CFR 47 FCC PART 15 SUBPART C #### **TEST REPORT** For #### ASC-2400 HD Video drone Model: NV-6309/OA-6288/1540563/CT-6333/CT-6342/CT-6343 FCC ID: 2ASK3NV-6309T REPORT NUMBER: 4789957819-1 ISSUE DATE: June 08, 2021 Prepared for # AMAX INDUSTRIAL GROUP CHINA CO.,LTD. OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG Prepared by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China > Tel: +86 769 22038881 Fax: +86 769 33244054 Website: <u>www.ul.com</u> REPORT NO.: 4789957819-1 Page 2 of 49 ### **Revision History** | Rev. | Issue Date | Revisions | Revised By | |------|------------|---------------|------------| | V0 | 06/08/2021 | Initial Issue | | REPORT NO.: 4789957819-1 Page 3 of 49 | Summary of Test Results | | | | | |-------------------------|--|--|--------------|--| | Clause | Test Items | FCC Rules | Test Results | | | 1 | 20dB Bandwidth and 99%
Occupied Bandwidth | CFR 47 FCC §15.215 (c) | Pass | | | 2 | Radiated Emission | CFR 47 FCC §15.249 (a)(d)(e)
CFR 47 FCC §15.205 and §15.209 | Pass | | | 3 | Antenna Requirement | CFR 47 FCC §15.203 | Pass | | Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China. Note 2: The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied. ### **TABLE OF CONTENTS** | 1. A7 | TTESTATION OF TEST RESULTS | 5 | |-------|---|-----------| | 2. TE | EST METHODOLOGY | 6 | | 3. FA | ACILITIES AND ACCREDITATION | 6 | | 4. C | ALIBRATION AND UNCERTAINTY | 7 | | 4.1. | MEASURING INSTRUMENT CALIBRATION | 7 | | 4.2. | MEASUREMENT UNCERTAINTY | 7 | | 5. EC | QUIPMENT UNDER TEST | 8 | | 5.1. | DESCRIPTION OF EUT | 8 | | 5.2. | MAXIMUM FIELD STRENGTH | 8 | | 5.3. | CHANNEL LIST | 8 | | 5.4. | DESCRIPTION OF AVAILABLE ANTENNAS | 8 | | 5.5. | TEST CHANNEL CONFIGURATION | 8 | | 5.6. | THE WORSE CASE POWER SETTING PARAMETER | 9 | | 5.7. | TEST ENVIRONMENT | 9 | | 5.8. | DESCRIPTION OF TEST SETUP | 10 | | 5.9. | MEASURING INSTRUMENT AND SOFTWARE USED | 11 | | 6. Al | NTENNA PORT TEST RESULTS | 12 | | 6.1. | ON TIME AND DUTY CYCLE | 12 | | 6.2. | 20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH | 14 | | 7. R | ADIATED TEST RESULTS | 18 | | 7.1. | LIMITS AND PROCEDURE | 18 | | 7.2. | RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL
24 | EMISSIONS | | 7.3. | SPURIOUS EMISSIONS (1~3GHz) | 30 | | 7.4. | SPURIOUS EMISSIONS (3~18GHz) | 36 | | 7.5. | SPURIOUS EMISSIONS (18~26GHz) | 42 | | 7.6. | SPURIOUS EMISSIONS BELOW 30MHz | 44 | | 7.7. | SPURIOUS EMISSIONS BELOW 1GHz AND ABOVE 30MHz | 47 | | 8 41 | NTENNA REQUIREMENTS | 49 | REPORT NO.: 4789957819-1 Page 5 of 49 #### 1. ATTESTATION OF TEST RESULTS **Applicant Information** Company Name: AMAX INDUSTRIAL GROUP CHINA CO.,LTD Address: OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG **Manufacturer Information** Company Name: AMAX INDUSTRIAL GROUP CHINA CO.,LTD Address: OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG **EUT Information** EUT Name: ASC-2400 HD Video drone Model: NV-6309/OA-6288/1540563/CT-6333/CT-6342/CT-6343 Model differences: Please refer to section 5.1 Sample Received Date: May 26, 2021 Sample Status: Normal Sample ID: 3808672 Date of Tested: May 27, 2021~ June 04, 2021 | APPLICABLE STANDARDS | | | |------------------------------|--------------|--| | STANDARD | TEST RESULTS | | | CFR 47 FCC PART 15 SUBPART C | PASS | | Prepared By: Checked By: Mick Zhang Project Engineer Mick Zhang Shawn Wen Laboratory Leader Shemmy lier Approved By: Stephen Guo Laboratory Manager REPORT NO.: 4789957819-1 Page 6 of 49 #### 2. TEST METHODOLOGY The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013. #### 3. FACILITIES AND ACCREDITATION | Accreditation
Certificate | A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011 | |------------------------------|---| #### Note: - 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China - 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field - 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS. REPORT NO.: 4789957819-1 Page 7 of 49 Pag ## 4. CALIBRATION AND UNCERTAINTY #### 4.1. MEASURING INSTRUMENT CALIBRATION The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards. #### 4.2. MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Test Item | Uncertainty | |---|----------------------| | Conduction emission | 3.62dB | | Radiation Emission test (include Fundamental emission) (9KHz-30MHz) | 2.2dB | | Radiation Emission test (include Fundamental emission) (30MHz-1GHz) | 4.00dB | | Radiation Emission test | 5.78dB (1GHz-18GHz) | | (1GHz to 26GHz) (include Fundamental emission) | 5.23dB (18GHz-26GHz) | Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. REPORT NO.: 4789957819-1 Page 8 of 49 ### 5. EQUIPMENT UNDER TEST ### 5.1. DESCRIPTION OF EUT | EUT Name | ASC-2400 HD Video drone | | | |----------------------|---|---------------------|--| | Model | NV-6309/OA-6288/1540563/CT-6333/CT-6342/CT-6343 | | | | Model differences | NV-6309, OA-6288,1540563, CT-6342,CT-6343 have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with CT-6333. The difference lies only the model number and color. | | | | Product Description | Operation Frequency | 2451 MHz ~ 2479 MHz | | | 1 Toddot Description | Modulation Type | GFSK | | | Battery | DC 6 V | | | #### 5.2. MAXIMUM FIELD STRENGTH | Frequency
(MHz) | Channel Number | Max Peak field strength (dBµV/m) | |--------------------|----------------|----------------------------------| | 2451~2479 | 8[8] | 85.98 | #### 5.3. CHANNEL LIST | Channel | Frequency (MHz) | Channel | Frequency (MHz) | |---------|-----------------|---------|-----------------| | 1 | 2451 | 5 | 2467 | | 2 | 2455 | 6 | 2471 | | 3 | 2459 | 7 | 2475 | | 4 | 2463 | 8 | 2479 | #### 5.4. DESCRIPTION OF AVAILABLE ANTENNAS | Ant. | Frequency (MHz) | Antenna Type | Antenna Gain (dBi) | |------|-----------------|--------------|--------------------| | 1 | 2451~ 2479 | Wire antenna | 0 | | Test Mode | Transmit and Receive Mode | Description | |-----------|---------------------------|--| | GFSK
 ⊠1TX | Antenna 1 can be used as transmitting antenna. | ### 5.5. TEST CHANNEL CONFIGURATION | Test Mode | Test Channel | Frequency | |-----------|--|---------------------------| | GFSK | CH 1(Low Channel),
CH 4(MID Channel),
CH 8(High Channel) | 2451MHz, 2463MHz, 2479MHz | REPORT NO.: 4789957819-1 Page 9 of 49 5.6. THE WORSE CASE POWER SETTING PARAMETER | The Worse Case Power Setting Parameter under 2451 MHz ~ 2479 MHz Band | | | | | |---|------------------|--------------|---------|---------| | Test Soft | ware Version | / | | | | Modulation Type | Transmit Antenna | Test Channel | | | | Number | | CH 1 | CH 4 | CH 8 | | GFSK | 1 | Default | Default | Default | #### 5.7. TEST ENVIRONMENT | Environment Parameter | Selected Va | lues During Tests | | |-----------------------|-------------|-------------------|--| | Relative Humidity | 55 ~ 65% | | | | Atmospheric Pressure: | 1025Pa | | | | Temperature | TN | 22 ~ 28°C | | | | VL | / | | | Voltage: | VN | DC 6 V | | | | VH | / | | Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature REPORT NO.: 4789957819-1 Page 10 of 49 #### 5.8. DESCRIPTION OF TEST SETUP #### **SUPPORT EQUIPMENT** | Item | Equipment | Brand Name | Model Name | P/N | |------|-----------|------------|------------|-----| | / | / | / | / | / | #### I/O CABLES | Cable No | Port | Connector Type | Cable Type | Cable Length(m) | Remarks | |----------|------|----------------|------------|-----------------|---------| | / | / | / | / | / | / | #### **ACCESSORY** | Item | Equipment | Mfr/Brand | Model/Type No. | Specification | Series No. | |------|-----------|-----------|----------------|---------------|------------| | / | / | / | / | / | / | #### **TEST SETUP** The EUT have the engineer mode inside. #### **SETUP DIAGRAM FOR TEST** EUT Note: New battery was used during all tests. 5.9. MEASURING INSTRUMENT AND SOFTWARE USED | | Radiated Emissions | | | | | | | | |------------------|--------------------------------|-----------------|---|----------|--------|---------|-------------------|-------------------| | | | | In | strument | | | | | | Used | Equipment | Manufacturer | Mod | el No. | Seria | al No. | Last Cal. | Next Cal. | | V | MXE EMI
Receiver | KESIGHT | N90 |)38A | MY564 | 100036 | Nov. 12, 2020 | Nov. 11, 2021 | | V | Hybrid Log
Periodic Antenna | TDK | HLP- | 3003C | 130 | 960 | Aug. 11, 2018 | Aug. 10, 2021 | | \checkmark | Preamplifier | HP | 84 | 47D | 2944A | .09099 | Nov. 12, 2020 | Nov. 11, 2021 | | V | EMI
Measurement
Receiver | R&S | ES | R26 | 101 | 377 | Nov. 12, 2020 | Nov. 11, 2021 | | V | Horn Antenna | TDK | HRN-0118 | | 130 | 939 | Sept. 17,
2018 | Sept. 17,
2021 | | V | Preamplifier | TDK | PA-02 | 2-0118 | TRS-30 | 5-00067 | Nov. 20, 2020 | Nov. 19, 2021 | | V | Horn Antenna | Schwarzbeck | BBH | A9170 | #6 | 91 | Aug. 11, 2018 | Aug. 11, 2021 | | V | Preamplifier | TDK | PA- | 02-2 | TRS-30 | 7-00003 | Nov. 12, 2020 | Nov. 11, 2021 | | V | Preamplifier | TDK | PA- | 02-3 | TRS-30 | 8-00002 | Nov. 12, 2020 | Nov. 11, 2021 | | V | Loop antenna | Schwarzbeck | 15 | 19B | 000 | 008 | Jan.17, 2019 | Jan.17,2022 | | V | Preamplifier | TDK | PA-02-0 | 001-3000 | TRS-30 | 2-00050 | Nov. 12, 2020 | Nov. 11, 2021 | | V | Preamplifier | Mini-Circuits | ZX60-8 | 3LN-S+ | SUP01 | 201941 | Nov. 20, 2020 | Nov. 19, 2021 | | V | Band Reject
Filter | Wainwright | WRCJV8-2350-
2400-2483.5-
2533.5-40SS | | 4 | 4 | Nov. 12, 2020 | Nov. 11, 2021 | | V | High Pass Filter | Wi | WHKX10-2700-
3000-18000-40SS | | 2 | 3 | Nov. 12, 2020 | Nov. 11, 2021 | | | Software | | | | | | | | | Used Description | | | | Manufa | cturer | | Name | Version | | V | Test Software fo | r Radiated dist | urbance | Fara | ad | Е | Z-EMC | Ver. UL-3A1 | 6. ANTENNA PORT TEST RESULTS 6.1. ON TIME AND DUTY CYCLE #### **LIMITS** None; for reporting purposes only #### **PROCEDURE** KDB 558074 Zero-Span Spectrum Analyzer Method #### **TEST SETUP** #### **TEST ENVIRONMENT** | Temperature | 24.3°C | Relative Humidity | 61% | |---------------------|--------|-------------------|--------| | Atmosphere Pressure | 101kPa | Test Voltage | DC 6 V | #### **RESULTS** | Mode | On Time
(msec) | Period
(msec) | Duty Cycle
x
(Linear) | Duty Cycle
(%) | Duty Cycle
Correction Factor
(db) | |------|-------------------|------------------|-----------------------------|-------------------|---| | GFSK | 4.48 | 100 | 0.0448 | 4.48% | -26.97 | Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle #### ON TIME AND DUTY CYCLE MID CH PLOT Date: 31.MAY.2021 17:32:48 #### ON TIME AND DUTY CYCLE MID CH PLOT-2 Date: 31.MAY.2021 17:33:51 Note: All the modes had been tested, but only the worst duty cycle recorded in the report. 6.2. 20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH #### **LIMITS** | CFR 47 FCC Part15 (15.249) Subpart C | | | | | | |--------------------------------------|---------------------------|------------------------------|--------------------------|--|--| | Section | Test Item | Limit | Frequency Range
(MHz) | | | | CFR 47 FCC §15.215
(c) | 20dB Bandwidth | for reporting purposes only | 2400-2483.5 | | | | ISED RSS-Gen Clause
6.7 Issue 5 | 99% Occupied
Bandwidth | For reporting purposes only. | 2400-2483.5 | | | #### **TEST PROCEDURE** Connect the UUT to the spectrum analyser and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | 1% to 5% of the occupied bandwidth | | VBW | approximately 3xRBW | | Trace | Max hold | | Sweep | Auto couple | Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission. #### **TEST SETUP** #### **TEST ENVIRONMENT** | Temperature | 24.3°C | Relative Humidity | 61% | |---------------------|--------|-------------------|--------| | Atmosphere Pressure | 101kPa | Test Voltage | DC 6 V | #### **RESULTS** | Frequency
(MHz) | 20dB bandwidth
(MHz) | 99% bandwidth
(MHz) | Result | |--------------------|-------------------------|------------------------|--------| | 2451 | 0.9550 | 1.1828 | PASS | Date: 31.MAY.2021 17:49:48 #### 99% OCCUPIED BANDWIDTH LOW CH Date: 31.MAY.2021 17:51:30 Frequency (MHz) 20dB bandwidth (MHz) 2463 1.0310 99% bandwidth (MHz) Result 0.9790 PASS Date: 31.MAY.2021 17:32:03 Date: 31.MAY.2021 17:29:23 Frequency (MHz) 20dB bandwidth (MHz) 99% bandwidth (MHz) Result 1.1089 1.0509 PASS Measuring... Date: 31.MAY.2021 18:15:41 Date: 31.MAY.2021 18:14:28 # 7. RADIATED TEST RESULTS 7.1. LIMITS AND PROCEDURE #### **LIMITS** CFR 47 FCC §15.205 and §15.209 CFR 47 FCC §15.249 (a)(d)(c)(e) | The field strength of emissions from intentional radiators operated within these frequency bands | | | | | | | | | |--|-----------------------|------------------------|---|--|--|--|--|--| | Frequency
(MHz) | Distance (m) | | | | | | | | | 902 - 928 | 50 mV/m
(94dBuV/m) | 500 uV/m
(54dBuV/m) | 3 | | | | | | | 2400 – 2483.5 | 50 mV/m
(94dBuV/m) | 500 uV/m
(54dBuV/m) | 3 | | | | | | | 5725 – 5875 | 50 mV/m
(94dBuV/m) | 500 uV/m
(54dBuV/m) | 3 | | | | | | | Emissions radiated outside of the specified frequency bands above 30MHz | | | | | | | | |---|----------------------|----------------------|-----------|--|--|--|--| | Frequency Range | Field Strength Limit | Field Strength Limit | | | | | | | (MHz) | (uV/m) at 3 m | (dBuV/n | n) at 3 m | | | | | | (1711 12) | (4 7/11) 41 3 111 | Quasi | -Peak | | | | | | 30 - 88 | 100 | 40 | | | | | | | 88 - 216 | 150 | 43.5 | | | | | | | 216 - 960 | 200 | 46 | | | | | | | Above 960 | 500 | 54 | | | | | | | Above 1000 | 500 | Peak | Average | | | | | | Above 1000 | 500 | 74 | 54 | | | | | | FCC Emissions radiated outside of the specified frequency bands below 30MHz | | | | | | | |---|--------------|-----|--|--|--|--| | Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) | | | | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | | | 1.705-30.0 | 30 | | | | | | #### FCC Restricted bands of operation: | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|------------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (²) | | 13.36-13.41 | | | | Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c #### **TEST SETUP
AND PROCEDURE** #### Below 30MHz #### The setting of the spectrum analyser | RBW | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) | |----------|--| | VBW | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) | | Sweep | Auto | | Detector | Peak/QP/ Average | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013. - 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80cm meter above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower. - 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. - 6. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open field site. Therefore, the sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788. Below 1G The setting of the spectrum analyser | RBW | 120K | |----------|----------| | VBW | 300K | | Sweep | Auto | | Detector | Peak/QP | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013. - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured Above 1G The setting of the spectrum analyser. (For Bandedge and Field strength) | RBW | ≥ OBW (2MHz) | | | | |----------|----------------------------------|--|--|--| | 1\/B\/\/ | PEAK: ≥ 3×RBW
AVG: see note 5 | | | | | Sweep | Auto | | | | | Detector | Peak | | | | | Trace | Max hold | | | | The setting of the spectrum analyser. (For Spurious emissions) | RBW | 1MHz | |----------|-------------------------------| | 11/21// | PEAK: 3MHz
AVG: see note 5 | | Sweep | Auto | | Detector | Peak | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013. - 2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter or band reject filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 150cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE. 6. For measurements Bandedge above 1 GHz, the resolution bandwidth is set to 2 MHz, then the video bandwidth is set to $\ge 3 \times RBW$ for peak measurements. This test results are worse than using 1MHz resolution bandwidth, so if the result is pass, the test is considered to meet the standard requirements. X axis, Y axis, Z axis positions: Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report. #### **TEST ENVIRONMENT** | Temperature | 24.3°C | Relative Humidity | 61% | |---------------------|--------|-------------------|--------| | Atmosphere Pressure | 101kPa | Test Voltage | DC 6 V | ## 7.2. RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS ## $\frac{\textbf{RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL,}}{\textbf{HORIZONTAL})}$ | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2400.000 | 14.82 | 33.43 | 48.25 | 74.00 | -25.75 | peak | | 2 | 2450.795 | 50.45 | 33.60 | 84.05 | 114.00 | -29.95 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. ## RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2400.000 | 13.89 | 33.43 | 47.32 | 74.00 | -26.68 | peak | | 2 | 2451.230 | 50.44 | 33.60 | 84.04 | 114.00 | -29.96 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. #### FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2463.000 | 50.84 | 33.63 | 84.47 | 114.00 | -29.53 | peak | | 2 | 2483.500 | 15.99 | 33.71 | 49.70 | 74.00 | -24.30 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. #### FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2462.800 | 47.69 | 33.63 | 81.32 | 114.00 | -32.68 | peak | | 2 | 2483.500 | 14.91 | 33.71 | 48.62 | 74.00 | -25.38 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. ## RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2479.175 | 52.29 | 33.69 | 85.98 | 114.00 | -28.02 | peak | | 2 | 2483.500 | 26.48 | 33.71 | 60.19 | 74.00 | -13.81 | peak | | 3 | 2483.500 | -0.49 | 33.71 | 33.22 | 54.00 | -20.78 | AVG | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. ## RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2479.075 | 51.29 | 33.69 | 84.98 | 114.00 | -29.02 | peak | | 2 | 2483.500 | 25.89 | 33.71 | 59.60 | 74.00 | -14.40 | peak | | 3 | 2483.500 | -1.08 | 33.71 | 32.63 | 54.00 | -21.37 | AVG | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. 7.3. SPURIOUS EMISSIONS (1~3GHz) #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1106.000 | 46.18 | -13.46 | 32.72 | 74.00 | -41.28 | peak | | 2 | 1814.000 | 44.77 | -10.06 | 34.71 | 74.00 | -39.29 | peak | | 3 | 2064.000 | 44.86 | -9.82 | 35.04 | 74.00 | -38.96 | peak | | 4 | 2406.000 | 43.90 | -8.39 | 35.51 | 74.00 | -38.49 | peak | | 5 | 2840.000 | 43.09 | -6.36 | 36.73 | 74.00 | -37.27 | peak | | 6 | 2944.000 | 43.23 | -5.85 | 37.38 | 74.00 | -36.62 | peak | - 2. If Peak
Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1206.000 | 45.54 | -12.98 | 32.56 | 74.00 | -41.44 | peak | | 2 | 1814.000 | 45.25 | -10.06 | 35.19 | 74.00 | -38.81 | peak | | 3 | 2218.000 | 44.33 | -8.99 | 35.34 | 74.00 | -38.66 | peak | | 4 | 2356.000 | 44.74 | -8.54 | 36.20 | 74.00 | -37.80 | peak | | 5 | 2602.000 | 44.12 | -7.85 | 36.27 | 74.00 | -37.73 | peak | | 6 | 2764.000 | 43.61 | -6.79 | 36.82 | 74.00 | -37.18 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1356.000 | 45.63 | -12.76 | 32.87 | 74.00 | -41.13 | peak | | 2 | 1840.000 | 45.07 | -10.08 | 34.99 | 74.00 | -39.01 | peak | | 3 | 2262.000 | 44.79 | -8.85 | 35.94 | 74.00 | -38.06 | peak | | 4 | 2470.000 | 44.22 | -8.27 | 35.95 | 74.00 | -38.05 | peak | | 5 | 2664.000 | 43.42 | -7.44 | 35.98 | 74.00 | -38.02 | peak | | 6 | 2818.000 | 43.02 | -6.47 | 36.55 | 74.00 | -37.45 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain #### **HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1186.000 | 45.92 | -13.07 | 32.85 | 74.00 | -41.15 | peak | | 2 | 1752.000 | 46.83 | -10.41 | 36.42 | 74.00 | -37.58 | peak | | 3 | 2156.000 | 45.16 | -9.30 | 35.86 | 74.00 | -38.14 | peak | | 4 | 2406.000 | 44.68 | -8.39 | 36.29 | 74.00 | -37.71 | peak | | 5 | 2684.000 | 43.57 | -7.31 | 36.26 | 74.00 | -37.74 | peak | | 6 | 2842.000 | 42.85 | -6.35 | 36.50 | 74.00 | -37.50 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain #### **HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1738.000 | 45.45 | -10.51 | 34.94 | 74.00 | -39.06 | peak | | 2 | 1808.000 | 44.65 | -10.05 | 34.60 | 74.00 | -39.40 | peak | | 3 | 2296.000 | 43.71 | -8.74 | 34.97 | 74.00 | -39.03 | peak | | 4 | 2480.000 | 44.23 | -8.26 | 35.97 | 74.00 | -38.03 | peak | | 5 | 2576.000 | 44.32 | -7.96 | 36.36 | 74.00 | -37.64 | peak | | 6 | 2786.000 | 43.42 | -6.65 | 36.77 | 74.00 | -37.23 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain **HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1720.000 | 46.28 | -10.65 | 35.63 | 74.00 | -38.37 | peak | | 2 | 2220.000 | 44.89 | -8.98 | 35.91 | 74.00 | -38.09 | peak | | 3 | 2472.000 | 44.15 | -8.27 | 35.88 | 74.00 | -38.12 | peak | | 4 | 2684.000 | 43.72 | -7.31 | 36.41 | 74.00 | -37.59 | peak | | 5 | 2836.000 | 42.88 | -6.38 | 36.50 | 74.00 | -37.50 | peak | | 6 | 2934.000 | 43.95 | -5.91 | 38.04 | 74.00 | -35.96 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain 7.4. SPURIOUS EMISSIONS (3~18GHz) #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4890.000 | 57.28 | 1.30 | 58.58 | 74.00 | -15.42 | peak | | 2 | 4890.000 | 30.31 | 1.30 | 31.61 | 54.00 | -22.39 | AVG | | 3 | 7350.000 | 43.55 | 7.53 | 51.08 | 74.00 | -22.92 | peak | | 4 | 11355.000 | 35.77 | 14.34 | 50.11 | 74.00 | -23.89 | peak | | 5 | 14670.000 | 33.93 | 17.59 | 51.52 | 74.00 | -22.48 | peak | | 6 | 16425.000 | 32.54 | 19.68 | 52.22 | 74.00 | -21.78 | peak | | 7 | 17670.000 | 28.92 | 23.24 | 52.16 | 74.00 | -21.84 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Cycle Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. The High Pass filter loss factor already add into the correct factor. - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4890.000 | 60.52 | 1.30 | 61.82 | 74.00 | -12.18 | peak | | 2 | 4890.000 | 33.55 | 1.30 | 34.85 | 54.00 | -19.15 | AVG | | 3 | 8985.000 | 36.93 | 10.99 | 47.92 | 74.00 | -26.08 | peak | | 4 | 11820.000 | 35.30 | 15.29 | 50.59 | 74.00 | -23.41 | peak | | 5 | 14235.000 | 33.70 | 17.91 | 51.61 | 74.00 | -22.39 | peak | | 6 | 16020.000 | 32.82 | 18.41 | 51.23 | 74.00 | -22.77 | peak | | 7 | 16890.000 | 30.70 | 21.49 | 52.19 | 74.00 | -21.81 | peak | | 8 | 17685.000 | 28.53 | 23.36 | 51.89 | 74.00 | -22.11 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Cycle Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. The High Pass filter loss factor already add into the correct factor. - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain. ### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4920.000 | 58.52 | 1.45 | 59.97 | 74.00 | -14.03 | peak | | 2 | 4920.000 | 31.55 | 1.45 | 33.00 | 54.00 | -21.00 | AVG | | 3 | 8115.000 | 37.76 | 10.13 | 47.89 | 74.00 | -26.11 | peak | | 4 | 11835.000 | 35.24 | 15.34 | 50.58 | 74.00 | -23.42 | peak | | 5 | 12270.000 | 34.54 | 16.04 | 50.58 | 74.00 | -23.42 | peak | | 6 | 14670.000 | 33.61 | 17.59 | 51.20 | 74.00 | -22.80 | peak | | 7 | 17085.000 | 30.31 | 21.80 | 52.11 | 74.00 | -21.89 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Cycle Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. The High Pass filter loss factor already add into the correct factor. - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4920.000 | 57.89 | 1.45 | 59.34 | 74.00 | -14.66 | peak | | 2 | 4920.000 | 30.92 | 1.45 | 32.37 | 54.00 | -21.63 | AVG | | 3 | 7380.000 | 40.36 | 7.79 | 48.15 | 74.00 | -25.85 | peak | | 4 | 8115.000 | 37.58 | 10.13 | 47.71 | 74.00 | -26.29 | peak | | 5 | 12630.000 | 34.90 | 15.72 | 50.62 | 74.00 | -23.38 | peak | | 6 | 14805.000 | 32.82 | 18.00 | 50.82 | 74.00 | -23.18 | peak | | 7 | 16875.000 | 30.51 | 21.35 | 51.86 | 74.00 | -22.14 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. The High Pass filter loss factor already add into the correct factor. - 5. Proper operation of the transmitter prior to
adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4950.000 | 58.02 | 1.71 | 59.73 | 74.00 | -14.27 | peak | | 2 | 4950.000 | 31.05 | 1.71 | 32.76 | 54.00 | -21.24 | AVG | | 3 | 7440.000 | 43.09 | 8.13 | 51.22 | 74.00 | -22.78 | peak | | 4 | 12195.000 | 34.44 | 15.93 | 50.37 | 74.00 | -23.63 | peak | | 5 | 14820.000 | 33.33 | 17.91 | 51.24 | 74.00 | -22.76 | peak | | 6 | 17040.000 | 30.77 | 21.50 | 52.27 | 74.00 | -21.73 | peak | | 7 | 17700.000 | 28.08 | 23.47 | 51.55 | 74.00 | -22.45 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Cycle Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. The High Pass filter loss factor already add into the correct factor. - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4950.000 | 56.96 | 1.71 | 58.67 | 74.00 | -15.33 | peak | | 2 | 4950.000 | 29.99 | 1.71 | 31.70 | 54.00 | -22.30 | AVG | | 3 | 8145.000 | 37.98 | 10.01 | 47.99 | 74.00 | -26.01 | peak | | 4 | 9390.000 | 37.37 | 10.92 | 48.29 | 74.00 | -25.71 | peak | | 5 | 11460.000 | 35.61 | 14.69 | 50.30 | 74.00 | -23.70 | peak | | 6 | 14805.000 | 33.15 | 18.00 | 51.15 | 74.00 | -22.85 | peak | | 7 | 16875.000 | 30.82 | 21.35 | 52.17 | 74.00 | -21.83 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. AVG Result=Peak Result + Duty Cycle Correction Factor. - 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1. - 6. The High Pass filter loss factor already add into the correct factor. - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain. 7.5. SPURIOUS EMISSIONS (18~26GHz) ## <u>HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)</u> | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 18144.000 | 50.27 | -5.48 | 44.79 | 74.00 | -29.21 | peak | | 2 | 20000.000 | 50.81 | -5.45 | 45.36 | 74.00 | -28.64 | peak | | 3 | 20560.000 | 50.23 | -5.30 | 44.93 | 74.00 | -29.07 | peak | | 4 | 22072.000 | 49.27 | -4.41 | 44.86 | 74.00 | -29.14 | peak | | 5 | 23064.000 | 48.99 | -3.42 | 45.57 | 74.00 | -28.43 | peak | | 6 | 24248.000 | 47.82 | -2.83 | 44.99 | 74.00 | -29.01 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. ## HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 18224.000 | 50.08 | -5.53 | 44.55 | 74.00 | -29.45 | peak | | 2 | 18528.000 | 50.11 | -5.26 | 44.85 | 74.00 | -29.15 | peak | | 3 | 19784.000 | 50.07 | -5.28 | 44.79 | 74.00 | -29.21 | peak | | 4 | 21544.000 | 49.26 | -4.63 | 44.63 | 74.00 | -29.37 | peak | | 5 | 24864.000 | 48.03 | -2.23 | 45.80 | 74.00 | -28.20 | peak | | 6 | 25728.000 | 47.61 | -0.72 | 46.89 | 74.00 | -27.11 | peak | Note: 1. Measurement = Reading Level + Correct Factor. 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector. Note: All test modes had been tested, only the worst data record in the report. 7.6. SPURIOUS EMISSIONS BELOW 30MHz # SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION) #### 9kHz~ 150kHz | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 0.0100 | 75.22 | -101.40 | -26.18 | 47.60 | -73.78 | peak | | 2 | 0.0114 | 73.50 | -101.40 | -27.90 | 46.46 | -74.36 | peak | | 3 | 0.0206 | 69.42 | -101.35 | -31.93 | 41.32 | -73.25 | peak | | 4 | 0.0316 | 65.24 | -101.40 | -36.16 | 37.61 | -73.77 | peak | | 5 | 0.0675 | 60.64 | -101.56 | -40.92 | 31.02 | -71.94 | peak | | 6 | 0.0981 | 57.27 | -101.78 | -44.51 | 27.77 | -72.28 | peak | Note: 1. Measurement = Reading Level + Correct Factor. 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. ٠. ### 150kHz ~ 490kHz | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 0.1554 | 75.27 | -101.65 | -26.38 | 23.77 | -50.15 | peak | | 2 | 0.1595 | 74.36 | -101.65 | -27.29 | 23.55 | -50.84 | peak | | 3 | 0.1720 | 72.19 | -101.67 | -29.48 | 22.90 | -52.38 | peak | | 4 | 0.2298 | 65.55 | -101.77 | -36.22 | 20.37 | -56.59 | peak | | 5 | 0.3163 | 61.70 | -101.87 | -40.17 | 17.60 | -57.77 | peak | | 6 | 0.4062 | 57.64 | -101.96 | -44.32 | 15.43 | -59.75 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. #### 490kHz ~ 30MHz | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 0.5039 | 64.44 | -62.07 | 2.37 | 33.56 | -31.19 | peak | | 2 | 0.6671 | 63.75 | -62.10 | 1.65 | 31.12 | -29.47 | peak | | 3 | 1.5564 | 57.68 | -62.02 | -4.34 | 23.76 | -28.10 | peak | | 4 | 2.0939 | 56.39 | -61.79 | -5.40 | 29.54 | -34.94 | peak | | 5 | 10.7299 | 53.48 | -60.83 | -7.35 | 29.54 | -36.89 | peak | | 6 | 16.3959 | 53.67 | -60.96 | -7.29 | 29.54 | -36.83 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. Note: All test modes had been tested, only the worst data record in the report. ## 7.7. SPURIOUS EMISSIONS BELOW 1GHz AND ABOVE 30MHz ### SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 58.1300 | 38.05 | -20.55 | 17.50 | 40.00 | -22.50 | QP | | 2 | 75.5899 | 34.76 | -20.99 | 13.77 | 40.00 | -26.23 | QP | | 3 | 100.8100 | 32.47 | -21.08 | 11.39 | 43.50 | -32.11 | QP | | 4 | 241.4600 | 34.17 | -19.14 | 15.03 | 46.00 | -30.97 | QP | | 5 | 323.9100 | 30.48 | -14.74 | 15.74 | 46.00 | -30.26 | QP | | 6 | 944.7100 | 26.32 | -4.46 | 21.86 | 46.00 | -24.14 | QP | Note: 1. Result Level = Read Level + Correct Factor. - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 48.4300 | 32.44 | -20.63 | 11.81 | 40.00 | -28.19 | QP | | 2 | 55.2200 | 31.73 | -20.63 | 11.10 | 40.00 | -28.90 | QP | | 3 | 196.8400 | 26.01 | -16.45 | 9.56 | 43.50 | -33.94 | QP | | 4 | 227.8800 | 30.06 | -18.55 | 11.51 | 46.00 | -34.49 | QP | | 5 | 719.6700 | 26.33 | -8.08 | 18.25 | 46.00 | -27.75 | QP | | 6 | 935.0100 | 26.49 | -4.64 | 21.85 | 46.00 | -24.15 | QP | Note: 1. Result Level = Read Level + Correct Factor. - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto Note: All test modes had been tested, only the worst data record in the report. REPORT NO.: 4789957819-1 Page 49 of 49 ## 8. ANTENNA REQUIREMENTS #### **APPLICABLE REQUIREMENTS** Please refer to FCC §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Please refer to FCC §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the
conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. | | FND OF REPORT | |----------|---------------| | | | | | | | Complies | | | RESULTS | |