91 -8.92 39.99 46.00 -6.01 QΡ 3 480.0153 48.24 -6.57 41.67 46.00 -4.33 QΡ 39.83 -2.90 -9.07 QP 4 666.0937 36.93 46.00 745.6982 42.89 46.00 -4.57 QP 5 -1.46 41.43 6 799.8567 41.26 -0.79 40.47 46.00 -5.53 QΡ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-1-2303T057

-7.06

-6.19

-6.53

peak

QΡ

peak

46.00

46.00

46.00

	Test Mod	de	BT (3	Mbps)		Test Date		2023	3/8/24	
Te	est Frequ			0MHz		Polarization			tical	
	Temp			5°C		Hum.			7%	
0.0	BuV/m	<u> </u>					· ·			_
0										1
io —										
io										
10				2 X	X	4 ×	5 X	6		
:0										
0										
o										-
.0										
30.000		224.00	321.00	418.00		12.00 709		.00	1000.00	MI
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		32.0693	46.18	-12.95	33.23	40.00	-6.77	peak		
2	!	399.9903	48.60	-8.55	40.05	46.00	-5.95	QP		
3	*	480.0153	48.85	-6.57	42.28	46.00	-3.72	QP		

-2.90

-0.79

0.54

38.94

39.81

39.47

REMARKS:

4

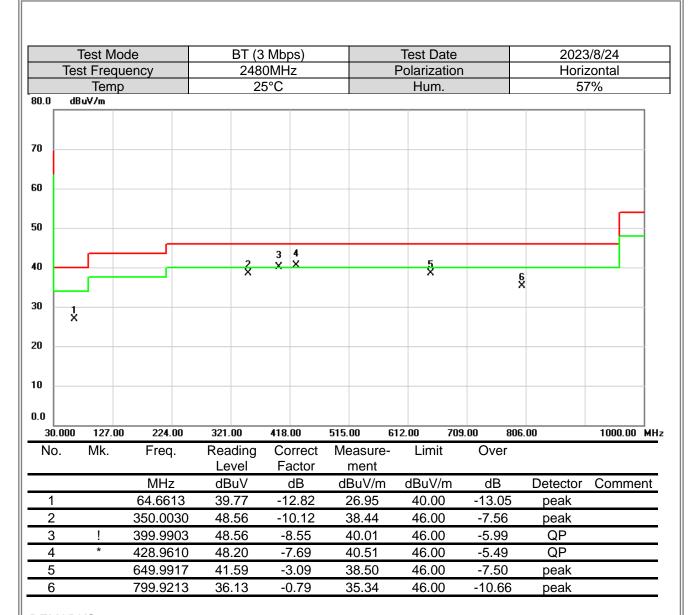
5

6

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

41.84

40.60

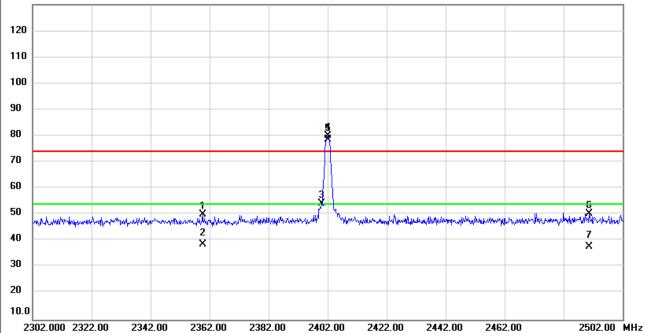

38.93

666.0613

799.8242

899.8637

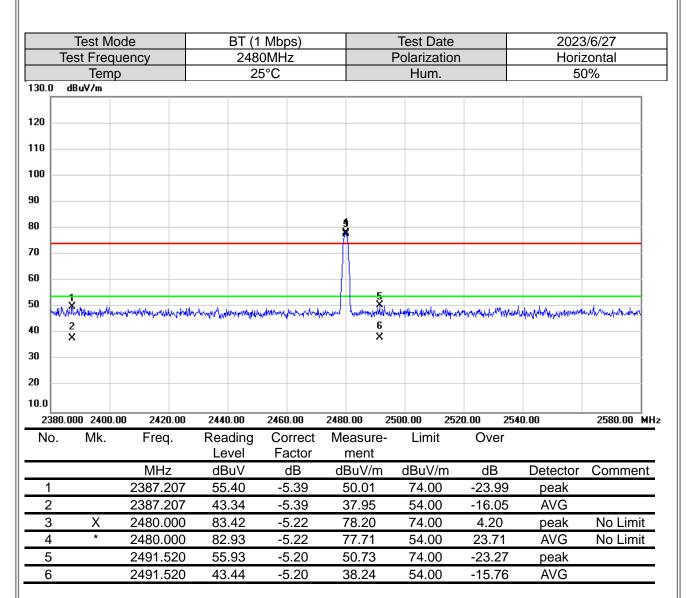
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2303T057 Page 42 of 92 Report Version: R01

Report No.: BTL-FCCP-1-2303T057

For External Antenna:


Test Mode	BT (1 Mbps)	Test Date	2023/6/27
Test Frequency	2402MHz	Polarization	Horizontal
Temp	25°C	Hum.	50%
130.0 dBuV/m			

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2359.633	55.33	-5.42	49.91	74.00	-24.09	peak	
2		2359.633	44.17	-5.42	38.75	54.00	-15.25	AVG	
3		2399.987	59.59	-5.37	54.22	74.00	-19.78	peak	No Limit
4	Χ	2402.000	85.39	-5.36	80.03	74.00	6.03	peak	No Limit
5	*	2402.000	83.87	-5.36	78.51	54.00	24.51	AVG	No Limit
6		2490.780	55.46	-5.20	50.26	74.00	-23.74	peak	
7		2490.780	43.06	-5.20	37.86	54.00	-16.14	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode	BT (3	3 Mbps)		Test Date)	2023	3/6/27
	Test Freq	uency		2MHz		Polarizatio	n		zontal
	Tem)	2	5°C		Hum.		50	0%
130.0	dBuV/m								
120									
110									
100									
90									
80					*				
70									
60					*				
50	diamentaria	had policy has been been been been been been been bee	was buch the orbitance people	hourde white of progress		And have the state of the state	whytemacherone	Anger Angel be week model	hynn war yn hit
40	×								7 X
30									
20									
10.0									
	02.000 2322.		2362.00	2382.00				52.00	2502.00 MH
No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2308.047	55.50	-5.52	49.98	74.00	-24.02	peak	
2		2308.047	45.89	-5.52	40.37	54.00	-13.63	AVG	
3		2400.000	62.13	-5.37	56.76	74.00	-17.24	peak	No Limit
J	Χ	2402.000	87.38	-5.36	82.02	74.00	8.02	peak	No Limit
4						5400	24.07	A) (O	A 1 1 1 1 14
4 5	*	2402.000	83.43	-5.36	78.07	54.00	24.07	AVG	No Limit
4		2402.000 2500.447 2500.447	83.43 54.76 43.04	-5.36 -5.19 -5.19	78.07 49.57 37.85	74.00 54.00	-24.43 -16.15	peak AVG	No Limit

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			3 Mbps)		Test Date			3/6/27
	Test Frequ			0MHz		Polarization	1		zontal
	Temp)	2	5°C		Hum.		50	0%
130.0	dBuV/m								
20									
10 📙									
00									
00									
10 -									
80 L									
"					*				
'o 🗀					$ \mathbb{A}$				
					- 11				
in L									
60 <u> </u>									_
in	1 walkan hannayahad	harran hand in sa Asia	و المراجعة	olodoses o Processes	Washed marketishadan	New marks or word	alon Anger Janes de Paris	My wash perfected the second	S. S
50 -\rightarrow		nigonalimationalisa	enter proportion of the state o	والمساورة	APPENDENT TO THE MENTINE MENTI	y/www.modeur.gova	alpatraderaderanja	Literary and the Company of the Comp	a Chanadan wholey
50	1 suffam hannwilhads 2 ×	ongendenskaplan	ويعطون المراجع والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع و	alord protester but the compage	altragenced was application of the second	of hospital and the second	alfred headers, for a fight of troop	Liter parameter de la faction	a thousand maked on
50 \u0		negocialismos podpodka	والمقطور بالمعارض بالمعارض والمعارض والم	ahodurateria-tennaga	Mary May May May May May May May May May Ma	y haranna day in gand	alignation and an appearance	LANGE STATE	a Chanadan wholey
50 50 40 30		ongendens properties.	guada jirohon sayiridga Agraha shiya	ahodinada kontransa ya	And the state of t	J. W. Howard day in speech	alfred Procession of the supplement was	apt of the second se	a Chanadan wholey
60		ongenelius pagaban	gishester Array of April Gentra Arra	dadjoedd a thomas job	Washington and the state of the	gh bhousempeleur seine	alford handlers, for expensive regular	LANGER AND THE WARRANT	a Chanadan wholey
60	2 X								a Damendrodoloty 6 ×
60	2 X	00 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	w ^h /www.ey.hv.w ^h /w.e	a Chanadan wholey
50 40 80 20	2 X								a Damendrodoloty 6 ×
60	2 X	00 2420.00	2440.00 Reading	2460.00 Correct	2480.00 2 Measure-	500.00 252	20.00 254		a Damendrodoloty 6 ×
60	2 X	00 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 29 Measure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00 MI
0	2 X	00 2420.00 Freq.	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 29 Measure- ment dBuV/m	500.00 252 Limit dBuV/m	20.00 254 Over	0.00 Detector	2580.00 MI
0 0 0 0.0 2380 No.	2 X	00 2420.00 Freq. MHz 2385.993	2440.00 Reading Level dBuV 54.16	2460.00 Correct Factor dB -5.39	2480.00 29 Measure- ment dBuV/m 48.77	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -25.23	Detector peak	2580.00 MI
0 0 0 0 0.0 2380 No.	2 X 80.000 2400.0 . Mk.	00 2420.00 Freq. MHz 2385.993 2385.993	2440.00 Reading Level dBuV 54.16 43.22	2460.00 Correct Factor dB -5.39 -5.39	2480.00 29 Measure- ment dBuV/m 48.77 37.83	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -25.23 -16.17	Detector peak AVG	2580.00 MI
30 0.0 2380 No.	2 X 80.000 2400.0 . Mk.	MHz 2385.993 2385.993 2480.000	2440.00 Reading Level dBuV 54.16 43.22 81.98	2460.00 Correct Factor dB -5.39 -5.39 -5.22	2480.00 29 Measure- ment dBuV/m 48.77 37.83 76.76	500.00 252 Limit dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -25.23 -16.17 2.76	Detector peak AVG peak	2580.00 MI Comment

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		t Mo				BT (1						Test Da				023/6/28	
	Test F						2MH	Z			F	Polariza			\	√ertical	
		emp				2	5°C					Hum	١.			51%	
30.0	dBuV/	m															_
20 _																	-
10																	-
00																	4
10																	
30 <u> </u>																	
'o																	-
:0																	
io <u> </u>			1 X														
10 L																	4
:0			2 X														
0																	
0.0																	
	0.000 3				8650		1120			0.00		300.00			21400.00	26500.0)0 MH
No.	M	lk.	Freq	•	Rea Le			rrect ctor		easure ment	9-	Limit	t	Over			
			MHz		dB	uV	C	ΙB	dl	3uV/n	1	dBuV/	m	dB	Detect	or Comm	ent
1			4804.0	000	45.	30	0	.53	4	15.83		74.00)	-28.17	7 peak		
2		*	4804.0	000	32.	91	0	.53	3	33.44		54.00)	-20.56	6 AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Date			3/6/28
- 1	est Frequ				2MHz		Polarizatio	n		zontal
130.0	Temp)		2	5°C		Hum.		5	1%
130.0	ubu¥/III									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40		×								
30		2 X								
20										
10.0										
	000 3550.0			8650.00	11200.00	13750.00			100.00	26500.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	00	44.92	0.53	45.45	74.00	-28.55	peak	
2	*	4804.00	00	32.19	0.53	32.72	54.00	-21.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo				Mbps)		Test Date			3/6/28
T	est Frequ				1MHz		Polarizatio	n		tical
120.0	Temp			25	5°C		Hum.		5′	1%
130.0	dBu√/m									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40										
30		2 X								
20										
10.0										
	000 3550.0			8650.00	11200.00	13750.00			00.00	26500.00 MHz
No.	Mk.	Freq.	F	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	44.03	0.76	44.79	74.00	-29.21	peak	
2	*	4882.00	00	32.75	0.76	33.51	54.00	-20.49	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Te	Test Mest Free					BT (1 244	Mbp 1MH:				F	Test D					3/6/28 zontal	
	Ten						5°C	_				Hun					1%	
130.0	dBuV/m														_		- , -	
120																		
110																		-
100																		-
90																	-	
80																		-
70																		
60																		-
50			1 X															
40			2															-
30			×															4
20																		
10.0																		
1000.0	000 3550	0.00	6100).00	8650	0.00	1120	0.00	1375	0.00	16	300.00	188	50.00	214	00.00	26500.0	0 MHz
No.	Mk.		Freq			ding vel		rrect ctor		easur ment		Lim	it	Ove	er			
			MHz	<u>, </u>	dB	uV	C	lΒ	dl	3uV/r	n	dBuV	/m	dE	}	Detector	Commo	ent
1			4882.0		44			.76		15.58		74.0		-28.		peak		
2	*		4882.0	000	32	.78	0.	.76	(33.54		54.0	0	-20.	46	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo				Mbps)		Test Da			3/6/28
Į.	est Frequ				0MHz		Polarizat	ion		tical
130.0	Temp)		2	5°C		Hum.		5	1%
130.0	ubu¥/III									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40										
30		2 X								
20										
10.0										
1000.	000 3550.0	00 6100.0	00 865	0.00	11200.00	13750.00	16300.00	18850.00 21	400.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor	Measure ment	- Limit	Over		
		MHz		3uV	dB	dBuV/m	dBuV/r	n dB	Detector	Comment
1		4960.00		1.57	1.00	45.57	74.00		peak	
2	*	4960.00	0 32	2.83	1.00	33.83	54.00		AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Dat			3/6/28
Te	est Frequ				0MHz		F	Polarizati	on		zontal
	Temp)		2	5°C			Hum.		5	1%
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50		1 X									
40											
30		2 X									
20											
10.0											
	000 3550.0			50.00	11200.00	13750.00			18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor	Measu ment		Limit	Ove	r	
		MHz	d	∃uV	dB	dBuV/		dBuV/m	n dB	Detector	Comment
1		4960.00	0 4	5.33	1.00	46.33	}	74.00	-27.6	67 peak	
2	*	4960.00	0 3	2.87	1.00	33.87	7	54.00	-20.1	3 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo				BT (3						est Da				3/6/28
10	est Frequence					2MH <u>:</u> 5°C	<u>Z</u>			Ρ(olariza				rtical 1%
130.0	Temp dBuV/m	3			۷:	5°C					Hum.	•		5	1%
120															
110															
100															
90															
80															
70															
60															
50															
		X X													
40		2 X													
30		X													
20															
10.0															
1000.	000 3550.	00 6100).00	8650	.00	1120	0.00	1375	50.00	163	00.00	1885	0.00 21	400.00	26500.00 MH
No.	Mk.	Freq		Rea Le	ding		rrect ctor		easure ment)-	Limit	:	Over		
		MHz	<u>,</u>	dB			IB		BuV/m)	dBuV/ı	m	dB	Detector	Comment
1		4804.0		45.			53		15.59		74.00		-28.41	peak	
2	*	4804.0	000	32.			53	3	33.17		54.00)	-20.83	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo					Mbps)				est Da				3/6/28
1	est Frequ			2		MHz			Р	olarizat				zontal
130.0	Temp)			25	°C				Hum.			5	1%
130.0	db d + 7 iii													
120														
110														
100														
90														
80														
70														
60														
50		1 X												
40														
30		2 X												
20														
10.0														
	000 3550.0			8650.00		11200.00	1375			00.00	1885		100.00	26500.00 MHz
No.	Mk.	Freq		Readir Leve		Correct Factor		asure nent	-	Limit		Over		
		MHz		dBu√		dB		BuV/m		dBuV/r	m	dB	Detector	Comment
1		4804.0		44.92		0.53		5.45		74.00		-28.55	peak	
2	*	4804.0	00	32.64		0.53	3	3.17		54.00)	-20.83	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			B Mbps)		Test Date			3/6/28
T	est Frequ			1MHz		Polarization	1		tical
130.0	Temp		2	5°C		Hum.		5′	1%
130.0	dBuy/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40									
30		2 X							
20									
10.0									
	.000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	45.31	0.76	46.07	74.00	-27.93	peak	
2	*	4882.000	32.84	0.76	33.60	54.00	-20.40	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			BT (3 N				Test Date			3/6/28
Te	est Frequ			2441			Р	olarizatio	n		zontal
130.0	Temp dBuV/m)		25°	'C			Hum.		5′	1%
130.0	ubuy/III										
120											
110 —											
100											
90											
80											
'o											
io											
50		1 X									
10		2 X									
io		×									
20											
10.0											
	000 3550.0				11200.00	13750.00				400.00	26500.00 MF
No.	Mk.	Freq.	Rea Le		Correct Factor	Measure ment	e- 	Limit	Over		
		MHz	dB	uV	dB	dBuV/n	n	dBuV/m	dB	Detector	Comment
1		4882.00	0 45.	11	0.76	45.87		74.00	-28.13	peak	
2	*	4882.00	0 32.	87	0.76	33.63		54.00	-20.37	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Te	st Mo	de			BT (3	Mbps)			Test Da	te		2023	3/6/28	
-	Test	Frequ	iency				0MHz		Р	olarizat	ion			tical	
		Temp)			2	5°C			Hum.			51	1%	
30.0	dBu\	//m													7
20															-
10															$\frac{1}{2}$
00															$\frac{1}{1}$
o -															-
:0															-
0															1
0															$\ $
0			1 X												1
0															-
o			2 X												-
0															-
0.0															
		3550.0			8650		11200.00	750.00			18850.00		4 00.00	26500.00) MI
No.		Mk.	Fred	· 	Rea Le		Correct Facto	/leasure ment	- -	Limit	0	ver			
			MHz	7	dB	uV	dB	dBuV/n)	dBuV/r	n c	lΒ	Detector	Comme	ent
1			4960.0	000	45.	22	1.00	46.22		74.00	-27	7.78	peak		
2		*	4960.0	000	32.	91	1.00	33.91		54.00	-20	0.09	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

<u> </u>	Test Mo	de			BT (3	Mbp	s)			7	Test Da	ate			2023	3/6/28	
Te	st Frequ	iency			248	0MHz				P	olariza	tion			Horiz	zontal	
	Temp				2	5°C					Hum				5′	l %	
30.0 dl	BuV/m																7
20																	-
10																	-
00																	$\frac{1}{2}$
o																	-
0																	$\frac{1}{2}$
0																	1
0																	$\frac{1}{2}$
0		1 X															1
0		2															$\frac{1}{2}$
0		×															$\frac{1}{2}$
0																	+
0.0																	
	00 3550.0			8650		1120			50.00		00.00		50.00		00.00	26500.0) MI
No.	Mk.	Freq	- 	Rea Le			rect ctor		easure ment	9-	Limit	t 	Ove	er			
		MHz	7	dB	uV	C	ΙB	dl	3uV/n	1	dBuV/	m	dB	}	Detector	Comme	ent
1		4960.0		44.			00		15.38		74.00		-28.0		peak		
2	*	4960.0	000	32.	92	1.	00	3	33.92		54.00)	-20.0	80	AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

For Built-in antenna: Test Mode

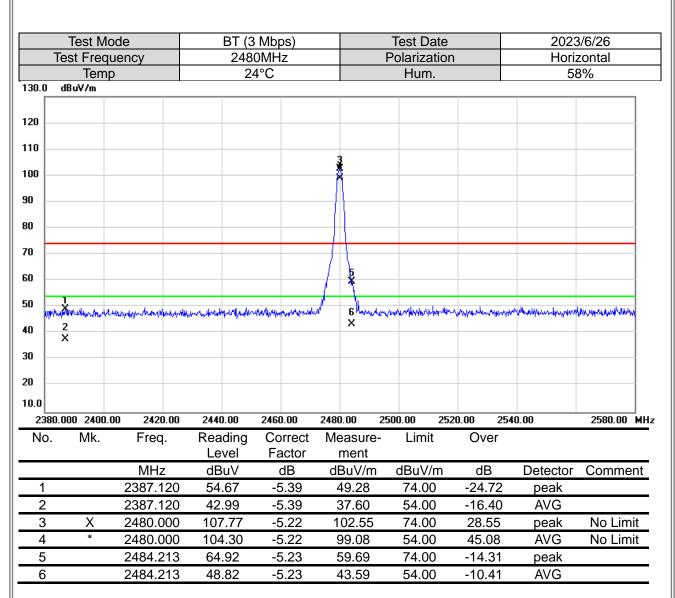
	ant in antonna.			
	Test Mode	BT (1 Mbps)	Test Date	2023/6/26
	Test Frequency	2402MHz	Polarization	Horizontal
	Temp	24°C	Hum.	58%
130.0	dBuV/m			
120				
110				
100				
90			5	
			₩	
80				
70				
60				

II _	2302.0	00 2322.00	2342.00	2362.00	2382.00	2402.00	2422.00	2442.00	2462.00	2502.00 MH:
	No.	Mk.	Freq.	Reading	Correct	Measure-	- Limit	Ove	r	
$\ $ $_{_}$				Level	Factor	ment				
			MHz	dBuV	dB	dBuV/m	dBuV/r	n dB	Detector	Comment
	1		2383.393	55.22	-5.39	49.83	74.00	-24.1	7 peak	
	2		2383.393	44.02	-5.39	38.63	54.00	-15.3	7 AVG	
	3		2400.000	63.18	-5.37	57.81	74.00	-16.1	9 peak	No Limit
	4	Χ	2402.000	95.01	-5.36	89.65	74.00	15.6	5 peak	No Limit
	5	*	2402.000	94.44	-5.36	89.08	54.00	35.0	8 AVG	No Limit
	6		2495.233	55.16	-5.20	49.96	74.00	-24.0	4 peak	
║╹	7		2495.233	43.05	-5.20	37.85	54.00	-16.1	5 AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	est Mo	de	BT (1	Mbps)		Test Date			3/6/26
Tes	t Frequ	ency	248	0MHz		Polarization	ı	Horiz	zontal
	Temp		2	4°C		Hum.		58	3%
30.0 dB	uV/m								
120									
20									
10									
00					Š				
o									
。									
·									
D									
0 1						andre agreement and a signal as			Š.
anton alle	marrial of the house	handaninghalanta	pageng/heligippi	e,nd/\m\Nn-hann	han manual	ntiformilania di di	cherry relicion de estado de decidade	erneterfelightelerneterprepition	Wysphalmorror Warner
0 2 X									×
o									
o 🗀									
2200 000	0 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 25	20.00 25 4	10.00	2580.00 MF
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	20.00 2:34 Over	10.00	2300.00 MI
140.	IVIIX.	1104.	Level	Factor	ment	Liiiit	OVCI		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2387.267	54.98	-5.39	49.59	74.00	-24.41	peak	
2		2387.267	43.05	-5.39	37.66	54.00	-16.34	AVG	
3	Χ	2480.000	107.23	-5.22	102.01	74.00	28.01	peak	No Limit
4	*	2480.000	106.87	-5.22	101.65	54.00	47.65	AVG	No Limit
5		2565.880	56.04	-4.97	51.07	74.00	-22.93	peak	
6		2565.880	44.60	-4.97	39.63	54.00	-14.37	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Took Mod		DT /	O Mbna\		Took Doko		2020	1000
Т	Test Mod Test Freque		,	3 Mbps) 02MHz		Test Date Polarizatio			3/6/26 zontal
	Temp	nioy		24°C		Hum.			3%
130.0	dBuV/m								
120									
110									
100									
90									
80					§				
70									
60					3				
50			إمالة المعرب فالأرب المعرب المالي والمعرب المالية	i X		entapportunalista.	مداد استداد	Marian Islandania	5
40	himan marin and the Alband for the first	Mrt Janher Agent Agent Agent	Mary War Charles Millian Lancack of	2 X	Andrea Kulthara	Reford Higher convert Bush A	A A Challe and the Charles and Control	Paller de and Walter Sentiated of	7 ×
30				^					
20									
10.0									
	.000 2322.00	2342.00		2382.00				2.00	2502.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.047	55.09	-5.39	49.70	74.00	-24.30	peak	
2		2388.047	42.68	-5.39	37.29	54.00	-16.71	AVG	
3		2400.000	64.49	-5.37	59.12	74.00	-14.88	peak	No Limit
4	Χ	2402.000	86.75	-5.36	81.39	74.00	7.39	peak	No Limit
5	*	2402.000	83.50	-5.36	78.14	54.00	24.14	AVG	No Limit
6		2493.933	54.43	-5.21	49.22	74.00	-24.78	peak	
7		2493.933	43.08	-5.21	37.87	54.00	-16.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test					BT (1						Test D					3/6/26	
T	Test Fr						2MHz	<u>'</u>			F	Polariza					tical	
		mp				24	4°C					Hum	١.			58	3%	
30.0	dBuV/m	1																7
20																		
10																		-
00																		-
10																		-
30																		-
o 🗀																		
0																		-
0			1															-
o _			X X															
			2 X															
0																		
0.0																		
1000	.000 35	50.00	0 6100).00	8650	0.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00	Т МН
No.	Mk	ζ.	Freq	•		ding vel		rect ctor		easur ment	e-	Limi	t	Ove	r			
			MHz	<u>'</u>	dB			В		3uV/r	n	dBuV/	/m	dB		Detector	Comme	nt
1_			4804.0	000	44.	.18	0.	53		14.71		74.0	0	-29.2	29	peak		
2	*		4804.0	000	32.	.08	0.	53	3	32.61		54.0	0	-21.3	39	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			3/6/26
10	est Frequ Temp			<u>2MHz</u> 4°C		Polarization Hum.	n		zontal 3%
130.0	dBuV/m			4 0		nuiii.		30	070
120									
110									
100 -									
90									
80									
00									
70									
60									
50									
JU		1 X							
40									
30		2 X							
20									
20									
10.0	000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure		Over	100.00	20000.00 MH2
140.	IVIIX.	1 104.	Level	Factor	ment	LIIIII	0 7 61		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	44.23	0.53	44.76	74.00	-29.24	peak	
2	*	4804.000	32.16	0.53	32.69	54.00	-21.31	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps)				est Da				3/6/26
le	est Fred					2MHz			P	olarizat	ion			rtical 8%
130.0	Tem dBuV/m	ıρ			24	ł°C				Hum.			- J	070
120														
110														
110														
100														
90														
80														
70														
60														
50		1												
		1 X												
40		2												
30 —		×												
20														
10.0														
	000 3550	.00 610	0.00	8650.0	0	11200.00	1375	0.00	163	00.00	18850.	00 21	400.00	26500.00 MH
No.	Mk.	Fred	 -	Readi Leve	ng el	Correct Factor		easure ment	-	Limit		Over		
		MH	Z	dBu\		dB		BuV/m		dBuV/n	n	dB	Detector	Comment
1		4882.0	000	45.5	7	0.76		16.33		74.00		27.67	peak	
2	*	4882.0	000	32.5	1	0.76	3	33.27		54.00	-	20.73	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo			Γ (1 Mbp			Test D			23/6/26
I	est Frequ		1 2	2402MHz 24°C	-		Polariza Hum			rizontal 58%
130.0	Temp			24 C			пип	l.		00%
120										
110										
110										
100										
90										
80										
<u> </u>										
70										
60										
50										
		X								
40		2								
30		×								
20										
10.0										
	.000 3550.0	0 6100.0	0 8650.0	D 11200	0.00 137	'50.00	16300.00	18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.	Readi			easure-				
		<u> </u>	Leve		ctor	ment				
		MHz	dBu\			lBuV/m				r Comment
1		4882.00				45.95	74.0			
2	2 * 4882.000		0 32.50	6 0.	76	33.32	54.0	0 -20.	68 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				Test Da					3/6/26		
Te	est Freq					0MHz				P	olarizat					tical		
20.0	Tem	ρ			24	4°C					Hum.				58%			
30.0 c	BuV/m																7	
20																		
10																		
00																		
10																		
:0																		
																	4	
																	1	
50																		
50		1 X															}	
ю																	-	
:0		2 X																
0																		
0.0																		
1000.0	000 3550.	00 6100).00	8650	.00	11200.	00	1375	0.00	163	300.00	1885	0.00 2	21400.00		26500.00] мн	
No.	Mk.	Freq	•	Rea		Corr Fac			easure ment)-	Limit		Over					
		MHz	<u>'</u>	dB		dE			BuV/m	1	dBuV/r	m	dB	Det	ector	Comme	ent	
1		4960.0	000	43.		1.0	0		4.86		74.00)	-29.14	l pe	eak			
2	* 4960.000		000	32.	62	1.0	0	3	3.62		54.00		-20.38	3 A	VG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo				BT (1						Test D					3/6/26	
			uency				0MH	<u>z</u>			F	<u>Polariza</u>					zontal	
130.0	dBu∖	Temp)			24	4°C					Hum	۱.			58	3%	
30.0	aBuv	//m																
120 _																		
110 📙																		
100																		
90																		
30																		
~																		
io																		
io			1 X															
0			2															
10			X															
20																		
10.0																		
		3550.0			8650		1120			50.00		300.00		50.00		00.00	26500.00 N	ΜН
No.		Mk.	Freq	•	Rea Le			rrect ctor		easur ment	e-	Limi	t	Ove	er			
			MHz		dB	uV	C	ΙB	dl	3uV/r	n	dBuV	/m	dB		Detector	Commen	١t
1			4960.0	000	45.03		1.	.00	46.03			74.00		-27.9	97	peak		
2		*	4960.0	000	32.	65	1.	.00	3	33.65		54.0	0	-20.3	35	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Tes	t Mo	de			BT (3						Test Da					3/6/26	
	Test F						2MH	Z			Р	olariza					tical	
		emp	1			2	4°C					Hum		58%				
130.0	dBuV/	m																_
120																		
110 📙																		-
100																		4
30																		4
30																		_
'o																		7
SO																		-
50			1 X															
10 <u> </u>			2															+
30 <u> </u>			x															4
20																		4
10.0																		
	0.000 3				8650		1120			0.00		300.00		50.00		00.00	26500.0	10 MF
No.	M	lk.	Freq	•	Rea Le			rrect ctor		easure ment) -	Limit	•	Ove	er			
			MHz	<u>-</u>	dB			dΒ	dl	3uV/m	1	dBuV/	m	dB		Detector	Comm	ent
1			4804.0	000	44.	93	0	.53	4	15.46		74.00)	-28.5	54	peak		
2		*	4804.0	000	32.	35	0	.53	3	32.88		54.00)	-21.1	12	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps)				est Da				3/6/26
Te	est Fred					2MHz			Po	olarizat	ion			zontal
130.0	Tem dBuV/m	ıp			22	4°C				Hum.			58	3%
130.0	JB UY/III													
120														
110														
100														
90														
80														
70														
60														
50		1												
40		1 X												
30		2 X												
20														
10.0														
1000.0	000 3550).00 6 10	0.00	8650.0)0	11200.00	1375	0.00	1630	00.00	18850.0	0 21	400.00	26500.00 MI
No.	Mk.	Free	q	Read Leve		Correct Factor		easure ment	-	Limit	(Over		
		MH	Z	dBu		dB		3uV/m	(dBuV/r	n	dB	Detector	Comment
1_		4804.		44.1		0.53		14.69		74.00		29.31	peak	
2	*	4804.	000	32.4	-2	0.53	3	32.95		54.00	-2	21.05	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Е		Mbps)			Test D				3/6/26		
Te	est Frequ					1MHz			Polariza			Vertical			
	Temp)			24	4°C			Hum		58%				
130.0 c	dBuV/m							1							
20															
10															
100															
30															
30															
vo 🗀															
:0															
50		1 X													
10		×													
80		2 X													
0.0															
	000 3550.0	00 6100).00	8650.	00	11200.00	137	50.00	16300.00	18850.00	21400.00	0	26500.00 MF		
No.	Mk.	Freq	•	Read		Correct Factor		easure- ment	Limi	t Ov	er				
		MHz	<u>,</u>	dBu		dB		BuV/m	dBuV	/m dE	3 De	etector	Comment		
1		4882.0		45.2		0.76		45.98	74.0			peak	501111110111		
2	*	4882.0		32.0		0.76		33.36	54.0			AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT (3	Mbps)				-	Test Da	ate		202	3/6/26
Te	est Freq					1MHz					olarizat				zontal
	Tem	р			24	4°C					Hum.			5	8%
30.0	dBuV/m														
120															
110															
00 -															
30															
80															
iu															
0															
io															
50															
		1 X													
10		2													
:0		X													
20															
0.0															
1000.0	000 3550.	00 6100).00	8650	.00	11200.0	0	1375	0.00	163	00.00	18850	.00 2 [.]	1400.00	26500.00 MF
No.	Mk.	Freq	•	Read Lev		Corre Fact			asure nent	-	Limit		Over		
		MHz	<u>-</u>	dBı		dB			BuV/m		dBuV/r	m	dB	Detector	Comment
1		4882.0		44.		0.76			4.77		74.00		-29.23	peak	
2	* 4882.000		000	32.54		0.76		33.30			54.00		-20.70	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency					Mbps)					3/6/26				
									ertical					
00.0	Tem	p			24	4°C				Hum.			58	3%
30.0	dBuV/m													
20														
10														
00														
10														
:0														
0														
50		1 ×												
0		2												
:0		×												
:0														
0.0														
	000 3550.			8650		11200.00		750.00			18850.00		00.00	26500.00 MI
No.	Mk.	Freq	•	Read Lev		Correct Facto		leasure ment)-	Limit	Ov	er		
		MHz	<u>-</u>	dBı		dB		BuV/m) (dBuV/n	n dE	3	Detector	Comment
1		4960.0	000	44.		1.00		45.04		74.00	-28.	96	peak	
2	*	4960.0	000	32.	70	1.00		33.70		54.00	-20.	30	AVG	

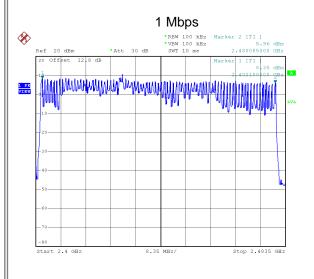
REMARKS:

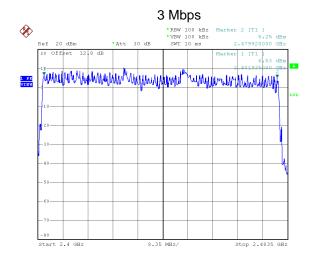
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	lode			BT (3	Mbps)					Test Da	ate			2023	3/6/26	
Test Frequency					2480MHz			Polarization				Horizontal					
	Tem	ıp			2	4°C					Hum				58	3%	
30.0	BuV/m																_
20																	\parallel
10																	-
00																	\parallel
0																	\parallel
0																	\parallel
)																	
0																	\parallel
)		1 X															
0		2 X															\parallel
0		×															\parallel
0																	-
D.O																	
	000 3550		0.00	8650		11200.0		1375			00.00		50.00	2140	0.00	26500.0	0 M
No.	Mk.	Fred	 .	Rea Le	ding vel	Corre Facto			asure ment	:-	Limit	t	Ove	er			
		MH:	Z	dB	uV	dB		dE	3uV/m	1	dBuV/	m	dB	}	Detector	Comme	ent
1		4960.0	000	44.	.89	1.00)	4	5.89		74.00)	-28.	11	peak		
2	*	4960.0	000	32.	.59	1.00)	3	3.59		54.00)	-20.4	41	AVG		_

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

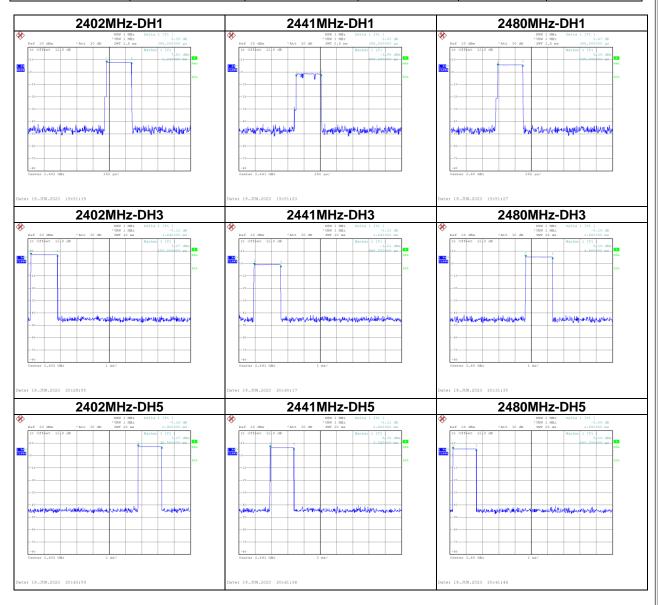



Project No.: 2303T057 Page 75 of 92 Report Version: R01

Test Mode 1	1/3Mbps
-------------	---------

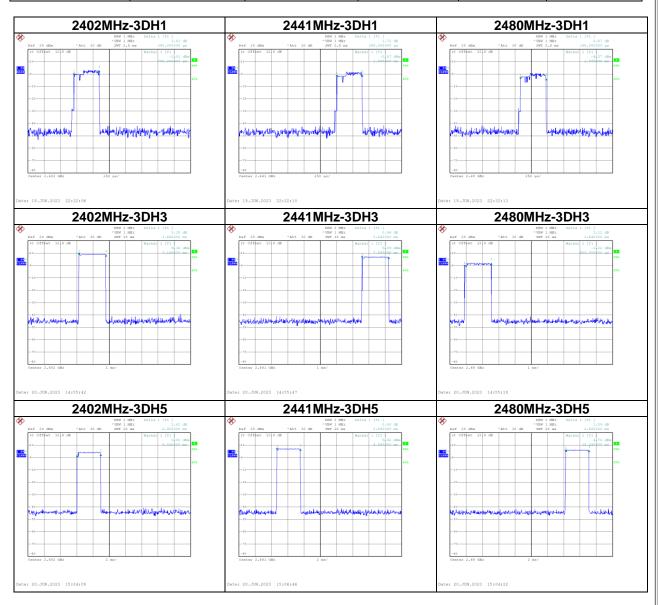
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

Date: 19.JUN.2023 20:25:21 Date: 19.JUN.2023 22:37:36


APPENDIX E AVERAGE TIME OF OCCUPANCY

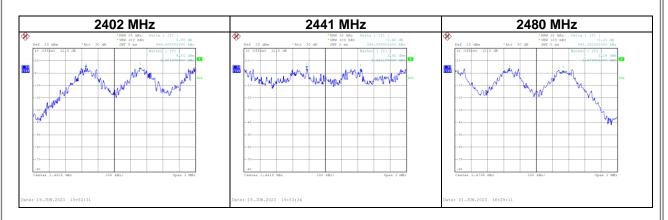
Project No.: 2303T057 Page 77 of 92 Report Version: R01

Test Mode: 1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.9200	0.3115	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3850	0.1232	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6600	0.2656	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass

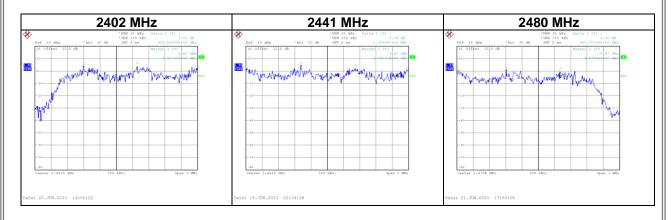
Test Mode: 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.9200	0.3115	0.4000	Pass
3DH3	2402	1.6600	0.2656	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	0.3900	0.1248	0.4000	Pass
3DH5	2480	2.8800	0.3072	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3950	0.1264	0.4000	Pass


APPENDIX F	HOPPING CHANNEL SEPARATION MEASUREMENT

Project No.: 2303T057 Page 80 of 92 Report Version: R01

	Test Mode :	Hopping on _	1Mbps
ı	TOOL WIOGO .		IIVIDPO


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.996	0.701	Pass
2441	0.996	0.667	Pass
2480	0.993	0.707	Pass

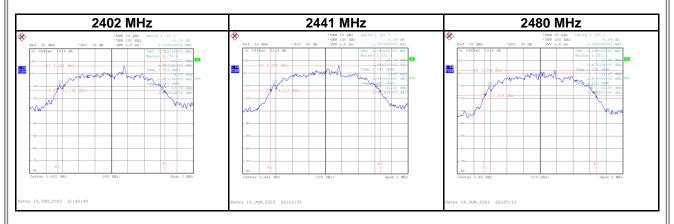
Test Mode : Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.992	0.876	Pass
2441	1.006	0.885	Pass
2480	0.997	0.897	Pass

		Report No.: B	712 1 001 1 23031037
	APPENDIX G	RANDWIDTH	
	AI I LIIDIA O	DANDINI	
Drainat No.: 2202T0F7			

Project No.: 2303T057 Page 83 of 92 Report Version: R01

Test Mode :	1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.052	0.904	Pass
2441	1.001	0.912	Pass
2480	1.060	0.916	Pass

Test Mode :	3Mbps

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.314	1.256	Pass
2441	1.328	1.244	Pass
2480	1.346	1.236	Pass

APPENDIX H OUTPUT POWER

Project No.: 2303T057 Page 86 of 92 Report Version: R01

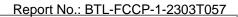
Test Mode:	1Mbps		Tested	d Date 2	2023/6/20
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	6.53	0.0045	21.00	0.1259	Pass

(MHz)	(dBm)	(W)	(dBm)	(W)	Test Result
2402	6.53	0.0045	21.00	0.1259	Pass
2441	5.78	0.0038	21.00	0.1259	Pass
2480	4.74	0.0030	21.00	0.1259	Pass

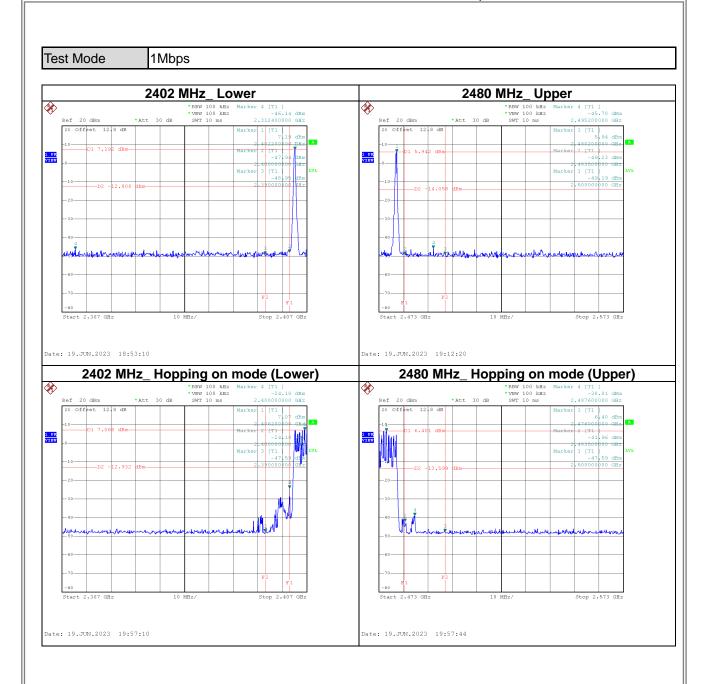
Test Mode :	2Mbps	Tested Date	2023/6/20

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.67	0.0058	21.00	0.1259	Pass
2441	6.78	0.0048	21.00	0.1259	Pass
2480	5.88	0.0039	21.00	0.1259	Pass

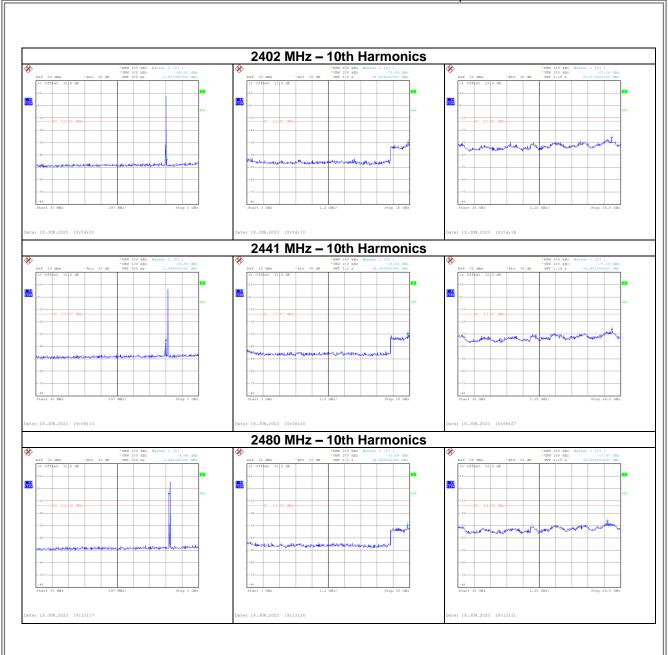
Test Mode:	3Mbps	Tested Date	2023/6/20
------------	-------	-------------	-----------


Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.74	0.0059	21.00	0.1259	Pass
2441	6.97	0.0050	21.00	0.1259	Pass
2480	6.00	0.0040	21.00	0.1259	Pass

Project No.: 2303T057 Page 87 of 92 Report Version: R01



APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2303T057 Page 88 of 92 Report Version: R01

