APPENDIX D: FCC PART 1.1307, 1.1310, 2.1091, 2.1093: RF EXPOSURE

General Information:

FCCID: ALH36033110

Environment: Occupational/Controlled Exposure

- 2. Operating Configurations and Test Conditions:
- 2.1 Antenna Type(s):

Antenna	Туре	Gain (dBi)	Numeric Gain
Half-Wave dipole	Dipole	2.15	1.65

Frequency Range	Frequency Tolerance (ppm)	Emission Designator
450-490 MHz	2.5	16K0F3E
450-490 MHz	2.5	11K0F3E

2.2 dBi Antenna

Output Power (Worst Case)	Time averaging as an inherent property (50.0 % Duty Cycle, -3.0 dB) (W)	
Conducted	25.82	
Conducted	4.90	

3. MPE Calculation:

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters:

The Electric field generated for a 1mW/cm² exposure (S) is calculated as follows:

$$S = \frac{E^2}{Z}$$

where: S = Power density

E = Electric field
Z = Impedance.

$$E(V/m) = \sqrt{S \times Z}$$
 1.6 mW/cm² = 16 W/m²

The impedance of free space is 337 ohms, where E and H fields are perpendicular.

$$E(V/m) = \sqrt{16 \times 377} = 77.6 \text{ V/m}$$

Client: Kenwood USA Corp. Model: TK-8100-1 Standards: FCC Part 90/IC RSS-119 Report Number: 2003163 FCC ID: ALH36033110

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters above and solving for d below:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d} \quad \text{and} \quad d = \frac{\sqrt{30 \times P \times G}}{E(V/m)} \quad \text{Power density: } P_d \left(mW/cm^2 \right) = \frac{E^2}{3770}$$

The limit for general population/uncontrolled exposure environment above 1500MHz is 1 $\,mW$ / cm^2 .

SEPARATION DISTANCE:

Separation	Antenna Gain (dBi)	
Distance A	2.15	Duty Cycle (%)
Power ^B (Watt)	(cm)	
25.82	32.0	50.0
25.82	46.0	100.0

Calculations:

$$50.0\% \text{ duty cycle} = 0.32m = \frac{\sqrt{30 \times 12.9 \times 1.65}}{77.6}$$

100% duty cycle =
$$0.46m = \frac{\sqrt{30 \times 25.8 \times 1.65}}{77.6}$$

Notes

A = Distances are calculated for the largest (worst-case) separation distance as applicable.

CONCLUSION:

The device complies with the MPE requirements by providing a safe separation distance between the antenna, including any radiating structure, and any persons.