

FCC RADIO TEST REPORT FCC ID: 2AAU7-ZMZWUS

Product: ZipaMicro

Trade Mark: Zipato

Model No.: zm.zwus

Serial Model: zm.zwis, zm.zwau

Report No.: SER171025869001E

Issue Date: 14 May. 2018

Prepared for

Tri plus grupa d.o.o.

Banjavciceva 11, 10000 Zagreb, Croatia

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

Version.1.2 Page 1 of 54

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	SU	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1 FA	CILITIES	5
	3.2 LA	ABORATORY ACCREDITATIONS AND LISTINGS	5
	3.3	MEASUREMENT UNCERTAINTY	5
4	GE	NERAL DESCRIPTION OF EUT	6
5		SCRIPTION OF TEST MODES	
6	SE	TUP OF EQUIPMENT UNDER TEST	10
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
	6.2	SUPPORT EQUIPMENT	11
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TE	ST REQUIREMENTS	14
	7.1	CONDUCTED EMISSIONS TEST	14
	7.2	RADIATED SPURIOUS EMISSION	
	7.3	6DB BANDWIDTH	28
	7.4	DUTY CYCLE	
	7.5	MAXIMUM OUTPUT POWER	
	7.6	POWER SPECTRAL DENSITY	
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.8	SPURIOUS RF CONDUCTED EMISSIONS	
	7.9	ANTENNA APPLICATION	54

1 TEST RESULT CERTIFICATION

Applicant's name:	Tri plus grupa d.o.o.	
Address:	Banjavciceva 11, 10000 Zagreb, Croatia	
Manufacturer's Name:	Tri plus grupa d.o.o.	
Address	Banjavciceva 11, 10000 Zagreb, Croatia	
Product description		
Product name:	ZipaMicro	
Model and/or type reference:	zm.zwus	
Serial Model:	zm.zwis, zm.zwau	

Measurement Procedure Used:

APPLICABLE STANDARDS				
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT			
FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Part 15, Subpart C				
KDB 174176 D01 Line Conducted FAQ v01r01	Complied			
ANSI C63.10-2013				
FCC KDB 558074 D01 DTS Meas Guidance v04				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	25 Oct. 2017 ~14 May. 2018
Testing Engineer	:	Buen lin
		(Allen Liu)
Technical Manager	:	Jason chen
_		(Jason Chen)
		Sam. Chen
Authorized Signatory	:	
		(Sam Chen)

Version.1.2 Page 3 of 54

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section	Verdict	Remark				
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Maximum Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (d)	Power Spectral Density	PASS				
15.247 (d) Band Edge Emission		PASS				
15.203 Antenna Requirement		PASS				

Remark:

- "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

Page 4 of 54 Version.1.2

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)

The Certificate Registration Number is L5516.

IC-Registration The Certificate Registration Number is 9270A-1.

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen 518126 P.R. China.

2.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

Version.1.2 Page 5 of 54

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	ZipaMicro				
Trade Mark	Zipato				
FCC ID	2AAU7-ZMZWUS				
Model No.	zm.zwus				
Serial Model	zm.zwis, zm.zwau				
Model Difference	All models are the same circuit and RF module, except the model name.				
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20);				
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;				
Number of Channels	11 channels for 802.11b/g/11n(HT20);				
Antenna Type	Metal Antenna				
Antenna Gain	2 dBi				
	☑DC supply: DC 3.7V/850mAh from battery or DC 5V from Adapter				
Power supply					
HW Version 1.0					
SW Version 1.0					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Version.1.2 Page 6 of 54

Revision History

Report No.	Version	Description	Issued Date
SER171025869001E	Rev.01	Initial issue of report	May 14, 2018

Version.1.2 Page 7 of 54

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0 were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

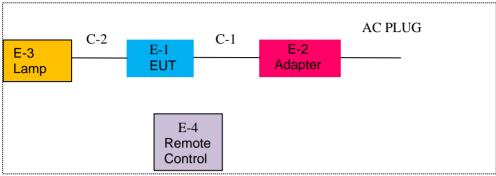
Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

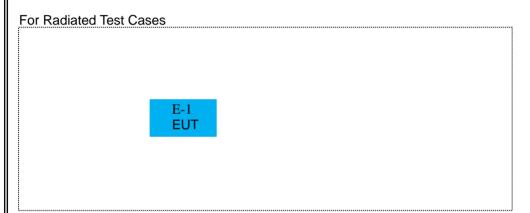
AC power line Conducted Emission was tested under maximum output power.

Version.1.2 Page 8 of 54

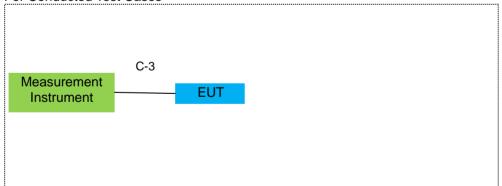
Test Mode:					
Test Items	Mode	Data Rate	Channel	Ant	
AC Power Line Conducted Emissions	Normal Link	-	-	-	
M : 0 1 10 1	11b/CCK	1 Mbps	1/6/11	1	
Maximum Conducted Output Power	11g/BPSK	6 Mbps	1/6/11	1	
Powei	11n HT20	MCS0	1/6/11	1	
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	1	
1 Ower opectial Density	11g/BPSK	6 Mbps	1/6/11	1	
	11n HT20	MCS0	1/6/11	1	
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	1	
	11g/BPSK	6 Mbps	1/6/11	1	
	11n HT20	MCS0	1/6/11	1	
Radiated Emissions Below 1GHz	Normal Link	-	-	-	
Radiated Emissions Above	11b/CCK	1 Mbps	1/6/11	1	
1GHz	11g/BPSK	6 Mbps	1/6/11	1	
	11n HT20	MCS0	1/6/11	1	
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	1	
	11g/BPSK	6 Mbps	1/6/11	1	
	11n HT20	MCS0	1/6/11	1	

Page 9 of 54 Version.1.2





6 SETUP OF EQUIPMENT UNDER TEST


6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For AC Conducted Emission Mode

Note:The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

EUT built-in battery-powered, use fully-charged battery to test.

Version.1.2 Page 10 of 54

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	ZipaMicro	Zipato	zm.zwus	N/A	EUT
E-2	Adapter	N/A	KA23-0502000DES	N/A	
E-3	Lamp	N/A	N/A	N/A	Peripherals
E-4	Remote Control	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.2m
C-2	Load Cable	NO	NO	1.0m
C-3	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.2 Page 11 of 54

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Radiatio	on& Conducted T	est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2017.06.06	2018.06.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2017.10.26	2018.10.25	1 year
3	EMI Test Receiver	Agilent	N9038A	MY53227146	2017.06.06	2018.06.05	1 year
4	Test Receiver	R&S	ESPI	101318	2017.06.06	2018.06.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2018.04.08	2019.04.07	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2017.06.06	2018.06.05	1 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.04.08	2019.04.07	1 year
8	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2017.07.06	2018.07.05	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
10	Amplifier	MITEQ	TTA1840-35- HG	177156	2017.06.06	2018.06.05	1 year
11	Loop Antenna	ARA	PLA-1030/B	1029	2017.06.06	2018.06.05	1 year
12	Power Meter	DARE	RPR3006W	15I00041SN O84	2017.08.07	2018.08.06	1 year
13	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
14	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
16	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
17	Filter	TRILTHIC	2400MHz	29	2018.03.29	2019.03.28	1 year
18	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.2 Page 12 of 54

AC Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2017.06.06	2018.06.05	1 year
2	LISN	R&S	ENV216	101313	2018.04.18	2019.04.19	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2017.06.06	2018.06.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2017.06.06	2018.06.05	1 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable which is scheduled for calibration every 3 years.

Version.1.2 Page 13 of 54

7 TEST REQUIREMENTS

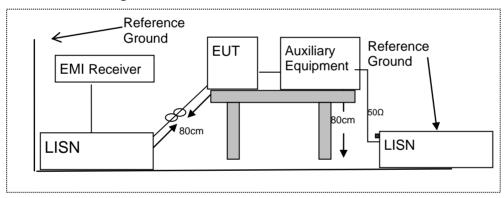
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguescy/MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

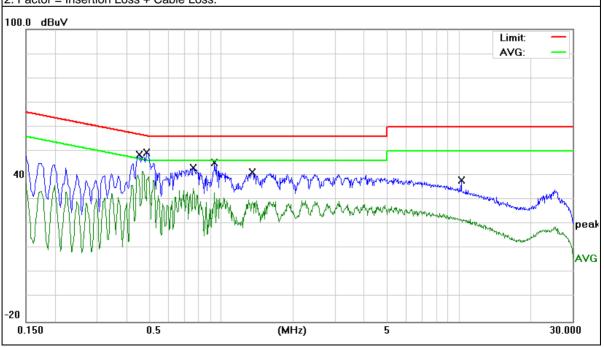
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Version.1.2 Page 14 of 54


7.1.6 Test Results

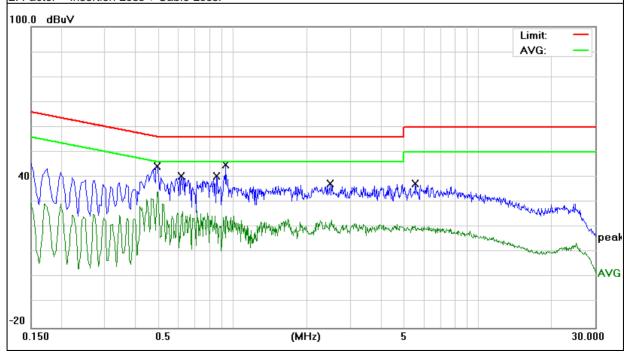
EUT:	ZipaMicro	Model Name:	zm.zwus
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage:	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Damadı
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4500	38.64	9.83	48.47	56.87	-8.40	QP
0.4500	16.53	9.83	26.36	46.87	-20.51	AVG
0.4860	39.76	9.83	49.59	56.24	-6.65	QP
0.4860	31.88	9.83	41.71	46.24	-4.53	AVG
0.7620	33.35	9.85	43.20	56.00	-12.80	QP
0.7620	18.47	9.85	28.32	46.00	-17.68	AVG
0.9380	35.36	9.91	45.27	56.00	-10.73	QP
0.9380	24.93	9.91	34.84	46.00	-11.16	AVG
1.3460	31.54	9.90	41.44	56.00	-14.56	QP
1.3460	25.68	9.90	35.58	46.00	-10.42	AVG
10.1899	28.10	9.99	38.09	60.00	-21.91	QP
10.1899	20.24	9.99	30.23	50.00	-19.77	AVG

Remark

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 15 of 54

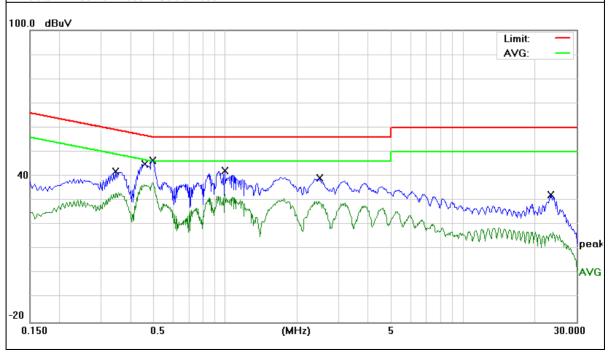


EUT:	ZipaMicro	Model Name:	zm.zwus
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4900	34.48	9.93	44.41	56.17	-11.76	QP
0.4900	24.34	9.93	34.27	46.17	-11.90	AVG
0.6140	30.47	9.93	40.40	56.00	-15.60	QP
0.6140	16.09	9.93	26.02	46.00	-19.98	AVG
0.8580	30.42	9.93	40.35	56.00	-15.65	QP
0.8580	17.18	9.93	27.11	46.00	-18.89	AVG
0.9340	34.96	9.93	44.89	56.00	-11.11	QP
0.9340	16.68	9.93	26.61	46.00	-19.39	AVG
2.4900	27.40	9.94	37.34	56.00	-18.66	QP
2.4900	13.42	9.94	23.36	46.00	-22.64	AVG
5.5460	27.53	9.99	37.52	60.00	-22.48	QP
5.5460	11.25	9.99	21.24	50.00	-28.76	AVG

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 16 of 54

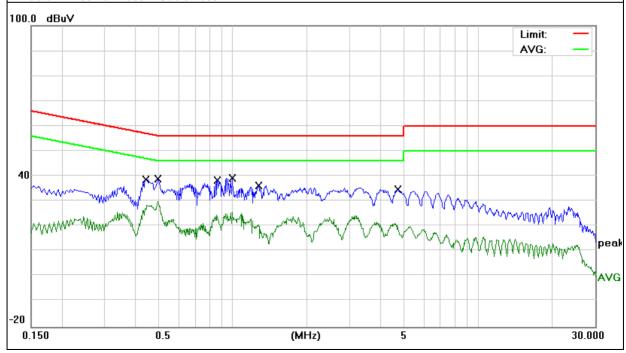


EUT:	ZipaMicro	Model Name:	zm.zwus
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
TAST VOITAGE .	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3460	32.15	9.82	41.97	59.06	-17.09	QP
0.3460	17.30	9.82	27.12	49.06	-21.94	AVG
0.4580	35.14	9.83	44.97	56.73	-11.76	QP
0.4580	16.86	9.83	26.69	46.73	-20.04	AVG
0.4940	36.75	9.83	46.58	56.10	-9.52	QP
0.4940	27.48	9.83	37.31	46.10	-8.79	AVG
0.9900	32.25	9.93	42.18	56.00	-13.82	QP
0.9900	22.74	9.93	32.67	46.00	-13.33	AVG
2.4900	29.26	9.94	39.20	56.00	-16.80	QP
2.4900	15.64	9.94	25.58	46.00	-20.42	AVG
23.2740	22.16	10.29	32.45	60.00	-27.55	QP
23.2740	6.83	10.29	17.12	50.00	-32.88	AVG

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 17 of 54



EUT:	ZipaMicro	Model Name:	zm.zwus
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4420	28.85	9.93	38.78	57.02	-18.24	QP
0.4420	16.66	9.93	26.59	47.02	-20.43	AVG
0.4940	29.09	9.93	39.02	56.10	-17.08	QP
0.4940	20.09	9.93	30.02	46.10	-16.08	AVG
0.8620	28.45	9.93	38.38	56.00	-17.62	QP
0.8620	15.62	9.93	25.55	46.00	-20.45	AVG
0.9900	29.24	9.93	39.17	56.00	-16.83	QP
0.9900	15.87	9.93	25.80	46.00	-20.20	AVG
1.2740	26.40	9.93	36.33	56.00	-19.67	QP
1.2740	17.43	9.93	27.36	46.00	-18.64	AVG
4.7060	24.87	9.96	34.83	56.00	-21.17	QP
4.7060	11.97	9.96	21.93	46.00	-24.07	AVG

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 18 of 54

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to FCC Fart 15.20	o, restricted barras		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

restricted band specified on 13.205(a), then the 13.205(a) limit in the table below has to be followed.								
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance					
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300					
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30					
1.705~30.0	30	29.5	30					
30-88	100	40	3					
88-216	150	43.5	3					
216-960	200	46	3					
Above 960	500	54	3					

Limits of Radiated Emission Measurement(Above 1000MHz)

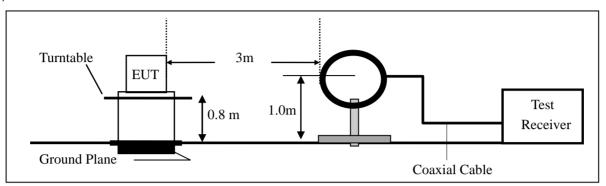
Frequency(MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

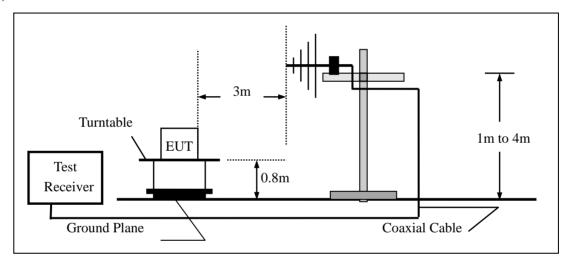
Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

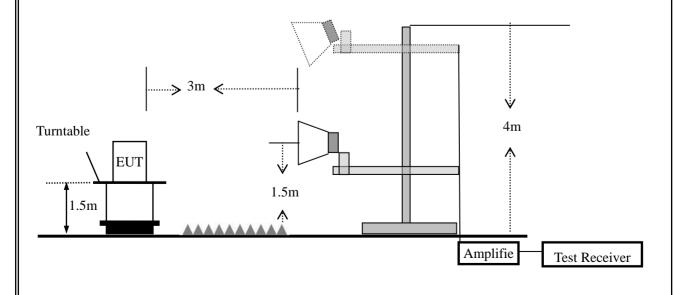
7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.


Version.1.2 Page 19 of 54



7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.2 Page 20 of 54

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=100 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Version.1.2 Page 21 of 54

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	ZipaMicro	Model No.:	zm.zwus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Allen Liu

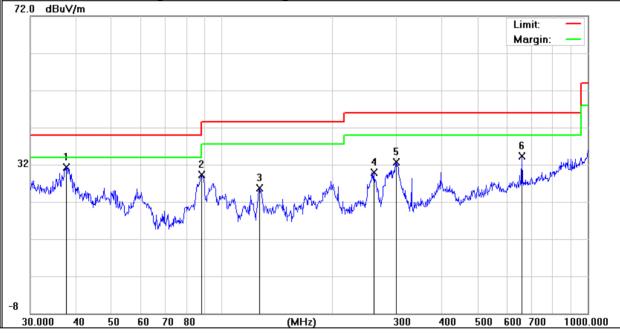
Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK \ AV ´		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Version.1.2 Page 22 of 54

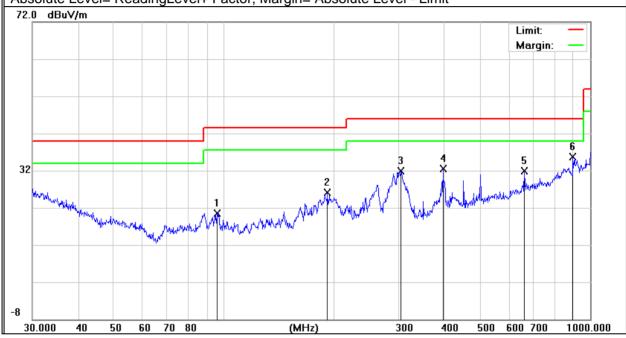

■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:

EUT:	ZipaMicro	Model Name:	zm.zwus	
Temperature:	20 ℃	Relative Humidity:	48%	
Pressure:	1010hPa	Test Mode:	Normal Link	
Test Voltage:	DC 3.7V			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
V	37.5479	13.57	17.71	31.28	40.00	-8.72	QP	
V	88.0329	17.51	11.76	29.27	43.50	-14.23	QP	
V	126.7723	15.11	10.54	25.65	43.50	-17.85	QP	
V	260.1444	16.75	13.10	29.85	46.00	-16.15	QP	
V	300.3672	18.00	14.67	32.67	46.00	-13.33	QP	
V	661.1505	13.28	20.93	34.21	46.00	-11.79	QP	

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit


Version.1.2 Page 23 of 54

Polar	Frequency	Meter Reading Factor		Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	95.7622	8.50	12.07	20.57	43.50	-22.93	QP	
Н	191.7450	12.97	13.08	26.05	43.50	-17.45	QP	
Н	304.6099	17.83	14.05	31.88	46.00	-14.12	QP	
Н	396.2414	17.36	15.10	32.46	46.00	-13.54	QP	
Н	661.1504	10.96	20.93	31.89	46.00	-14.11	QP	
Н	896.9963	11.29	24.51	35.80	46.00	-10.20	QP	

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Version.1.2 Page 24 of 54

4924.302

4924.302

7386.625

7386.625

4924.266

4924.266

7386.398

7386.398

65.95

42.93

60.62

44.43

67.04

46.97

60.88

45.24

5.21

5.21

7.10

7.10

5.21

5.21

7.10

7.10

35.52

35.52

36.53

36.53

35.52

35.52

36.53

36.53

■ Spurious Emission Above 1GHz (1GHz to 27GHz)

EUT:	ZipaMicro	Model No.:	zm.zwus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Allen Liu

Frequency	Level	loss	Factor	Factor	Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
Low Channel (2412 MHz)(802.11 b)Above 1G										
4824.465	62.78	5.21	35.59	44.30	59.28	74.00	-14.72	Pk	Vertical	
4824.465	40.72	5.21	35.59	44.30	37.22	54.00	-16.78	AV	Vertical	
7236.496	60.23	6.48	36.27	44.60	58.38	74.00	-15.62	Pk	Vertical	
7236.496	43.73	6.48	36.27	44.60	41.88	54.00	-12.12	AV	Vertical	
4824.614	60.64	5.21	35.55	44.30	57.10	74.00	-16.90	Pk	Horizontal	
4824.614	43.17	5.21	35.55	44.30	39.63	54.00	-14.37	AV	Horizontal	
7236.628	63.27	6.48	36.27	44.52	61.50	74.00	-12.50	Pk	Horizontal	
7236.628	47.25	6.48	36.27	44.52	45.48	54.00	-8.52	AV	Horizontal	
		M	liddle Chan	nel (2437 N	ЛHz)(802.11	b)Above 1	G			
4874.512	62.83	5.21	35.66	44.20	59.50	74.00	-14.50	Pk	Vertical	
4874.512	42.76	5.21	35.66	44.20	39.43	54.00	-14.57	AV	Vertical	
7311.427	60.01	7.10	36.50	44.43	59.18	74.00	-14.82	Pk	Vertical	
7311.427	47.47	7.10	36.50	44.43	46.64	54.00	-7.36	AV	Vertical	
4874.729	61.18	5.21	35.66	44.20	57.85	74.00	-16.15	Pk	Horizontal	
4874.729	48.32	5.21	35.66	44.20	44.99	54.00	-9.01	AV	Horizontal	
7311.513	59.41	7.10	36.50	44.43	58.58	74.00	-15.42	Pk	Horizontal	
7311.513	41.80	7.10	36.50	44.43	40.97	54.00	-13.03	AV	Horizontal	
	High Channel (2462 MHz)(802.11 b)Above 1G									

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

44.21

44.21

44.60

44.60

44.21

44.21

44.60

44.60

- (3) Data of measurement within this frequency range shown " -- " in the table above means the
- reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

62.47

39.45

59.65

43.46

63.56

43.49

59.91

44.27

74.00

54.00

74.00

54.00

74.00

54.00

74.00

54.00

-11.53

-14.55

-14.35

-10.54

-10.44

-10.51

-14.09

-9.73

Pk

ΑV

Pk

AV

Pk

ΑV

Pk

ΑV

Vertical

Vertical

Vertical

Vertical

Horizontal

Horizontal

Horizontal

Horizontal

(4)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Version.1.2 Page 25 of 54

■ Spurious Emission in Restricted Band 2310MHz -18000MHz All the modulation modes have been tested, and the worst result was report as below:

Frequenc		Cable	Antenna	Preamp	Emission	Julia Wao	- CP 5. CG 1	1	
y	Reading	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
, ,	/	. ,			.11b	/	, ,		
2310.00	58.30	2.97	27.80	43.80	45.27	74	-28.73	Pk	Horizontal
2310.00	43.80	2.97	27.80	43.80	30.77	54	-23.23	AV	Horizontal
2310.00	59.12	2.97	27.80	43.80	46.09	74	-27.91	Pk	Vertical
2310.00	41.92	2.97	27.80	43.80	28.89	54	-25.11	AV	Vertical
2390.00	57.80	3.14	27.21	43.80	44.35	74	-29.65	Pk	Vertical
2390.00	42.48	3.14	27.21	43.80	29.03	54	-24.97	AV	Vertical
2390.00	57.19	3.14	27.21	43.80	43.74	74	-30.26	Pk	Horizontal
2390.00	41.20	3.14	27.21	43.80	27.75	54	-26.25	AV	Horizontal
2483.50	57.76	3.58	27.70	44.00	45.04	74	-28.96	Pk	Vertical
2483.50	42.60	3.58	27.70	44.00	29.88	54	-24.12	AV	Vertical
2483.50	58.82	3.58	27.70	44.00	46.10	74	-27.90	Pk	Horizontal
2483.50	41.92	3.58	27.70	44.00	29.20	54	-24.80	AV	Horizontal
					.11g			•	
2310.00	58.62	2.97	27.80	43.80	45.59	74	-28.41	Pk	Horizontal
2310.00	44.07	2.97	27.80	43.80	31.04	54	-22.96	AV	Horizontal
2310.00	56.72	2.97	27.80	43.80	43.69	74	-30.31	Pk	Vertical
2310.00	42.68	2.97	27.80	43.80	29.65	54	-24.35	AV	Vertical
2390.00	57.70	3.14	27.21	43.80	44.25	74	-29.75	Pk	Vertical
2390.00	41.93	3.14	27.21	43.80	28.48	54	-25.52	AV	Vertical
2390.00	57.54	3.14	27.21	43.80	44.09	74	-29.91	Pk	Horizontal
2390.00	43.65	3.14	27.21	43.80	30.20	54	-23.80	AV	Horizontal
2483.50	59.02	3.58	27.70	44.00	46.30	74	-27.70	Pk	Vertical
2483.50	44.37	3.58	27.70	44.00	31.65	54	-22.35	AV	Vertical
2483.50	58.42	3.58	27.70	44.00	45.70	74	-28.30	Pk	Horizontal
2483.50	41.99	3.58	27.70	44.00	29.27	54	-24.73	AV	Horizontal
0040.00	F7.00	0.07	07.00		1n20	7.	00.04	l e	lin. e - e e
2310.00	57.69	2.97	27.80	43.80	44.66	74	-29.34	Pk	Horizontal
2310.00	43.81	2.97	27.80	43.80	30.78	54	-23.22	AV	Horizontal
2310.00	59.24	2.97	27.80	43.80	46.21	74	-27.79	Pk	Vertical
2310.00	42.22	2.97	27.80	43.80	29.19	54	-24.81	AV	Vertical
2390.00	57.48	3.14	27.21	43.80	44.03	74	-29.97	Pk	Vertical
2390.00	41.64	3.14	27.21	43.80	28.19	54	-25.81	AV	Vertical
2390.00	56.51	3.14	27.21	43.80	43.06	74	-30.94	Pk	Horizontal
2390.00	41.84	3.14	27.21	43.80	28.39	54	-25.61	AV	Horizontal
2483.50	57.95	3.58	27.70	44.00	45.23	74	-28.77	Pk	Vertical
2483.50	42.42	3.58	27.70	44.00	29.70	54	-24.30	AV	Vertical
2483.50	58.81	3.58	27.70	44.00	46.09	74	-27.91	Pk	Horizontal
2483.50	42.53	3.58	27.70	44.00	29.81	54	-24.19	AV	Horizontal

Version.1.2 Page 26 of 54

Spurious Emission in Restricted Bands 3260MMHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequenc	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	60.88	4.04	29.57	44.70	49.79	74	-24.21	Pk	Vertical
3260	56.31	4.04	29.57	44.70	45.22	54	-8.78	AV	Vertical
3260	61.27	4.04	29.57	44.70	50.18	74	-23.82	Pk	Horizontal
3260	55.25	4.04	29.57	44.70	44.16	54	-9.84	AV	Horizontal
3332	65.12	4.26	29.87	44.40	54.85	74	-19.15	Pk	Vertical
3332	54.19	4.26	29.87	44.40	43.92	54	-10.08	AV	Vertical
3332	63.29	4.26	29.87	44.40	53.02	74	-20.98	Pk	Horizontal
3332	53.25	4.26	29.87	44.40	42.98	54	-11.02	AV	Horizontal
17797	42.72	10.99	43.95	43.50	54.16	74	-19.84	Pk	Vertical
17797	32.54	10.99	43.95	43.50	43.98	54	-10.02	AV	Vertical
17788	43.44	11.81	43.69	44.60	54.34	74	-19.66	Pk	Horizontal
17788	31.51	11.81	43.69	44.60	42.41	54	-11.59	AV	Horizontal

[&]quot;802.11 b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Version.1.2 Page 27 of 54

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \geq 3^*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

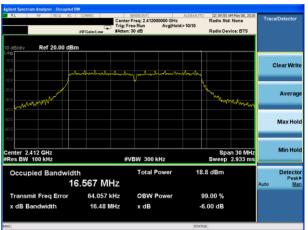
Version.1.2 Page 28 of 54

7.3.6 Test Results

EUT:	ZipaMicro	Model No.:	zm.zwus	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	802.11b/g/n20	Test By:	Allen Liu	

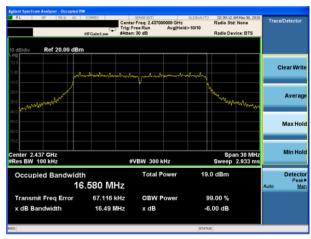
Mode	Channel	Frequency	6dB bandwidth	Limit	Result	
Mode	Cnannei	(MHz)	(MHz)	(kHz)	Result	
	Low	2412	9.091	500	Pass	
802.11b	Middle	2437	9.092	500	Pass	
	High	2462	9.090	500	Pass	
	Low	2412	16.48	500	Pass	
802.11g	Middle	2437	16.49	500	Pass	
	High	2462	16.49	500	Pass	
802.11n20	Low	2412	17.63	500	Pass	
	Middle	2437	17.63	500	Pass	
	High	2462	17.64	500	Pass	

Version.1.2 Page 29 of 54

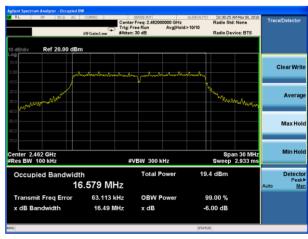


Test plot

(802.11b) 6dB Bandwidth plot on channel 1


(802.11g) 6dB Bandwidth plot on channel 1

(802.11b) 6dB Bandwidth plot on channel 6


(802.11g) 6dB Bandwidth plot on channel 6

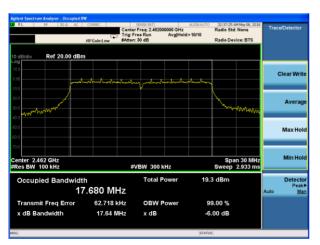
(802.11b) 6dB Bandwidth plot on channel 11

(802.11g) 6dB Bandwidth plot on channel 11

Version.1.2 Page 30 of 54



Test plot


(802.11 N20) 6dB Bandwidth plot on channel 1

(802.11 N20) 6dB Bandwidth plot on channel 6

(802.11N20) 6dB Bandwidth plot on channel 11

Version.1.2 Page 31 of 54

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074)6)b), issued April 5, 2017

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Zero Span

RBW = 8MHz(the largest available value)

VBW = 8MHz (≥ RBW)

Number of points in Sweep >100

Detector function = peak

Trace = Clear write

Measure T_{total} and T_{on}

Calculate Duty Cycle = Ton / Ttotal

Version.1.2 Page 32 of 54

7.4.6 Test Results

EUT:	ZipaMicro	Model No.:	zm.zwus	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	802.11b/g/n20	Test By:	Allen Liu	

Mode	Data rate	Channel	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)	VBW Setting
802.11b	1Mbps	6	-	-	100%	0	10Hz
802.11g	6Mbps	6	-	-	100%	0	1KHz
802.11n HT20	MCS0	6	-	-	100%	0	1KHz

Note: All the modulation modes were tested, the data of the worst mode are described in the following table.

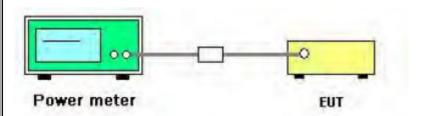
Version.1.2 Page 33 of 54

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v04

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	Peak

7.5.4 Test Setup

7.5.5 Test Procedure

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the *DTS bandwidth* and shall utilize a fast-responding diode detector.

7.5.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

Version.1.2 Page 34 of 54

7.5.7 Test Results

EUT:	ZipaMicro	Model No.:	zm.zwus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Allen Liu

Test Channel	Frequency (MHz)	Power Setting	Duty Cycle Factor (dB)	Peak Output Power (dBm)	Maximum Output Power(dBm)	LIMIT (dBm)	Verdict	
		802.11b						
1	2412	Default	0	14.4	14.4	30	PASS	
6	2437	Default	0	14.8	14.8	30	PASS	
11	2462	Default	0	15.1	15.1	30	PASS	
	802.11g							
1	2412	Default	0	13.2	13.2	30	PASS	
6	2437	Default	0	13.2	13.2	30	PASS	
11	2462	Default	0	13.9	13.9	30	PASS	
	802.11n HT20							
1	2412	Default	0	13.2	13.2	30	PASS	
6	2437	Default	0	13.1	13.1	30	PASS	
11	2462	Default	0	13.9	13.9	30	PASS	

Version.1.2 Page 35 of 54

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v04

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3 *RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

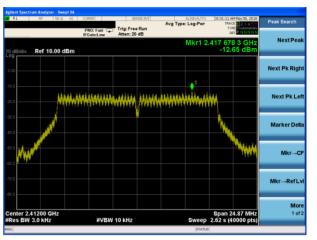
Version.1.2 Page 36 of 54

7.6.6 Test Results

EUT:	ZipaMicro	Model No.:	zm.zwus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Allen Liu

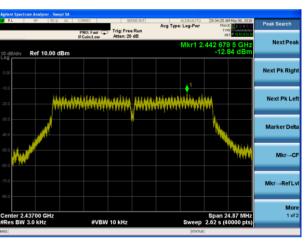
Test Channel	Frequency (MHz)	Duty Cycle Factor(dB)	Peak Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Verdict
	802.11b				
1	2412	0	-9.37	8	PASS
6	2437	0	-8.22	8	PASS
11	2462	0	-7.70	8	PASS
	802.11g				
1	2412	0	-12.65	8	PASS
6	2437	0	-12.84	8	PASS
11	2462	0	-12.01	8	PASS
	802.11n HT20				
1	2412	0	-13.33	8	PASS
6	2437	0	-13.16	8	PASS
11	2462	0	-12.82	8	PASS

Version.1.2 Page 37 of 54

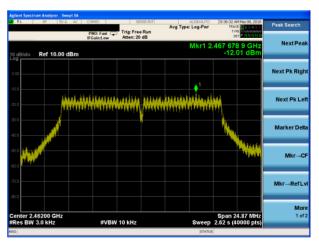


Test plot

(802.11b) PSD plot on channel 1

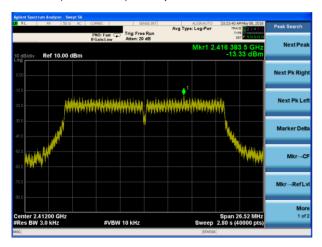

(802.11g) PSD plot on channel 1

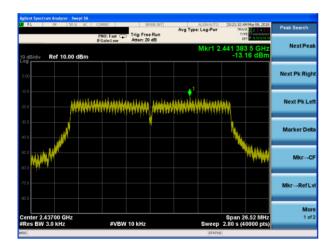
(802.11b) PSD plot on channel 6


(802.11g) PSD plot on channel 6

(802.11b) PSD plot on channel 11

(802.11g) PSD plot on channel 11


Version.1.2 Page 38 of 54



Test plot

(802.11n20) PSD plot on channel 1

(802.11n20) PSD plot on channel 6

(802.11n20) PSD plot on channel 11

Version.1.2 Page 39 of 54

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v04

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Version.1.2 Page 40 of 54

7.7.6 Test Results

EUT:	ZipaMicro	Model No.:	zm.zwus
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Allen Liu

Version.1.2 Page 41 of 54

Test plot For

802.11b: Band Edge-Low Channel

802.11g: Band Edge-Low Channel

802.11b: Band Edge-High Channel

802.11g: Band Edge-High Channel

Version.1.2 Page 42 of 54

Test plot For

802.11n20: Band Edge-Low Channel

802.11n20: Band Edge-High Channel

Version.1.2 Page 43 of 54

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

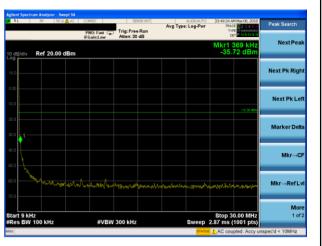
7.8.4 Test Procedure

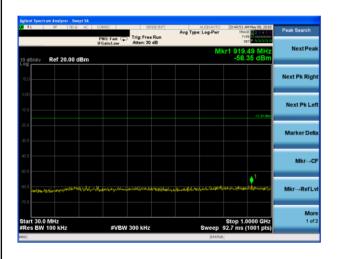
The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 9KHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Version.1.2 Page 44 of 54



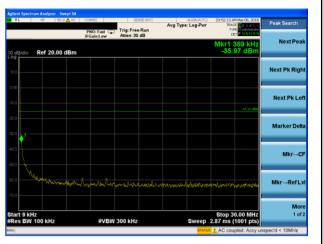

802.11b on channel 01

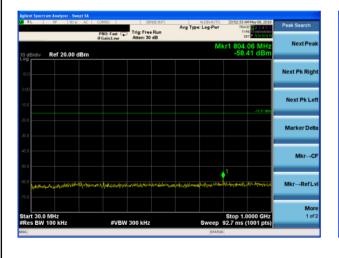
802.11b on channel 01

802.11b on channel 01

802.11b on channel 01

Version.1.2 Page 45 of 54




802.11b on channel 06

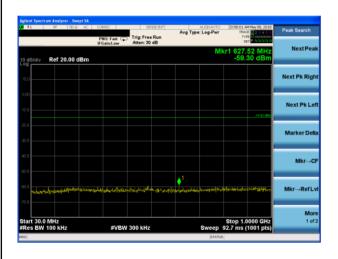
802.11b on channel 06

802.11b on channel 06

802.11b on channel 06

Version.1.2 Page 46 of 54

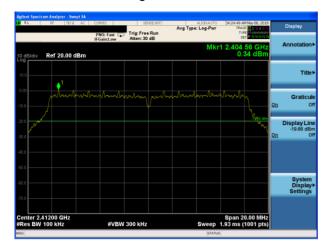



802.11b on channel 11

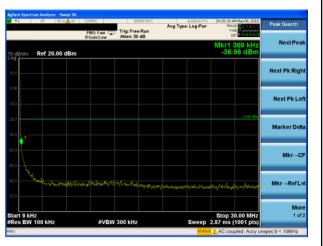
802.11b on channel 11

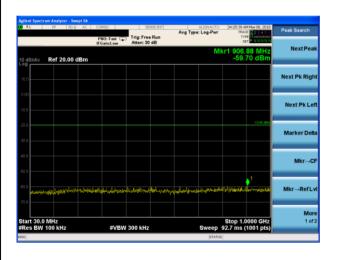
802.11b on channel 11

802.11b on channel 11



Version.1.2 Page 47 of 54



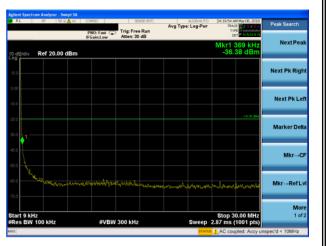

802.11g on channel 01

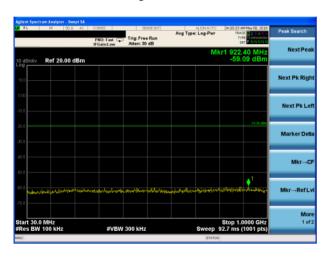
802.11g on channel 01

802.11g on channel 01

802.11g on channel 01

Version.1.2 Page 48 of 54




802.11g on channel 06

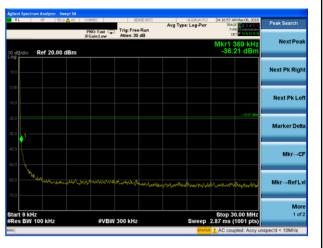
802.11g on channel 06

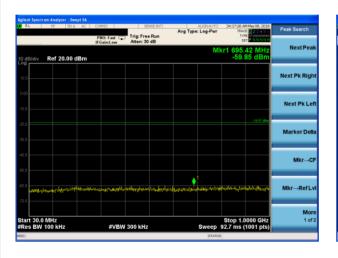
802.11g on channel 06

802.11g on channel 06



Version.1.2 Page 49 of 54

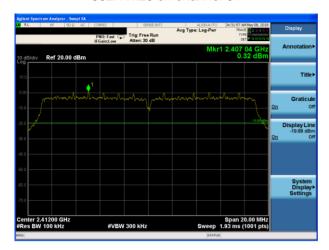



802.11g on channel 11

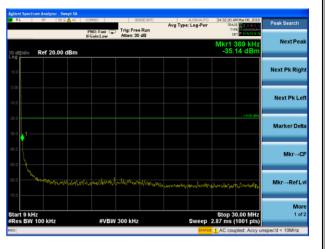
802.11g on channel 11

802.11g on channel 11

802.11g on channel 11



Version.1.2 Page 50 of 54

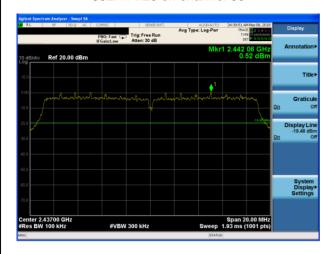


802.11n20 on channel 01

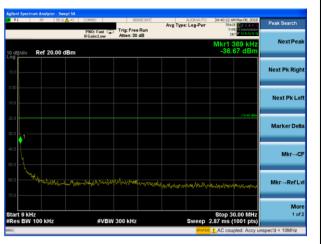
802.11n20 on channel 01

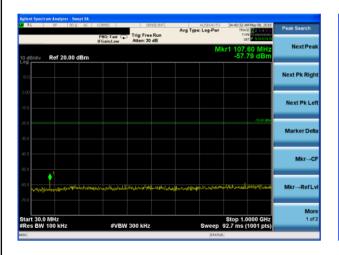
802.11 n20 on channel 01

802.11 n20 on channel 01



Version.1.2 Page 51 of 54

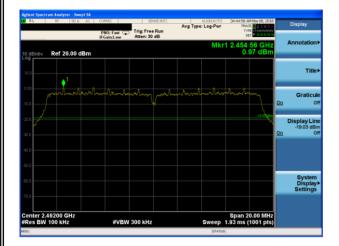



802.11 n20 on channel 06

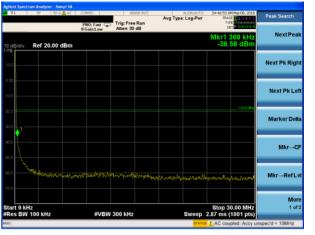
802.11 n20 on channel 06

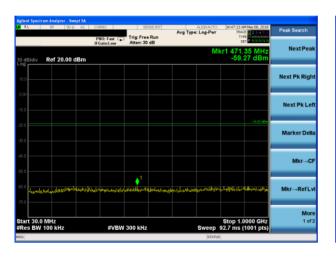
802.11 n20 on channel 06

802.11 n20 on channel 06



Version.1.2 Page 52 of 54




802.11 n20 on channel 11

802.11 n20 on channel 11

802.11 n20 on channel 11

802.11 n20 on channel 11

Version.1.2 Page 53 of 54

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

The EUT antenna is permanent attached Metal antenna (Gain: 2dBi). It comply with the standard requirement.

END OF REPORT

Version.1.2 Page 54 of 54