Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant:	CQASZ20220300334E-01 Shenzhen I-Link Technology CO., LTD .				
Address of Applicant:	Floor B2, Block 1, Yongqi Technopark, Yintian Industrial park, Xixiang Town, Baoan district, Shenzhen, P.R.China				
Equipment Under Test (E	:UT):				
Product:	Mini Wireless Bluetooth 5.0 Music Receiver				
Model No.:	SR03, BT4831, BT4831B				
Test Model No.:	SR03				
Brand Name:	N/A				
FCC ID:	RCT-BT4831B				
Standards:	47 CFR Part 15, Subpart C				
Date of Receipt:	2022-03-16				
Date of Test:	2022-03-16 to 2022-03-24				
Date of Issue: Test Result :	2022-03-25 PASS*				

*In the configuration tested, the EUT complied with the standards specified above.

lewis 2hOU (Lewis Zhou) Tested By: Rook Huanz **Reviewed By:** (Rock Huang) Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

PPROVE

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220300334E-01	Rev.01	Initial report	2022-03-25

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

3 Contents

Page

1 VERSION	
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	5
4.1 Client Information	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 Abnormalities from Standard Conditions	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	11
5 TEST RESULTS AND MEASUREMENT DATA	12
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 20DB Occupy Bandwidth	
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 Hopping Channel Number	
5.7 Dwell Time	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.11.1 Radiated Emission below 1GHz	
5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	81
6.1 Radiated Emission	
6.2 Conducted Emission	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Shenzhen I-Link Technology CO., LTD .			
Address of Applicant:	Floor B2, Block 1, Yongqi Technopark, Yintian Industrial park, Xixiang Tov Baoan district, Shenzhen, P.R.China			
Manufacturer:	Shenzhen I-Link Technology CO., LTD .			
Address of Manufacturer:	Floor B2, Block 1, Yongqi Technopark, Yintian Industrial park, Xixiang Town, Baoan district, Shenzhen, P.R.China			
Factory:	Shenzhen I-Link Technology CO., LTD .			
Address of Factory:	Floor B2, Block 1, Yongqi Technopark, Yintian Industrial park, Xixiang Town, Baoan district, Shenzhen, P.R.China			

4.2 General Description of EUT

Product Name:	Mini Wireless Bluetooth 5.0 Music Receiver
Model No.:	SR03, BT4831, BT4831B
Test Model No.:	SR03
Trade Mark:	Ν/Α
Software Version:	V01
Hardware Version:	V01
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Transfer Rate:	1Mbps/2Mbps/3Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	□ Mobile
Test Software of EUT:	BlueTest3
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Power Supply:	Li-ion battery: DC 3.7V 180mAh, Charge by DC 5V for adapter

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Set	tings:				
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 				
EUT Power level:	Class2 (Power level is built-in set para selected)	meters and cannot be changed and			
Use test software to set the low	west frequency, the middle frequency and	the highest frequency keep			
transmitting of the EUT.	1				
Mode	Channel	Frequency(MHz)			
	СН0	2402			
DH1/DH3/DH5	СН39	2441			
	CH78	2480			
	СНО	2402			
2DH1/2DH3/2DH5	СН39	2441			
	CH78	2480			
	СНО	2402			
3DH1/3DH3/3DH5	СН39	2441			
CH78 2480					

Run Software:

Test Commands ——		-Test Arguments		
CW TX CONTINUOUS TX PACKET TX PACKET RX	Â	Channel (0-78) Power (0-9)	78 9	Close Help
QHS RF TEST STOP POWER TABLE GET		Type Pattern bits (1-	BREDR 1-PR9	Execute
POWER TABLE SET	~	99) Pattern (hex)	00000001	Reset
Test Results Save to file C:\Users\Administ		<u></u>)isplay : ∲ Standar aTest3\testapplog.tx	
☐ Save to file C:\Users\Administ	rator\App $r = 2402$	pData\Local\QTIL\Blu 2MHz		
Save to file C:\Users\Administ Channel frequency CONTINUOUS IX suc	rator\App r = 2402 ccessful r = 2441	pData\Local\QTIL\Blu 2MHz L		
Save to file C:\Users\Administ Channel frequency Channel frequency Channel frequency CONTINUOUS TX suc Channel frequency	rator\App 7 = 2402 ccessful 7 = 2441 ccessful 7 = 2441	Data\Local\QTIL\Blu MHz L LMHz L LMHz		
Save to file C:\Vsers\Administ C:\Vsers\Administ Continuous TX suc channel frequency CONTINUOUS TX suc channel frequency CONTINUOUS TX suc channel frequency CONTINUOUS TX suc	rator\App cessful r = 2402 cessful r = 2441 cessful r = 2441 cessful r = 2480	oData\Local\QTIL\Blu MHz LMHz LMHz LMHz LMHz LMHz LMHz		
□ Save to file C:\Vsers\Administ	rator App ccessful r = 2441 ccessful r = 2441 ccessful r = 2480 ccessful r = 2480 ccessful r = 2480	opData\Local\QTIL\Blu eDMHz L L L L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHZ MHZ MHZ MHZ MHZ MHZ MHZ MHZ		
Save to file C:\Users\Administ Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency	rator\App r = 2402 ccessful r = 2441 ccessful r = 2480 ccessful r = 2480 ccessful r = 2480 ccessful r = 2480	DData\Local\QTIL\Blu DMHz L L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz L MHz		

4.4 Test Environment

Operating Environment	Operating Environment:				
Temperature:	25 °C				
Humidity:	54% RH				
Atmospheric Pressure:	1009mbar				
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.				

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
Adapter	1	HW-0502000C01	/	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
		AFS4-00010300-18-10P-			
Preamplifier	MITEQ	4	CQA-035	2021/9/10	2022/9/9
		AMF-6D-02001800-29-			
Preamplifier	MITEQ	20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable					
(Above 1GHz)	CQA	N/A	C019	2021/9/10	2022/9/9
Coaxial Cable					
(Below 1GHz)	CQA	N/A	C020	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9
EMI Test Receiver	R&S	ESPI3	CQA-013	2021/9/10	2022/9/9
LISN	R&S	ENV216	CQA-003	2021/9/10	2022/9/9
Coaxial cable	CQA	N/A	CQA-C009	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

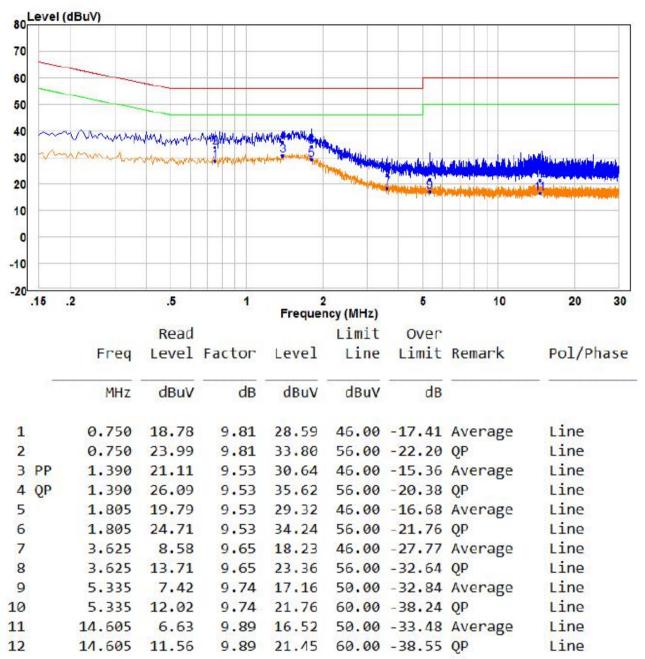
5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna: Image: State of the section of th				
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)		
responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	15.203 requirement:			
 antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna: 	An intentional radiator shall	be designed to ensure that no antenna other than that furnished by the		
so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	responsible party shall be u	sed with the device. The use of a permanently attached antenna or of an		
 electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 	antenna that uses a unique	antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit		
 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 	so that a broken antenna ca	an be replaced by the user, but the use of a standard antenna jack or		
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna:	electrical connector is prohil	bited.		
antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna:	15.247(b) (4) requirement:			
section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna:	The conducted output powe	r limit specified in paragraph (b) of this section is based on the use of		
power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna:	antennas with directional ga	ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this		
(b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. EUT Antenna:	section, if transmitting anter	nnas of directional gain greater than 6 dBi are used, the conducted output		
antenna exceeds 6 dBi. EUT Antenna:	power from the intentional ra	adiator shall be reduced below the stated values in paragraphs (b)(1),		
EUT Antenna:	(b)(2), and (b)(3) of this sec	tion, as appropriate, by the amount in dB that the directional gain of the		
	antenna exceeds 6 dBi.			
	EUT Antenna:	BE 483 IC AOT SO0358		

The antenna is PCB antenna. The best case gain of the antenna is 0 dBi.

5.2 Conducted Emissions

 Conducted Emissio	/IIS		
Test Requirement:	47 CFR Part 15C Section 15.2	207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:		Limit (c	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn	n of the frequency.	·
Test Procedure:	 The mains terminal distur- room. The EUT was connected to Impedance Stabilization N- impedance. The power call connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal gr The test was performed wi of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated exe In order to find the maximum equipment and all of the in ANSI C63.10: 2013 on com 	b AC power source thro etwork) which provides bles of all other units of SN 2, which was bonde he way as the LISN 1 for set outlet strip was used ISN provided the rating ced upon a non-metalling of floor-standing ar round reference plane, th a vertical ground ref from the vertical ground plane was bonded to the 1 was placed 0.8 m from to a ground reference und reference plane. The s of the LISN 1 and the quipment was at least of the mission, the relative terface cables must be	bugh a LISN 1 (Line a $30\Omega/50\mu$ H + 5Ω linear f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT was ference plane. The rear d reference plane. The ne horizontal ground om the boundary of the e plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. we positions of
Test Setup:	Shielding Room	AE <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u>	Test Receiver



Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

Live line:

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
· ·		
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer Image: Colspan="2">Image: Colspan="2" Image: Colspa	
Limit:	21dBm	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFS modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPS$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.	
Test Results:	Pass	

Measurement Data

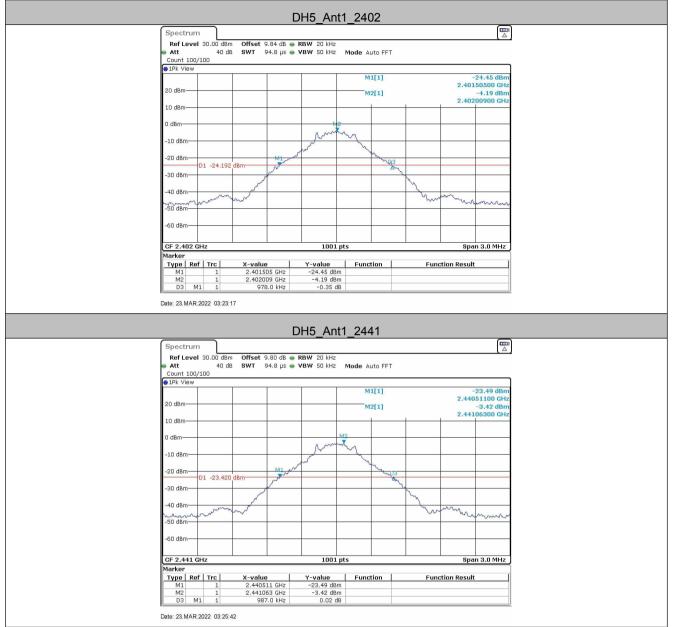
GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-1.33	21.00	Pass	
Middle	-0.5	21.00	Pass	
Highest	0.34	21.00	Pass	
	π/4DQPSK m	ode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-0.8	21.00	Pass	
Middle	0.09	21.00	Pass	
Highest	0.98	21.00	Pass	
	8DPSK mod	le		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-0.45	21.00	Pass	
Middle	0.36	21.00	Pass	
Highest	1.27	21.00	Pass	

Test plot as follows:

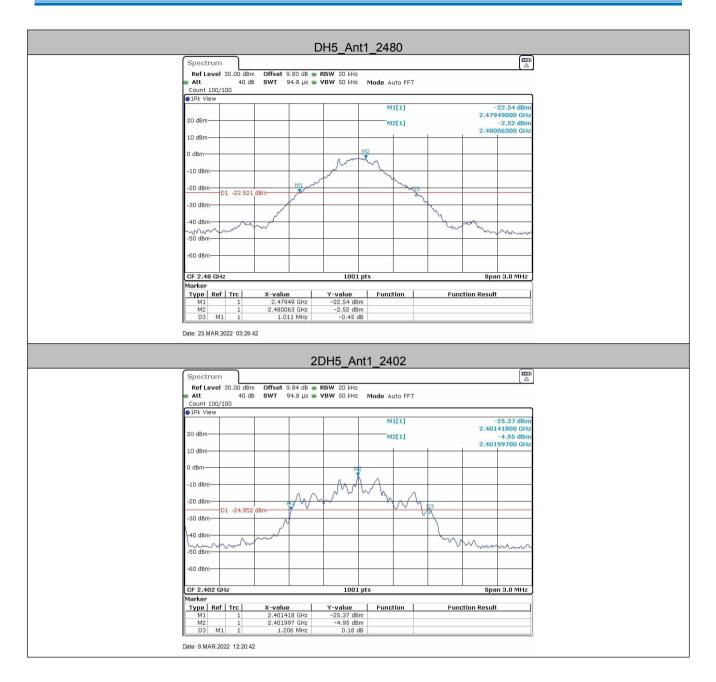
		DH5_An				
Spectrum						
Ref Level 30.00 dB	m Offset 9.84 dB				(4)	2
👄 Att 40 d	dB SWT 1.3 μs					
Count 100/100 1Pk View						1
			M1[1]		-1.33 dBm	
			1	2.	40171230 GHz	
20 dBm-						
10.15						
10 dBm						
0.40-0		M1				
0 dBm-						
-10 dBm						
-10 0011						
-20 dBm						
-30 dBm-				<u> </u>		
-40 dBm				↓ ↓ ↓ ↓ ↓		
-50 dBm	+			<u> </u>		
-60 dBm	+ +					
			1	1 1		
CF 2.402 GHz Date: 10.MAR:2022 01:59	3:43	DH5_An			Span 8.0 MHz)	
	3:43					
Date: 10.MAR.2022 01:55 Spectrum Ref Level 30.00 db	sm Offset 9.80 dB	DH5_An	t1_2441]
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db		DH5_An	t1_2441]
Date: 10.MAR.2022 01:55 Spectrum Ref Level 30.00 db	sm Offset 9.80 dB	DH5_An	t1_2441]
Date: 10.MAR.2022 01:56 Spectrum Ref Level 30:00 db ef Level 30:00 db 40 d Count 100/100 40 d	sm Offset 9.80 dB	DH5_An	t1_2441		-0.50 dBm]
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db Att 40 d Count 100/100 1Pk View	sm Offset 9.80 dB	DH5_An	t1_2441 Mode Auto FFT]
Date: 10.MAR.2022 01:56 Spectrum Ref Level 30:00 db ef Level 30:00 db 40 d Count 100/100 40 d	sm Offset 9.80 dB	DH5_An	t1_2441 Mode Auto FFT		-0.50 dBm]
Date: 10.MAR.2022 01:50 Ref Level 30.00 db Att 40 (Count 100/100 1Pk View 20 dBm	sm Offset 9.80 dB	DH5_An	t1_2441 Mode Auto FFT		-0.50 dBm]]
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db Att 40 d Count 100/100 1Pk View	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm]]
Date: 10.MAR.2022 01:50 Ref Level 30.00 db Att 40 (Count 100/100 1Pk View 20 dBm	sm Offset 9.80 dB	DH5_An	t1_2441 Mode Auto FFT		-0.50 dBm]
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db Att 40 d Count 100/100 10 dBm 10 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm]
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db Att 40 d Count 100/100 10 dBm 10 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db Att 40 0 Count 100/100 1Pk View 20 dBm 10 dBm -10 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:58	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:58	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 db Att 40 0 Count 100/100 1Pk View 20 dBm 10 dBm -10 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 dB Att 40 (Count 100/100 10k 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:58	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:52 Ref Level 30.00 dB At 40 d Count 100/100 IPk View 20 dBm 10 dBm 10 dBm -0 dBm -30 dBm -30 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 dB Att 40 (Count 100/100 10k 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 dB Att 40 0 Count 100/100 IPk View 20 dBm 10 dBm -0 dBm -30 dB	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:52 Ref Level 30.00 dB At 40 d Count 100/100 IPk View 20 dBm 10 dBm 10 dBm -0 dBm -30 dBm -30 dBm	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441 Mode Auto FFT		-0.50 dBm	
Date: 10.MAR.2022 01:50 Spectrum Ref Level 30.00 dB Att 40 0 Count 100/100 IPk View 20 dBm 10 dBm -0 dBm -30 dB	sm Offset 9.80 dB	DH5_An RBW 3 MH2 VBW 10 MH2	t1_2441	2.	-0.50 dBm	

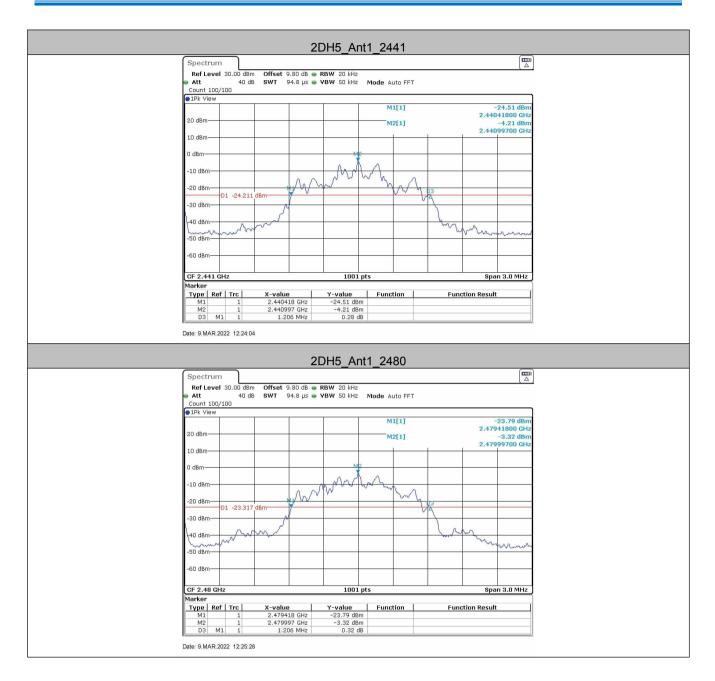
	3DH5_Ant1_2480	
Spectrum		
Ref Level 3 Att Count 100/10	10.00 dBm Offset 9.80 dB 🖷 RBW 3 MHz 40 dB SWT 1.3 µs 🖷 VBW 10 MHz Mode Auto FFT	
IPk View		
	M1[1] 1.27 dBm 2.48027170 GHz	
20 dBm		
10 dBm	M1	
0 dBm	MI	
-10 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-60 dBm		
CF 2.48 GHz	1001 pts Span 8.0 MHz	
Date: 10.MAR.202	22 02:03:30	

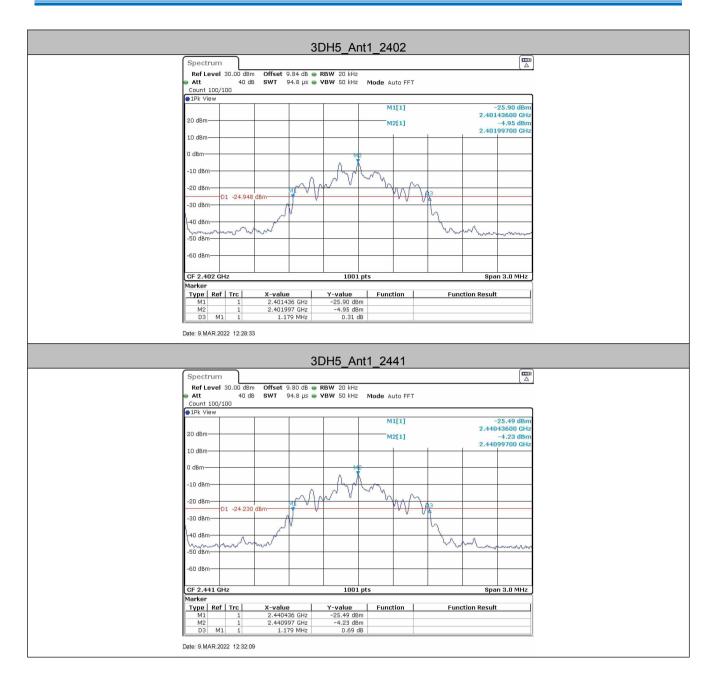
5.4 20dB Occupy Bandwidth

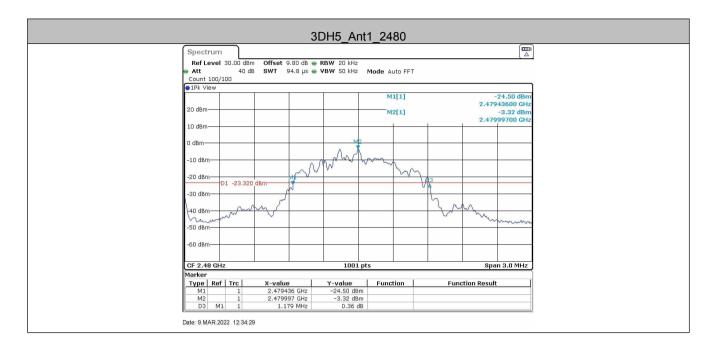

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset=Cable loss+ attenuation factor.	
Limit:	NA	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.	
Test Results:	Pass	

Measurement Data


Test shapped	20dB Occupy Bandwidth (MHz)			
Test channel	GFSK	π/4DQPSK	8DPSK	
Lowest	0.978	1.206	1.179	
Middle	0.987	1.206	1.179	
Highest	1.011	1.206	1.179	


Test plot as follows:



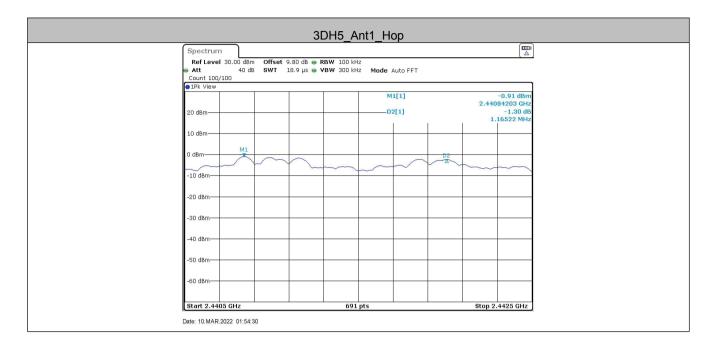


5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.	
Limit:	2/3 of the 20dB bandwidth	
	Remark: the transmission power is less than 0.125W.	
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.	
Test Results:	Pass	

Measurement Data

TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1	≥0.674	PASS
2DH5	Ant1	Нор	1.003	≥0.804	PASS
3DH5	Ant1	Нор	1.165	≥0.786	PASS

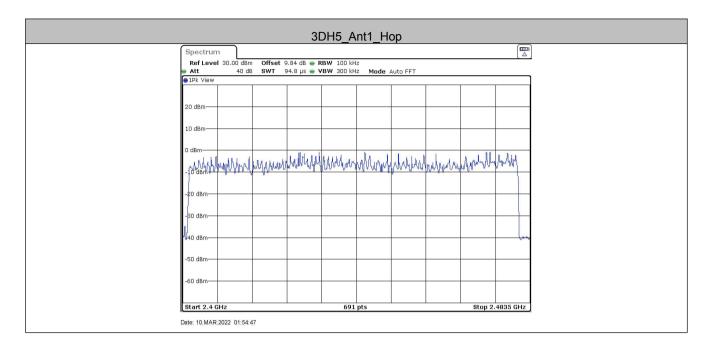

Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
GFSK	1.011	≥0.674
π/4DQPSK	1.206	≥0.804
8DPSK	1.179	≥0.786

Test plot as follows:

5.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.
Limit:	At least 15 channels
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data


Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

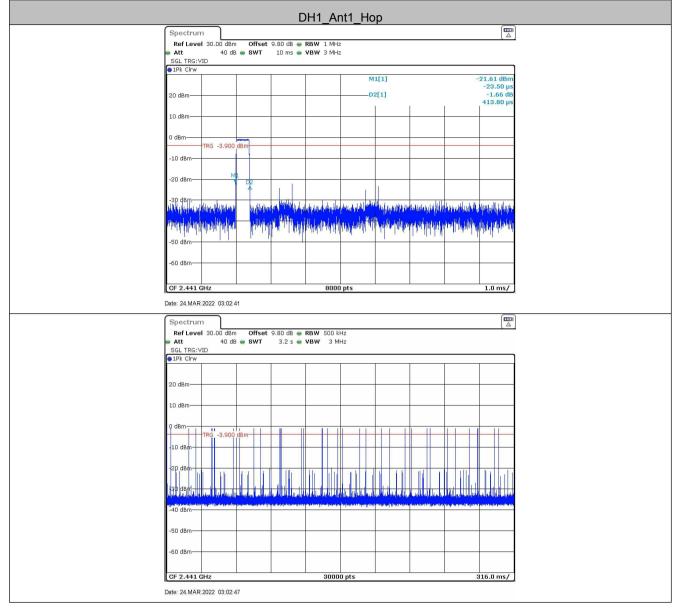
Test plot as follows:

		D	H5_Ar	nt1_Hop)				
Spectrum									
	0 dBm Offset 9 40 dB SWT 9	9.84 dB 👄 RI 94.8 µs 👄 V	BW 100 kH: BW 300 kH:	z Z Mode Au	uto FFT				
1Pk View	1	1 1							
20 dBm									
20 0011									
10 dBm				-					
0 dBm			аріндния	ab to the second			LALINA	NAMA	
<u>ስክቤስለከመስጸዘ</u> በ	MANYANY.	i rnidhan	NUN IN	AUATA,	inn) (an	NAMAAAA	MANNA	ANN/A	
-10 dBm -() (MANALI	TRA AN	ARRA.	YAN AM	ามักป	(a)(a)(f)	D fwi W		
-20 dBm	INNAL TOOR	sellseef	11.11.41	TARA ROLL	8000 0 8×	11 K Kalad	ann kan se		
-80 dBm									
1									
^{Ju} 40 dBm								Vin	
-50 dBm									
50 dB-1									
-60 dBm									
Start 2.4 GHz			691	pts			Stop 2.	4835 GHz	
Date: 9.MAR.2022 1.	2:41:36								
Date: 9.MAR.2022 1	2:41:36								
Date: 9.MAR.2022 1	2:41:36	20	0H5_A	nt1_Ho	р				
Spectrum)				р				
Spectrum Ref Level 30.0 • Att	0 dBm Offset 9	20 9.84 dB • RI 94.8 µs • V	BW 100 kH:	2]
Spectrum Ref Level 30.0	0 dBm Offset 9	9.84 dB 👄 RI	BW 100 kH:	2					
Spectrum RefLevel 30.0 Att ● 1Pk View	0 dBm Offset 9	9.84 dB 👄 RI	BW 100 kH:	2					
Spectrum Ref Level 30.0 • Att	0 dBm Offset 9	9.84 dB 👄 RI	BW 100 kH:	2					
Spectrum RefLevel 30.0 Att ● 1Pk View	0 dBm Offset 9	9.84 dB 👄 RI	BW 100 kH:	2				(m]
Spectrum Ref Level 30.0 Att 1Pk View 20 dBm 10 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT]
Spectrum RefLevel 30.0 Att 10 dBm 0 dBm 0 dBm 0 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Muulu]
Spectrum Ref Level 30.0 Att 1Pk View 20 dBm 10 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Munuly			
Spectrum RefLevel 30.0 Att 10 dBm 0 dBm 0 dBm 0 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Muuly			
Spectrum Ref Level 30.0 Att IPk View 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Munuly			
Spectrum Ref Level 30.0 Att 1Pk View 20 dBm 10 dBm 0 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Muyuly			
Spectrum Ref Level 30.0 Att IPk View 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Munuly	10444		
Spectrum Ref Level 30.0 Att 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Munuly			
Spectrum Ref Level 30.0 Att • 1Pk View 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Muuly			
Spectrum Ref Level 30.0 Att 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 2 Mode Au	uto FFT	Muuly			
Spectrum Ref Level 30.0 Att • 1Pk View 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0 dBm Offset 9	9.84 dB <table-cell> R 94.8 µs 🖷 V</table-cell>	BW 100 kHz BW 300 kHz	2 Mode Au	uto FFT	Muuly			

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Crowned References Plane
	Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

Measurement Data


TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.41	320	0.132	≤0.4	PASS
DH3	Ant1	Нор	1.58	190	0.299	≤0.4	PASS
DH5	Ant1	Нор	2.61	100	0.261	≤0.4	PASS
2DH1	Ant1	Нор	0.38	320	0.122	≤0.4	PASS
2DH3	Ant1	Нор	1.63	160	0.26	≤0.4	PASS
2DH5	Ant1	Нор	2.87	80	0.229	≤0.4	PASS
3DH1	Ant1	Нор	0.38	330	0.127	≤0.4	PASS
3DH3	Ant1	Нор	1.63	200	0.325	≤0.4	PASS
3DH5	Ant1	Нор	2.60	130	0.339	<u>≤</u> 0.4	PASS

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test plot as follows:

					-		- 14 - 11-				
(en/	ectrur				Ľ	א_Al	nt1_Hc	μ			
Re	ef Leve	I 30.00 d				RBW 1 MH					
■ Att SGL	t . TRG:\		dB 😑 SW	T 10	ms 😑	VBW 3 MH	z				
	k Clrw										
								1[1]			24.86 dBm -23.50 μs
20 d	Bm						D	2[1]		1	3.40 dB .57520 ms
10 d	IBm			_							
0 dB	.m										
	do -	TRG -3.9	00 dBm								
-10 c	явт—										
-20 0	dBm		M	-	C2 A						
-30 (alls, child, and			an l	A STREET, ALL FRANK LO	ter and the	atten lidet	to date to the second		No. He Laborer .
and the second se	lane allan P	an la statistica de la seconda d Seconda de la seconda de	Ψ ¹		The first	antar a tana			dere ans division o	r - i i ili	an a
101 M	(Thurle	A MANUM	- 1		lley []	(() - Bartow In			a of the second	a the solution as	(phile in the
-50 0	dBm—										0.00
-60 0	dam										
-60 0	aont										
CF 2	2.441	GHz				800) pts				1.0 ms/
		.2022 03:0	3:13								
		_									
	ectrur ef Leve	n 1 30.00 d	Bm Off	set 9.80	dB 👄	RBW 500 k	Hz				
e Atl	t	40	dB 👄 SW			VBW 3 №					
	L TRG:\ k Clrw	/10									
											1
20 d	'Bm										
20 d 10 d											
	IBm										
10 d 0 dB	iBm	-TRG -3.9	00 dBm								
10 d	iBm	-TRG -3.9	00 dBm								
10 d 0 dB -10 d	IBm Im	-TRG -3.9	00 dBm								
10 d 0 de -10 d -20	iBm	-TRG -3.9	0 dBm								
10 d 0 de -10 d -20	IBm Im	-TRG -3.91									
10 d 0 dB -10 d -20 d	iBm	TRG -3.9				l transfil de la test					
10 d 0 de -10 d -20, -30 d	dBm dBm dBm dBm dBm dBm	-TRG -3.9									
10 d 0 dB -10 d -20 d	dBm dBm dBm dBm dBm dBm	TRG -3.9				lever (1) of a table					
10 d 0 dB -10 d -20 d -30 d -40 d -50 d	dBm dBm dBm dBm dBm dBm dBm	-TRG -3.91									
10 d 0 dB -10 d -20 d -30 d -40 d -50 d	dBm dBm dBm dBm dBm dBm	TRG -3.91									
10 d 0 dB -10 d -20 d -30 d -40 d -50 d	dBm dBm dBm dBm dBm dBm dBm						Depending to University				16.0 ms/
10 d 0 dB -10 d -20 d -30 d -30 d -50 d -50 d CF Z	iBm im dBm dBm dBm dBm dBm dBm dBm dB						Depending to University				