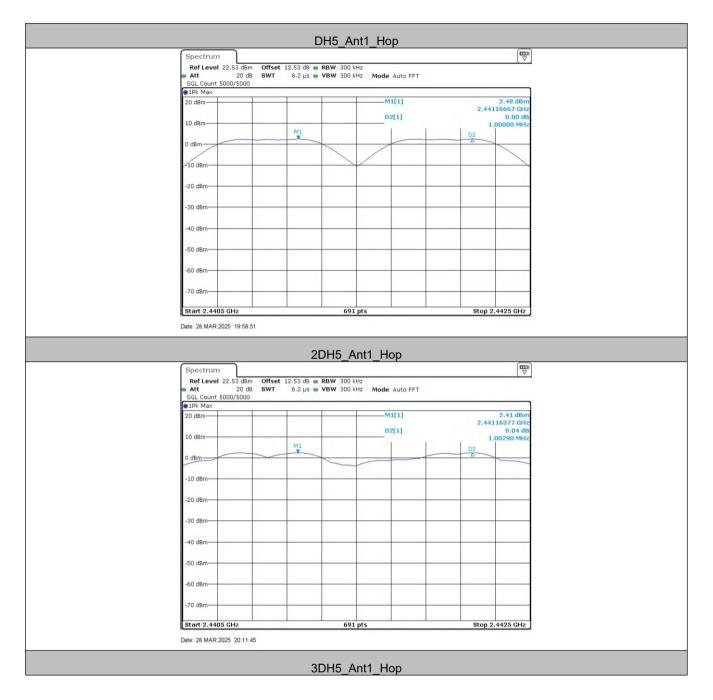


4.5 Carrier Frequencies Separation


Measurement Data

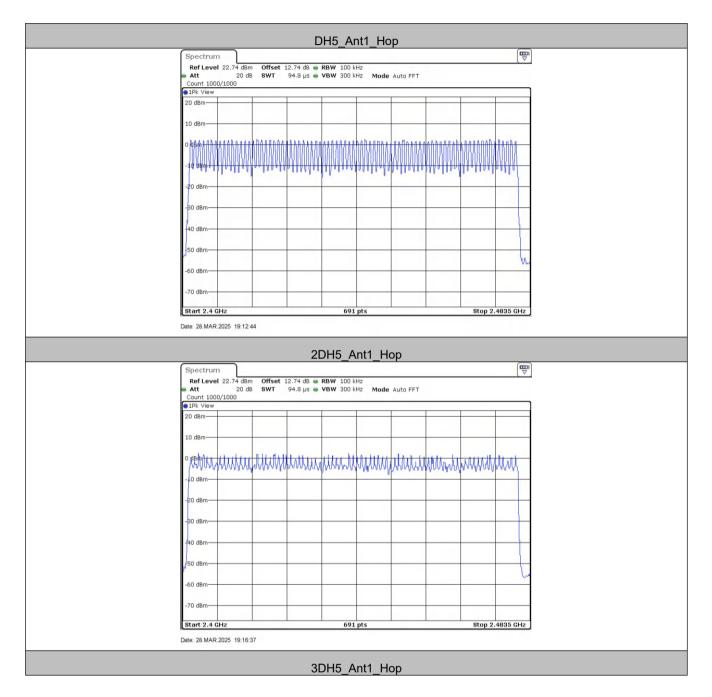
TestMode	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Нор	1	≥0.733	PASS
2DH5	Нор	1.003	≥0.933	PASS
3DH5	Нор	0.936	≥0.913	PASS

Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
GFSK	1.10	≥0.733
π/4DQPSK	1.40	≥0.933
8DPSK	1.37	≥0.913

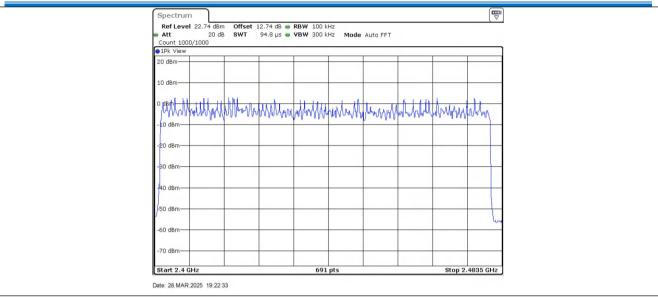
Test plot as follows:

	20 dB SWT	12.53 dB 🖷 RBW 6.2 μs 🖷 VBW	300 kHz 300 kHz Mode	Auto FFT	
1Pk Max	0000				
20 dBm				11[1] 2[1]	1.26 dBm 2.44097826 GHz -1.82 dB 936.23 kHz
0 dBm	M1			02	
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm	_				
-70 dBm					
Start 2.4405 GH	z		691 pts		Stop 2.4425 GHz

4.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.
Limit:	At least 15 channels
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data


Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Test plot as follows:

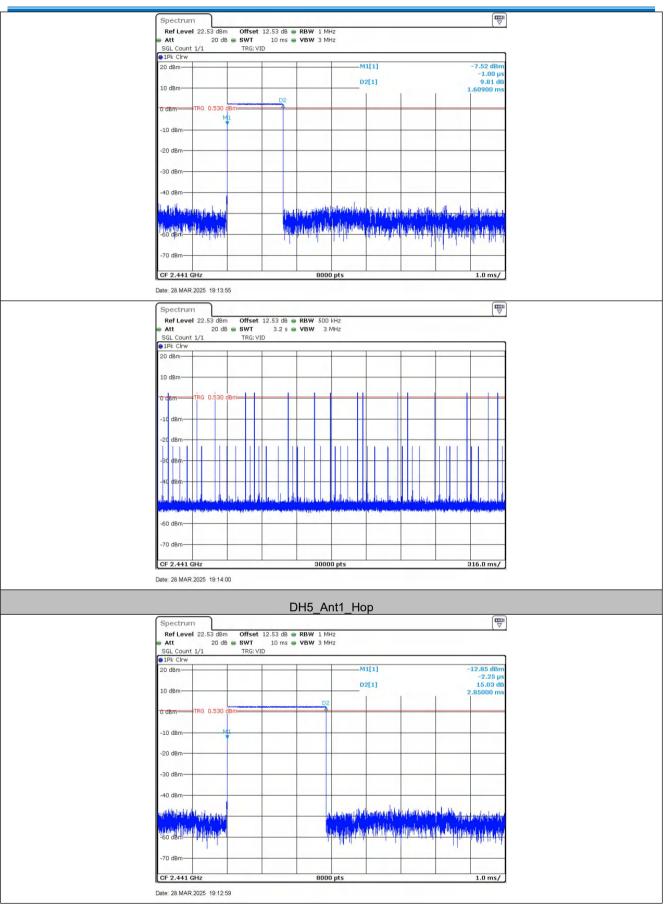
4.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
	Remark: Offset=Cable loss+ attenuation factor.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

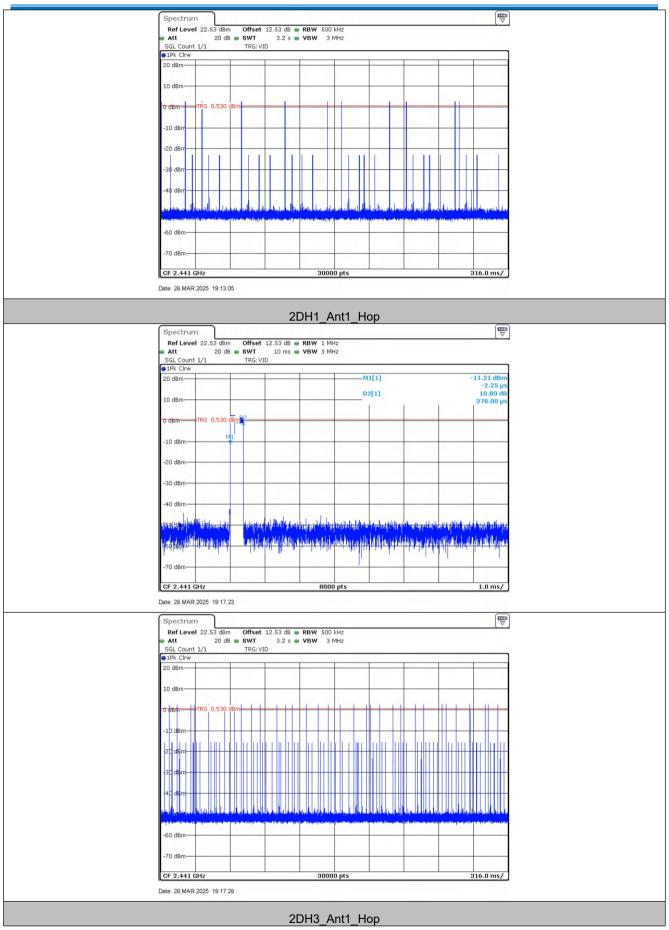
Measurement Data

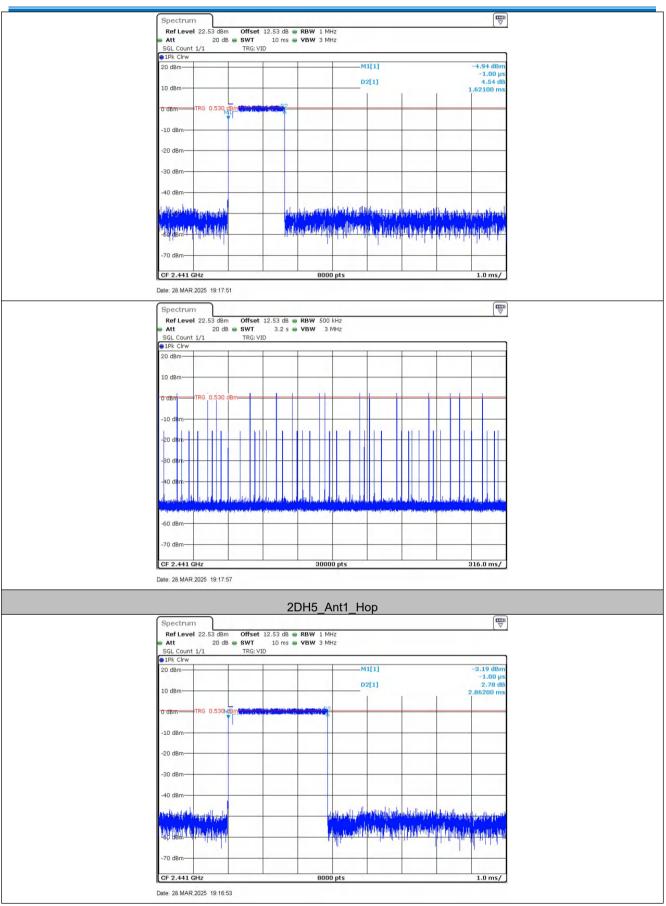
TestMode	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.369	330	0.122	≤0.4	PASS
DH3	Нор	1.609	170	0.274	≤0.4	PASS
DH5	Нор	2.850	110	0.314	≤0.4	PASS
2DH1	Нор	0.378	330	0.125	≤0.4	PASS
2DH3	Нор	1.621	160	0.259	≤0.4	PASS
2DH5	Нор	2.862	120	0.343	≤0.4	PASS
3DH1	Нор	0.376	330	0.124	≤0.4	PASS
3DH3	Нор	1.619	170	0.275	≤0.4	PASS
3DH5	Нор	2.863	110	0.315	≤0.4	PASS

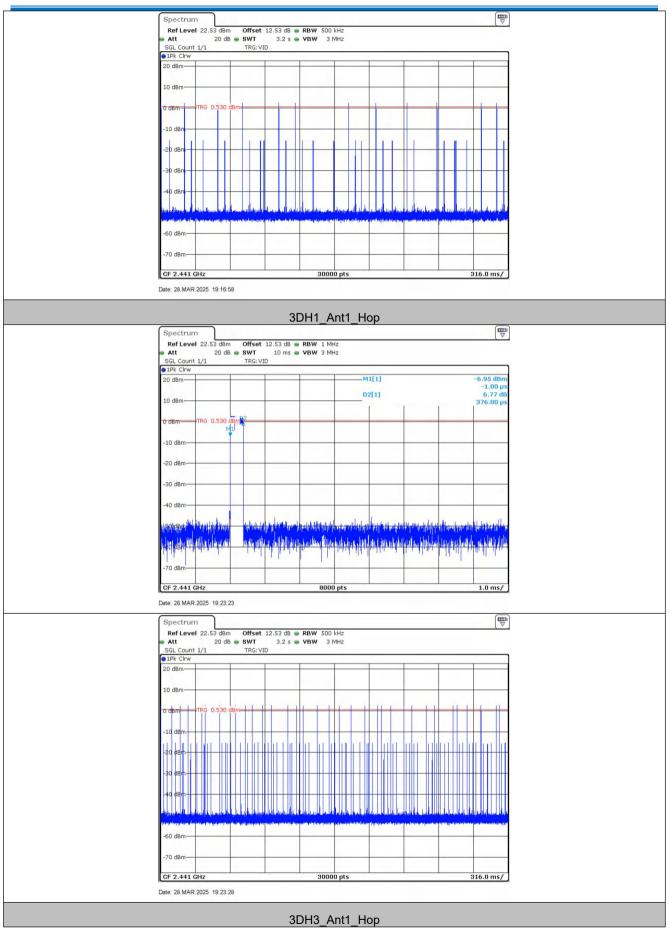
Remark:

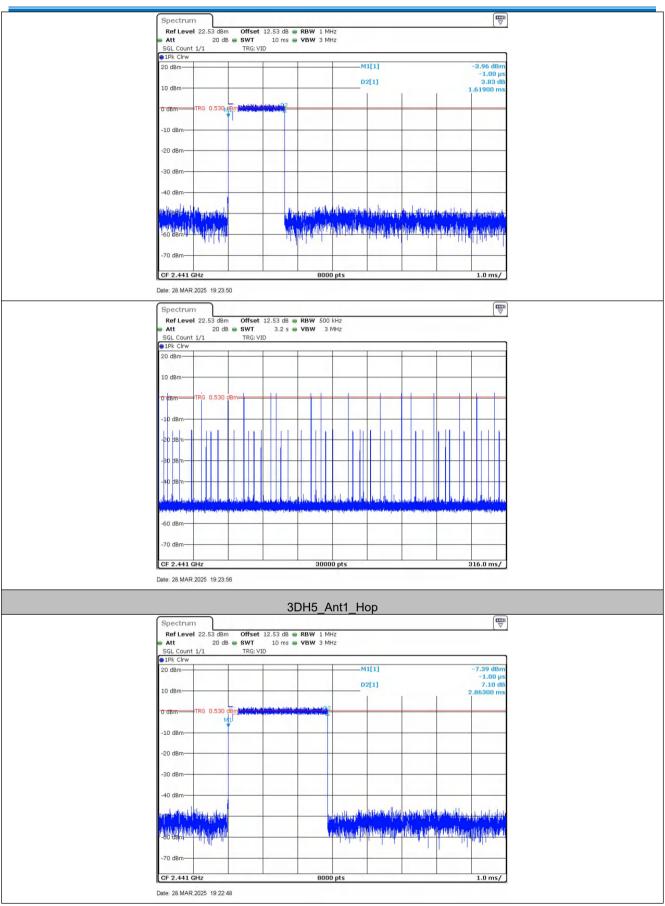

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

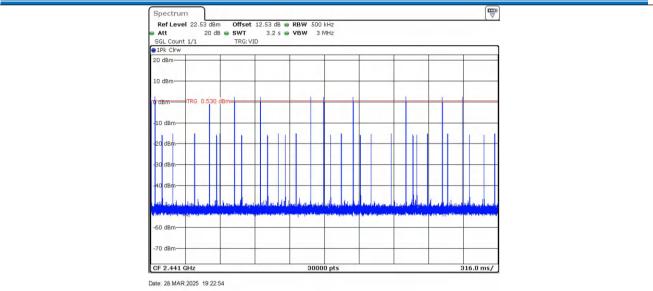
Test plot as follows:





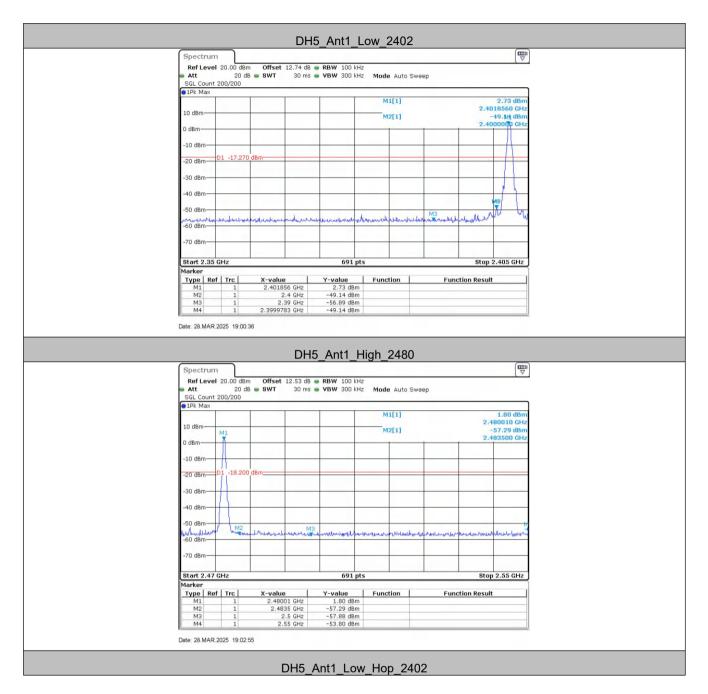






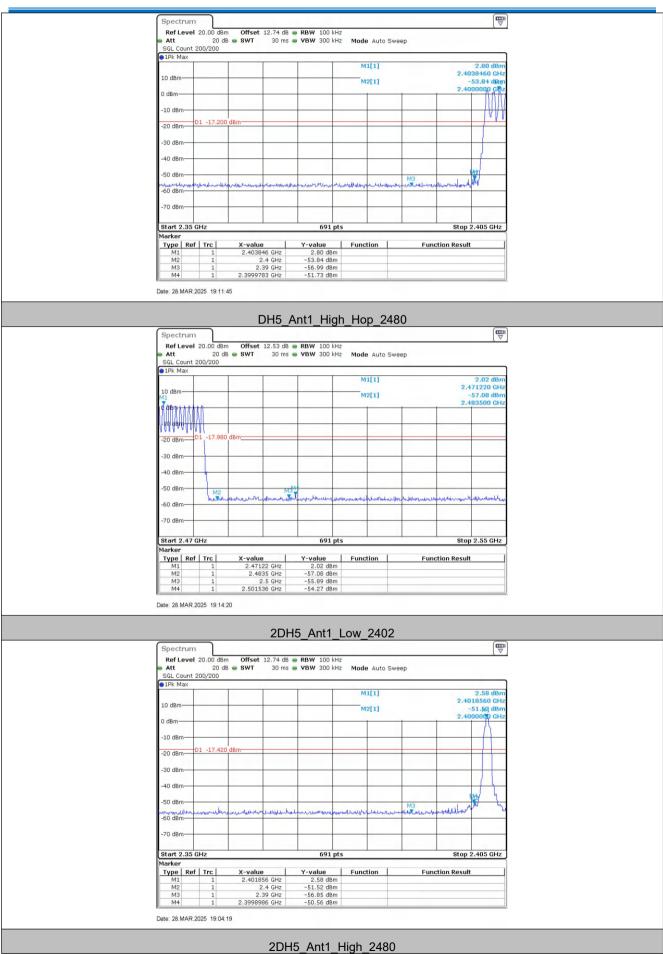
4.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

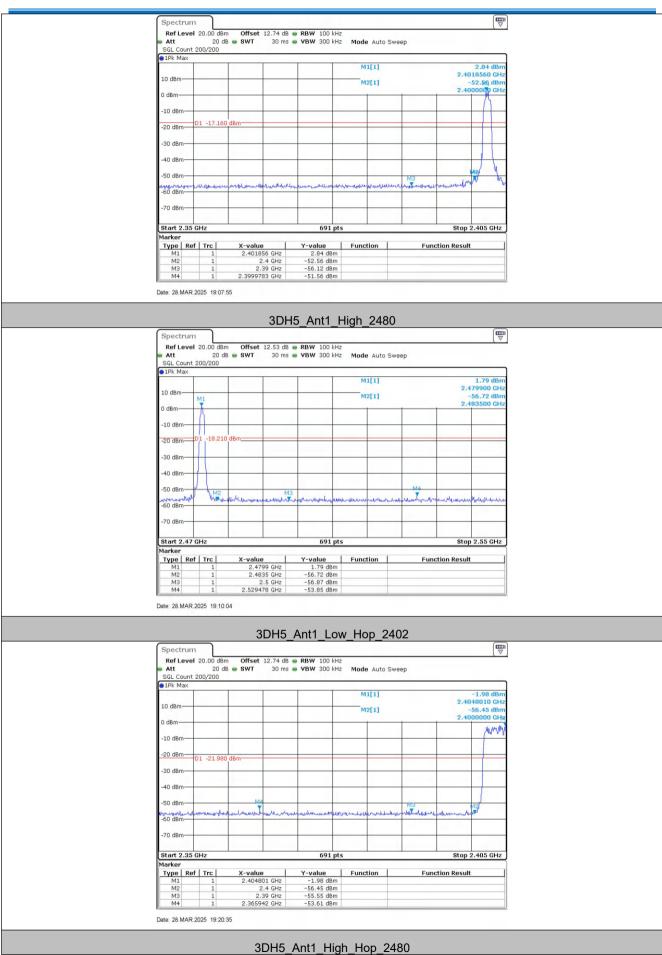


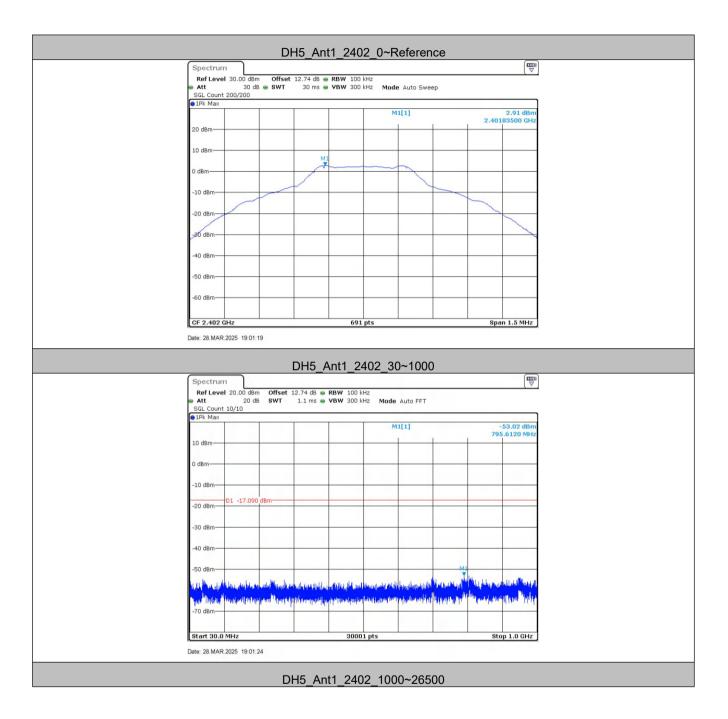
Measurement Data

TestMode	ChName	Freq(MHz)	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	Low	2402	2.73	-49.14	≤-17.27	PASS
	High	2480	1.80	-53.8	≤-18.2	PASS
DH5	Low	Hop_2402	2.80	-51.73	≤-17.2	PASS
	High	Hop_2480	2.02	-54.27	≤-17.98	PASS
	Low	2402	2.58	-50.56	≤-17.42	PASS
	High	2480	1.78	-54.01	≤-18.22	PASS
2DH5	Low	Hop_2402	1.63	-54.29	≤-18.37	PASS
	High	Hop_2480	1.86	-54.82	≤-18.14	PASS
	Low	2402	2.84	-51.56	≤-17.16	PASS
	High	2480	1.79	-53.85	≤-18.21	PASS
3DH5	Low	Hop_2402	-1.98	-53.61	≤-21.98	PASS
	High	Hop_2480	-0.32	-54.18	≤-20.32	PASS

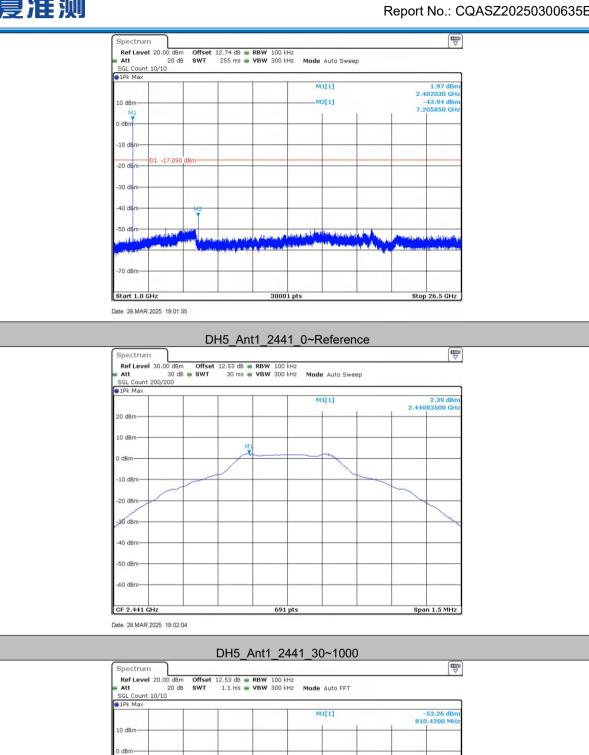


Test plot as follows:




Ref L	evel	20.00 dBr 20 d	n Offset B = SWT		 RBW 100 VBW 300 		Auto Swe	en		
SGL Co	ount 2	00/200								
O1Pk M	ах		· · · · · · · · · · · · · · · · · · ·							
10 dBm M1	_						1[1] 2[1]		2.4	-0.32 dBn 73880 GH 57.10 dBn 83500 GH
0 dBm-										
		1 -20.320) dBm							
-40 dBn	n									
-50 dBn -60 dBn		M2 langton	unbarbony	ME	- marineren	herowsenders	alter all all a	apploance	drokethown	hornaportus
-70 dBn	n	-								
Start 2	.47 G	Hz			691	pts			Stop	2.55 GHz
Marker										
Type M1		Trc 1		B8 GHz	-0.32 dB		tion	Fund	ction Result	
M2 M3	_	1	2	35 GHz .5 GHz	-57.10 de -56.94 de	m				
M4		1	2.5103	48 GHz	-54.18 dB	m				

4.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Pass

Report No.: CQASZ20250300635E-02

DH5_Ant1_2441_1000~26500

30001 pts

al t. bru and for the state of the

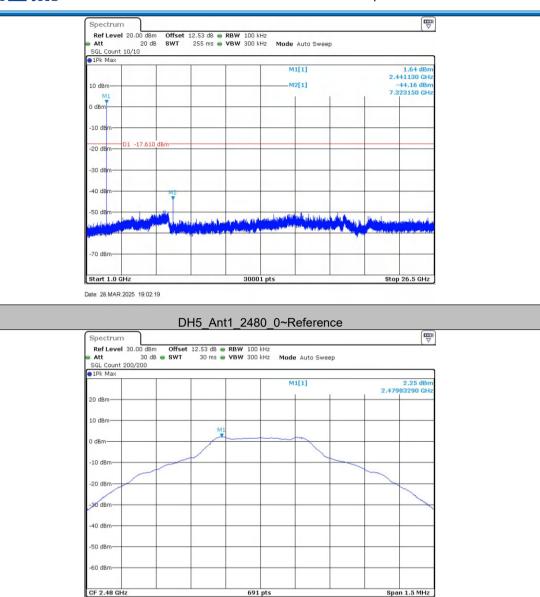
Stop 1.0 GHz

-10 dBm

-20 dBm--30 dBm -40 dBm -50 dBm

-70 dBm----

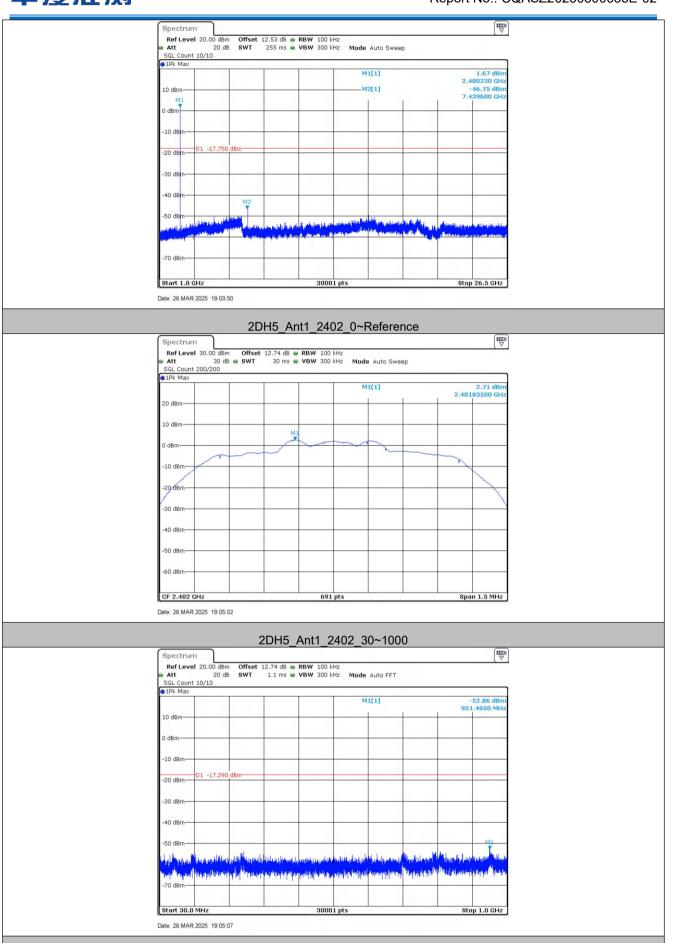
Start 30.0 MHz


Date: 28.MAR.2025 19:02:09

D1 -17.610

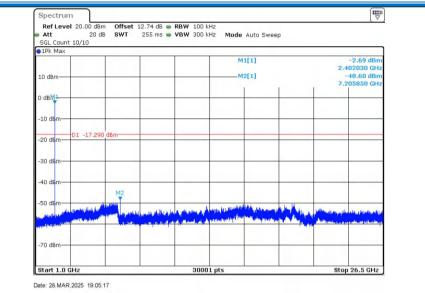
alayly and bland price

Report No.: CQASZ20250300635E-02


Date: 28.MAR.2025 19:03:35

DH5_Ant1_2480_30~1000

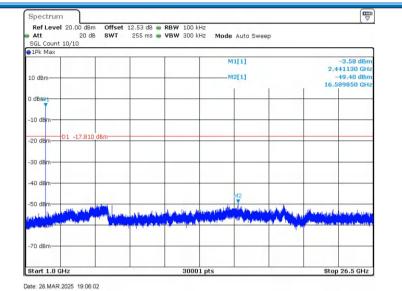
1Pk Max			1						
				M	1[1]		794	52.64 dBm .6090 MHz	
10 dBm									
0 dBm									
-10 dBm-									
	-17.750 dBm								
-20 dBm	-17.750 ubiii								
-30 dBm-									
-50 0.511									
-40 dBm		_							
50 dB-						MI			
-50 dBm						Ĭ	in In	b.	
and mapping	acter Burel Black Mille	pollethere lichere, hereis	undertailige did	ALL PARTIE	d Wedler Unal	Wellferen .		A STATE AND A STATE OF	
pold banger that	al management by	and physicity and	an a	ap-pain-lik	del filefitere	Philipping	and a strength	hered and a protect	
-70 dBm									
Start 30.0 MH	z		3000	1 pts			Sto	p 1.0 GHz	1


Report No.: CQASZ20250300635E-02

2DH5_Ant1_2402_1000~26500

Report No.: CQASZ20250300635E-02

2DH5_Ant1_2441_0~Reference


Ref Level 30.00 dBm	Offset 12.53 dB 👄 R			
Att 30 dB SGL Count 200/200	SWT 30 ms 👄 V	BW 300 kHz Mode	Auto Sweep	
1Pk Max				
		M1	[1]	2.19 di
20 dBm				2.44083720 G
10 dBm-				
	MI			
0 dBm		- mar		
			· home	
-10 dBm				N
-20 dBm				
-30 dBm				
-40 dBm-				
-50 dBm-				
-60 dBm				
CF 2.441 GHz		691 pts		Span 1.5 MH

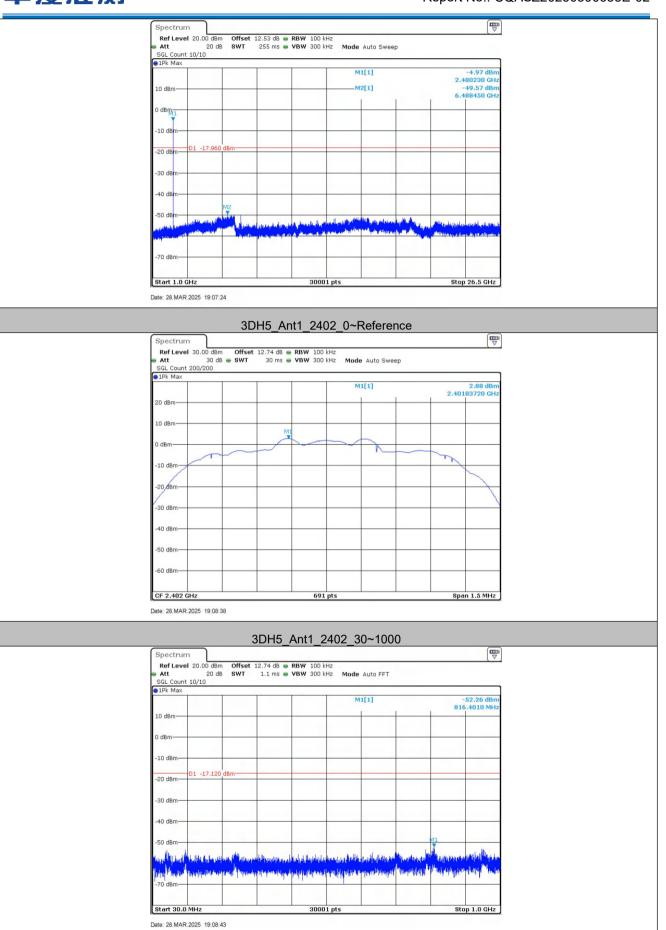
2DH5 Ant1 2441 30~1000

1Pk Max					
10 dBm		M1	[1]		2.15 dBm 2950 MHz
0 dBm					
-10 dBm					
-20 dBm 01 -17.810 dBm					
-30 dBm-					
-40 dBm				MI	
Laster and a sugar that is and	as animber and a differ	ellidate deservation and		day Multimonth	alm that
որող՝ Արելո՝ երերուլը ^{եր} երեր, եր՝ ուղ -70 dBm	angalan na brahang tra	ayanyabayahihini	energiya yang sering Anergiya	La Carriera Managere de la Carriera de la Carr	aliter . Aliter
Start 30.0 MHz		30001 pts		Stop	1.0 GHz

Report No.: CQASZ20250300635E-02

2DH5_Ant1_2480_0~Reference

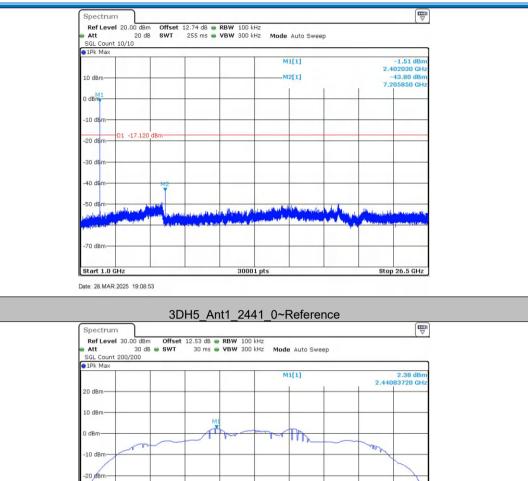
 Att 30 dB = SGL Count 200/200 	SWT 30 ms - VBW 300	0 kHz Mode Auto Sweep	
1Pk Max			
		M1[1]	2.04 dE 2.47983500 G
20 dBm			2.177500000 0
10 dBm-			
0 dBm	MI		
U UBIII		~ M	
-10 dBm			~
-20 dBm			
-30 dBm			
-30 UBIN			
-40 dBm-			
-50 dBm			
-60 dBm			
-00 0011			
CF 2.48 GHz	69	1 pts	Span 1.5 MH


2DH5 Ant1 2480 30~1000

1Pk Max			
		M1[1]	-52.58 dBm 949.4810 MHz
10 dBm			
0 dBm			
-10 dBm-			
-20 dBm D1 -17.960 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
logal terrain distribution belowed that	and the provide state of the second		monthy depictors and the state of the state of the late of the state o
ษณฑ์ ไมน์ม -70 dBm	akynespilly feftiat gwl tynespilit	International and a state	gente par de la participa de la
Start 30.0 MHz	300	101 pts	Stop 1.0 GHz

2DH5_Ant1_2480_1000~26500

Report No.: CQASZ20250300635E-02



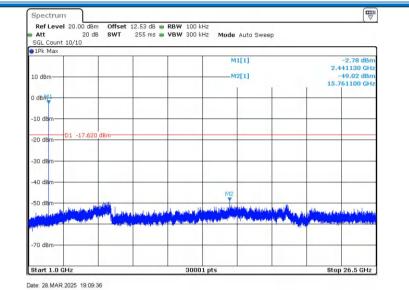
3DH5_Ant1_2402_1000~26500

Span 1.5 MHz

Report No.: CQASZ20250300635E-02

3DH5_Ant1_2441_30~1000

691 pts

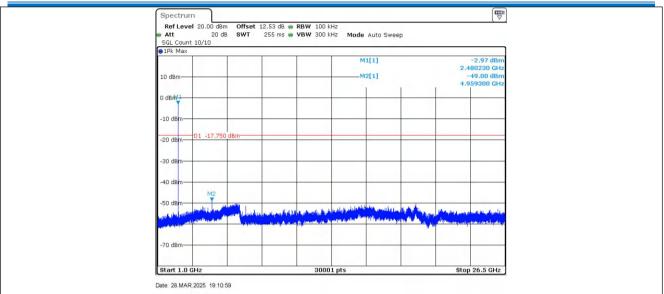

-30 dBm -40 dBm -50 dBm -60 dBm

CF 2.441 GHz Date: 28.MAR.2025 19:09:21

●1Pk Max						_	
			м	1[1]			53.03 dBm .0370 MHz
10 dBm						-	
0 dBm							
-10 dBm-						-	
-20 dBm 01 -17.620 dBm							
20 10-							
-30 dBm-							
-40 dBm							
-50 dBm					M3		
e J. In	the states and the states of		alexand to a	العرد ورجواراه		Manage Ladda	and a little and
and the set of the set of the set of the	able dates like	rage proping the set	and material states	al, and a filled	tables belief	An Latitude	aligna di bilinga
-70 dBm	on the support	I dansan (b)	entle and day of	at a hand	and the second	solution of	C. C. M.
Start 30.0 MHz		3000	1 pts			Sto	p 1.0 GHz

Report No.: CQASZ20250300635E-02

3DH5_Ant1_2480_0~Reference


 Att 30 dB (SGL Count 200/200 	● SWT 30 ms ● V	BW 300 kHz Mode A	uto Sweep	
1Pk Max				
		M1[1	u –	2.25 dE 2.47983290 G
20 dBm				
10 dBm				
0 dBm	M1	man ar		
		~ ~ ! !	hand	
-10 dBm				N
-20 dBm				
-30 dBm				
-S0 dBin				
-40 dBm				
-50 dBm				
-60 dBm				
CF 2.48 GHz		691 pts		Span 1.5 MH

3DH5 Ant1 2480 30~1000

1Pk Max						
			M1[1]			2.82 dBm 9280 MHz
10 dBm						
0 dBm				_		
-10 dBm						
-20 dBm D1 -17.750 dBm						
-30 dBm						
-40 dBm						
-50 dBm				M1		
had the state of the second descention the	and a state of the second second	addine the dark	Containstanting	"Provident	Mahawiji waana	hand hade
-70 dBm	and the second second	Megneralastel a	ownyth product hy here where	plint literary	pettion of the	diner Apage
Start 30.0 MHz		30001 pts			Stop	1.0 GHz

Report No.: CQASZ20250300635E-02

Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

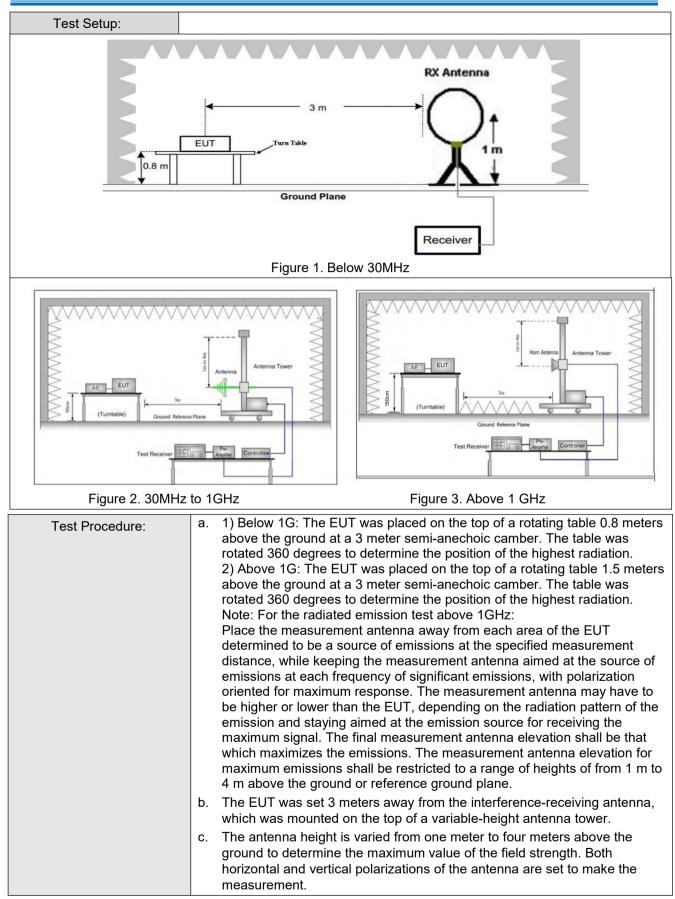
4.10Other requirements Frequency Hopping Spread Spectrum System

Test Requirement:	47 CEP Part 15C Section 15 247 (a)(4) (b) requirements
•	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
rate from a Pseudorandom o on the average by each trans	nnel frequencies that are selected at the system hopping rdered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.
channels during each transm receiver, must be designed to transmitter be presented with employing short transmission	pectrum systems are not required to employ all available hopping hission. However, the system, consisting of both the transmitter and the o comply with all of the regulations in this section should the n a continuous data (or information) stream. In addition, a system n bursts must comply with the definition of a frequency hopping system nissions over the minimum number of hopping channels specified in
the system to recognize othe independently chooses and a The coordination of frequence	nce within a frequency hopping spread spectrum system that permits er users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. by hopping systems in any other manner for the express purpose of ccupancy of individual hopping frequencies by multiple transmitters is
Compliance for section 15.	247(a)(1)
•	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: 2 ⁹ -1 = 511 bits
Linear Feedback SI	hift Register for Generation of the PRBS sequence
An example of Pseudorandor 20 62 46 77	m Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1
According to Bluetooth Core bandwidths that match the	on the average by each transmitter. Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.
Compliance for section 15.	247(g)
pseudorandom hopping frequencies	re Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the nsmitted under the frequency hopping system with the pseudorandom

Compliance for section 15.247(h)

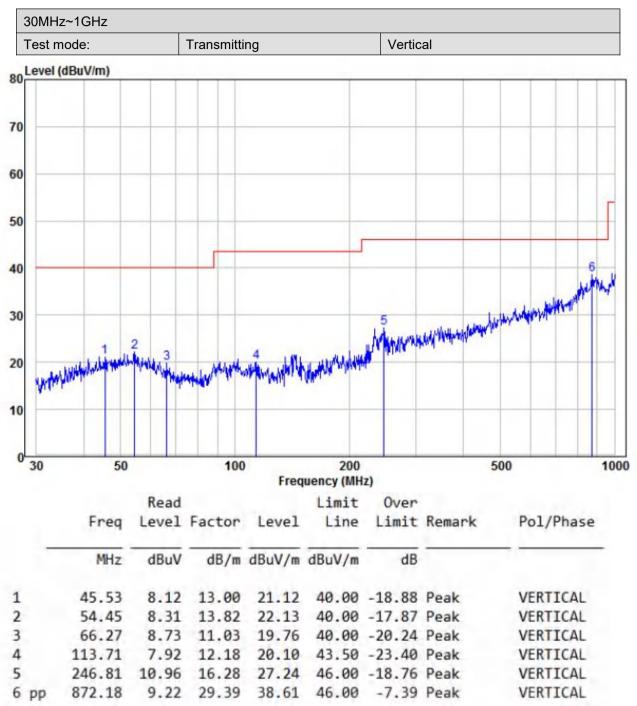
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



4.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency Detector			RBW	VBW	Remark	1		
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak	1		
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz	Peak	120 k⊢	lz 300kHz	Peak				
	Above 1GHz		Peak	1MHz	: 3MHz	Peak			
			Peak	1MHz	: 10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequer emissions is 20dB above the maximum permitted average emission applicable to the equipment under test. This peak limit applies to the peak emission level radiated by the device.								

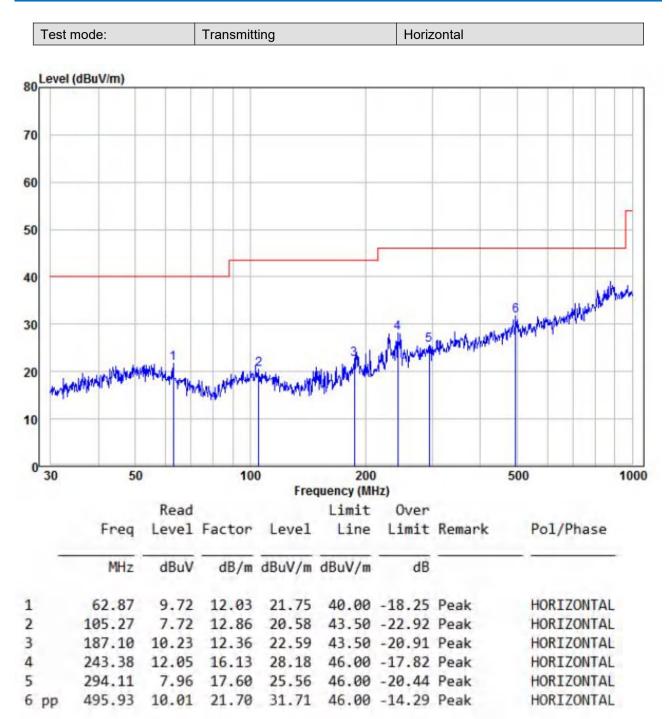


	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (241MHz),the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. For below 1GHz part, through pre-scan, the worst case is the highest channel. Only the worst case is recorded in the report.
Test Results:	Pass

4.11.1 Radiated Emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

4.11.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.99	-9.2	45.79	74	-28.21	Peak	н
2400	56.01	-9.39	46.62	74	-27.38	Peak	Н
4804	52.16	-4.33	47.83	74	-26.17	Peak	Н
7206	50.36	1.01	51.37	74	-22.63	Peak	Н
2390	55.72	-9.2	46.52	74	-27.48	Peak	V
2400	56.49	-9.39	47.10	74	-26.90	Peak	V
4804	53.98	-4.33	49.65	74	-24.35	Peak	V
7206	48.66	1.01	49.67	74	-24.33	Peak	V

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	50.87	-4.11	46.76	74	-27.24	peak	Н
7323	49.44	1.51	50.95	74	-23.05	peak	Н
4882	51.70	-4.11	47.59	74	-26.41	peak	V
7323	50.07	1.51	51.58	74	-22.42	peak	V

Worse case mode:		GFSK(DH	5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.35	-9.29	46.06	74	-27.94	Peak	н
4960	53.17	-4.04	49.13	74	-24.87	Peak	Н
7440	49.69	1.57	51.26	74	-22.74	Peak	Н
2483.5	55.26	-9.29	45.97	74	-28.03	Peak	v
4960	48.47	-4.04	44.43	74	-29.57	Peak	V
7440	50.96	1.57	52.53	74	-21.47	Peak	V

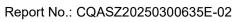
Worse case mode:		π /4DQPS	K (2DH5)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	56.11	-9.2	46.91	74	-27.09	Peak	н
2400	55.54	-9.39	46.15	74	-27.85	Peak	Н
4804	51.82	-4.33	47.49	74	-26.51	Peak	Н
7206	51.18	1.01	52.19	74	-21.81	Peak	Н
2390	55.79	-9.2	46.59	74	-27.41	Peak	V
2400	55.47	-9.39	46.08	74	-27.92	Peak	V
4804	52.57	-4.33	48.24	74	-25.76	Peak	V
7206	48.74	1.01	49.75	74	-24.25	Peak	V

Worse case mode:		π /4DQPS	K (2DH5)	Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	51.26	-4.11	47.15	74	-26.85	peak	Н
7323	50.22	1.51	51.73	74	-22.27	peak	Н
4882	52.81	-4.11	48.70	74	-25.30	peak	V
7323	49.22	1.51	50.73	74	-23.27	peak	V

Worse case mode:		π /4DQPS	K (2DH5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.74	-9.29	46.45	74	-27.55	Peak	н
4960	51.79	-4.04	47.75	74	-26.25	Peak	Н
7440	49.69	1.57	51.26	74	-22.74	Peak	Н
2483.5	55.83	-9.29	46.54	74	-27.46	Peak	v
4960	50.53	-4.04	46.49	74	-27.51	Peak	V
7440	50.22	1.57	51.79	74	-22.21	Peak	V

Worse case mode:		8DPSK (3D	DH5)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.86	-9.2	45.66	74	-28.34	Peak	Н
2400	54.29	-9.39	44.90	74	-29.10	Peak	Н
4804	53.61	-4.33	49.28	74	-24.72	Peak	Н
7206	49.46	1.01	50.47	74	-23.53	Peak	Н
2390	54.34	-9.2	45.14	74	-28.86	Peak	V
2400	56.62	-9.39	47.23	74	-26.77	Peak	V
4804	53.44	-4.33	49.11	74	-24.89	Peak	V
7206	51.17	1.01	52.18	74	-21.82	Peak	V

Worse case	Worse case mode:		8DPSK (3DH5)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	53.09	-4.11	48.98	74	-25.02	peak	Н
7323	50.55	1.51	52.06	74	-21.94	peak	Н
4882	52.63	-4.11	48.52	74	-25.48	peak	V
7323	50.03	1.51	51.54	74	-22.46	peak	V

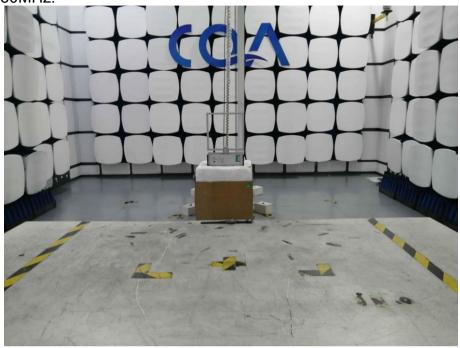

Worse case mode:		8DPSK (3D	DH5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	56.10	-9.29	46.81	74	-27.19	Peak	н
4960	53.06	-4.04	49.02	74	-24.98	Peak	Н
7440	50.98	1.57	52.55	74	-21.45	Peak	Н
2483.5	54.48	-9.29	45.19	74	-28.81	Peak	V
4960	50.93	-4.04	46.89	74	-27.11	Peak	V
7440	50.81	1.57	52.38	74	-21.62	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



5 Photographs - EUT Test Setup

5.1 Radiated Emission

9KHz~30MHz:

30MHz~1GHz:

5.2 Conducted Emission

6 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20250300635E-01.

*** END OF REPORT ***