

...UN 立形的測度的 LCS Tasting Lat FCC RF Exposure Evaluation

1. Product Information

Product name	TS Smart Mortise Sectional				
Test Model	e-Cronus-7000-OS				
Additional Model No.:	e-Kestros-7000-OS				
Model Declaration	PCB board, structure and internal of these model(s) are the same,				
	So no additional models were tested				
Power Supply	DC 6.0V by 4*AA Batteries				
Hardware Version	MTBL-KONE-AF-T2 V1	I HAM AD AD			
Software Version	01000933	Sa LCS ICS			
Bluetooth					
Frequency Range	2402MHz~2480MHz				
Channel Number	40 channels for Bluetooth V5.0 (DTS)				
Channel Spacing	2MHz for Bluetooth V5.0 (DTS)				
Modulation Type	GFSK for Bluetooth V5.0 (DTS)				
Bluetooth Version	V5.0	<i>A</i>			
Antenna Description	Internal Antenna, 4.93dBi(Max.)	ab de			
RF ID					
Operating Frequency	13.56MHz				
Modulation Type	ASK				
Antenna Description	Internal Antenna, 0dBi(Max.)				
Z-Wave					
Frequency Range	910MHz~920MHz				
Channel Spacing	1MHz				
Channel Number	11 channels	and the second second			
Modulation Type	GFSK Control of the second	ISI LCS Testing Lo			
Antenna Description	Internal Antenna, 2.50dBi(Max.)	Chine -			
Exposure category	General population/uncontrolled enviror	nment			
EUT Type	Production Unit				
Device Type	Mobile Devices				

άī. 9. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

2. Evaluation method and Limit

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

3. Limit

3. 1 Refer Evaluation Method

<u>ANSI C95.1–2019</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz

<u>FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06:</u> Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices.

3. 2 Limit

Limits fo	or Maximum Permi	issible Exposure (N	MPE)/Controlled Ex	xposure
equency	Electric Field		Power Density	Averaging Time
nge(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Oc	cupational/Control	led Exposure	
.3 – 3.0	614	1.63	(100) *	6
6.0 – 30	1842/f	4.89/f	(900/f ²)*	6
0 – 300	61.4	0.163	1.0	6
0 – 1500	/	/	f/300	6
0 - 100,000	/	/	5	6
Limits for	r Maximum Permis	sible Exposure (M	PE)/Uncontrolled E	Exposure
equency	Electric Field			Averaging Time
nge(MHz)	Strength(V/m)			(minute)
Mutasting La	lled Exposure	TING Sting L		
.3 – 3.0	614	1.63	(100) *	30
6.0 – 30	824/f	2.19/f	(180/f ²)*	30
0 – 300	27.5	0.073	0.2	30
0 – 1500	/	/	f/1500	30
0 – 100,000	/	/	1.0	30
	equency nge(MHz) .3 - 3.0 .0 - 30 0 - 300 0 - 1500 - 100,000 Limits for equency nge(MHz) .3 - 3.0 0 - 300 0 - 300 0 - 300 0 - 1500	equency Electric Field Strength(V/m) Limits for Oc .3 - 3.0 614 .0 - 30 1842/f 0 - 300 61.4 0 - 1500 / - 100,000 / Limits for Maximum Permis equency Electric Field nge(MHz) Strength(V/m) Limits for Occ .3 - 3.0 614 .0 - 30 824/f .0 - 300 27.5 .0 - 1500 /	equency nge(MHz)Electric Field Strength(V/m)Magnetic Field Strength(A/m)Limits for Occupational/Control $.3 - 3.0$ 6141.63 $.0 - 30$ 1842/f4.89/f $0 - 300$ 61.40.163 $0 - 1500$ // $- 100,000$ //Limits for Maximum Permissible Exposure (MequencyElectric Field Strength(V/m)Limits for Occupational/Uncontrol $.3 - 3.0$ 614 $.0 - 300$ 614 $.0 - 300$ 824/f $.0 - 300$ 27.50.073 $0 - 1500$ / $.0 - 300$ 27.5 $0 - 1500$ /	nge(MHz)Strength(V/m)Strength(A/m)(mW/cm²)Limits for Occupational/Controlled Exposure $.3 - 3.0$ 6141.63(100) * $.0 - 30$ 1842/f4.89/f(900/f²)* $0 - 300$ 61.40.1631.0 $0 - 1500$ //f/300 $- 100,000$ //5Limits for Maximum Permissible Exposure (MPE)/Uncontrolled ExposureequencyElectric FieldMagnetic FieldPower Densitynge(MHz)Strength(V/m)Strength(A/m)(mW/cm²)Limits for Occupational/Uncontrolled Exposure.3 - 3.06141.63 $.0 - 30$ 824/f2.19/f(180/f²)* $0 - 300$ 27.50.0730.2 $0 - 1500$ ///f/1500

F=frequency in MHz

*=Plane-wave equivalent power density

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator R=distance to the center of radiation of the antenna

5. Conducted Power

Mode	Mada Channel From		Peak Conducted Output					
Wode	Channel	Frequency (MHz)	Power (dBm)					
1 SQ LCS I	0	2402	0.17					
BLE 1M	19	2440	0.78					
	39	2480	-0.25					

[BT LE_2M]

Mada	Channel		Peak Conducted Output
Mode	Channel	Frequency (MHz)	Power (dBm)
	0	2402	0.12
BLE 2M	19	2440	0.60
	39	2480	-0.41

Test Procedure

TX frequency range: 13.56MHz, Limit: 824/13.56=60.77V/m Device category: Mobile device (Distance: 20cm) Max. Field Strength: 43.08dBuV/m @3m @20cm=@3m+40*log(3/0.2)= 90.124dBuV/m For 13.56MHz: 90.124dBuV/m=10^(90.124/20)/10^6=0.032V/m< 60.77V/m

Test Procedure

TX frequency range: 910MHz(Worst result), Limit: 910/1500=0.6067V/m Device category: Mobile device (Distance: 20cm) Max. Field Strength: 86.40dBuV/m @3m EIRP=E-104.8+20logD=86.40-104.8+20log3=-8.86dBm Maximum Conducted Output Power: -8.86dBm Turn-up: -8±1dBm

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

6. Manufacturing Tolerance

anut	acturing Tolerance				
	WE P	[BT LE	E_1M]	101	- we mill the tra
		BT LE	(Peak)		Al fizzing Lab
	Channel	Channel 0	Channel 19	Channel 39	0.4.1
	Target (dBm)	0	0	0	
	Tolerance ±(dB)	1.0	1.0	1.0	

[BT LE_2M]						
BT 2LE (Peak)						
Channel Channel 0 Channel 19 Channel 3						
Target (dBm)	0	0	0			
Tolerance ±(dB)	1.0	1.0	1.0			

7. Evaluation Results

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

		[E	BILE_1MJ			
	Output power		Antenna	Antenna	MPE	MPE
Modulation Type	dBm	mW	Gain (dBi)	Gain (linear)	(mW/cm2)	Limits (mW/cm2)
GFSK	1.0	1.2589	4.93	3.1117	0.0008	1.0000

	a ili		11 I E	BT LE_2M]	- 12		- 11)	
		Outpu	ut power	Antenna	Antenna Gain	MPE	MPE	
V	Modulation Type	dBm	mW	Gain (dBi)	(linear)	(mW/cm2)	Limits (mW/cm2)	
No.	GFSK	1.0	1.2589	4.93	3.1117	0.0008	1.0000	

			[Z-Wave]			
	Output power		Antenna	Antenna	MPE	MPE
Modulation Type	dDrea	mW	Gain	Gain	(mW/cm2)	Limits
	dBm	IIIVV	(dBi)	(linear)	(IIIVV/CIIIZ)	(mW/cm2)
GFSK	-7.0	0.1995	2.5	1.7783	0.0001	0.6067

Remark:

2. Output power was adjust to duty cycle at 100% if measured duty cycle less than 98%; 3. MPE evaluate distance is 20cm from user monucleared by the less than 98%;

3. MPE evaluate distance is 20cm from user manual provide by manufacturer.

Simultaneous Transmission MPE

BLE Max MPE (Ratio)	NFC Max MPE (Ratio)	simultaneous MPE (Ratio)	MPE Limits (Ratio)
0.0008	0.0005	0.0013	1.0000

8. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

.....THE END OF REPORT......

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity