Appendix B: Test Setup Photos Body worn - Front (0mm) Body worn - Left (0mm) Body worn - Right (0mm) Body worn – Bottom (0mm) Body worn - Top (0mm) # TCT通测检测 TESTING CENTRE TECHNOLOGY Hotspo Front (0mm) Hotspo Back (0mm) Hotspot Left (0mm) Hotspot Top (0mm) Body worn – Bottom (0mm) # **Appendix C: Probe Calibration Certificate** **COMOSAR E-FIELD Probe** # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.180.7.22.BES.B # SHENZHEN TONGCE TESTING LAB 2101 & 2201, ZHENCHANG FACTORY RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAO'AN DISTRICT SHENZHEN, GUANGDONG, 518103, PEOPLE'S REPUBLIC OF CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE **SERIAL NO.: SN 25/22 EPGO375** # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 06/29/2024 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction # Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/11 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.180.7.22.BES.B | | Name | Function | Date | Signature | |------------------------|----------------|-------------------------|-----------|--------------| | Prepared by : | Jérôme Le Gall | Measurement Responsible | 6/30/2024 | TA . | | Checked & approved by: | Jérôme Luc | Technical Manager | 6/30/2024 | JS | | Authorized by: | Yann Toutain | Laboratory Director | 7/05/2024 | Gann TOUTAAN | | | Customer Name | | |----------------|-----------------|--| | | Shenzhen Tongce | | | Distribution : | Testing Lab | | | | | | | Issue | Name | Date | Modifications | |-------|----------------|-----------|-----------------| | A | Jérôme Le Gall | 6/30/2024 | Initial release | | | | | | | | | | | | | | | | Page: 2/11 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B # TABLE OF CONTENTS | 1 | Dev | ice Under Test4 | | |---|------|-----------------------------|---| | 2 | Prod | luct Description | | | | 2.1 | General Information | 4 | | 3 | Mea | surement Method4 | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | 4 | | | 3.3 | Lower Detection Limit | 5 | | | 3.4 | Isotropy | 5 | | | 3.1 | Boundary Effect | 5 | | 4 | Mea | surement Uncertainty6 | | | 5 | Cali | bration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 8 | | | 5.4 | Isotropy | 9 | | 6 | List | of Equipment | | Page: 3/11 mvg) # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B Report No.: TCT241017E008 # 1 DEVICE UNDER TEST | Device Under Test | | | | |--|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | SN 25/22 EPGO375 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.197 MΩ | | | | | Dipole 2: R2=0.230 MΩ | | | | | Dipole 3: R3=0.208 MΩ | | | # 2 PRODUCT DESCRIPTION # 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 – MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | # 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. # 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. # 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. Page: 4/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 141 of 237 TESTING CENTRE TECHNOLOGY COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref. ACR 180 7 22 BES B Report No.: TCT241017E008 # 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. # 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. # 3.1 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{step} along lines that are approximately normal to the surface: $$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \frac{\left[d_{\mathrm{be}} + d_{\mathrm{step}}\right]^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{inf}}/(\sigma \mu)}\right)}{\delta/2} \quad \mathrm{for} \left[d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; △SARbe in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). Page: 5/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR 180.7.22 BES B # 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | | |--|--------------------------|-----------------------------|---------|----|-----------------------------|--| | ERROR SOURCES | Uncertainty
value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | | Expanded uncertainty
95 % confidence level k = 2 | | | | | 14 % | | # 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | | | |--------------------------------|--|--|--|--| | Liquid Temperature 20 +/- 1 °C | | | | | | Lab Temperature 20 +/- 1 °C | | | | | | Lab Humidity 30-70 % | | | | | # 5.1 SENSITIVITY IN AIR | | | Normz dipole | |---------------------|---------------------|---------------------| | $1 (\mu V/(V/m)^2)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 0.64 | 0.53 | 0.44 | | DCP dipole 1 | | | |--------------|------|------| | (mV) | (mV) | (mV) | | 106 | 108 | 109 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Page: 6/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B Dipole 1 Dipole 2 Dipole 3 # 5.2 LINEARITY # Linearity Linearity:+/-1.94% (+/-0.09dB) Page: 7/11 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B # 5.3 SENSITIVITY IN LIQUID | Liquid | Frequency | ConvF | |--------|-----------|-------| | | (MHz +/- | | | | 100MHz) | | | HL750 | 750 | 1.71 | | BL750 | 750 | 1.78 | | HL900 | 900 | 1.91 | | BL900 | 900 | 1.96 | | HL1800 | 1800 | 2.08 | | BL1800 | 1800 | 2.16 | | HL2000 |
2000 | 2.03 | | BL2000 | 2000 | 2.10 | | HL2450 | 2450 | 2.31 | | BL2450 | 2450 | 2.37 | | HL2600 | 2600 | 2.16 | | BL2600 | 2600 | 2.23 | | HL3500 | 3500 | 2.21 | | BL3500 | 3500 | 2.28 | | HL3700 | 3700 | 3.45 | | BL3700 | 3700 | 3.15 | | HL4600 | 4600 | 3.30 | | BL4600 | 4600 | 3.70 | | HL5200 | 5200 | 2.01 | | BL5200 | 5200 | 2.08 | | HL5600 | 5600 | 2.07 | | BL5600 | 5600 | 2.12 | | HL5800 | 5800 | 2.06 | | BL5800 | 5800 | 2.13 | LOWER DETECTION LIMIT: 7mW/kg Page: 8/11 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B # 5.4 ISOTROPY # HL1800 MHz Page: 9/11 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.180.7.22.BES.B # LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |---------------------------------------|-------------------------|----------------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2024 | 08/2027 | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2023 | 10/2026 | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2023 | 02/2026 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2024 | 06/2027 | | | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2023 | 11/2026 | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal
required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_1 | Validated. No cal
required. | Validated. No cal
required. | | | | Waveguide | MVG | SN 32/16 WG6_1 | Validated. No cal
required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G500_1 | Validated. No cal
required. | Validated. No cal
required. | | | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal
required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800H_1 | Validated. No cal required. | Validated. No cal
required. | | | | Waveguide | MVG | SN 32/16 WG10_1 | Validated. No cal required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_3G500_1 | Validated. No cal required. | Validated. No cal
required. | | | | Waveguide | MVG | SN 32/16 WG12_1 | Validated. No cal
required. | Validated. No cal
required. | | | Page: 10/11 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B | Liquid transition | MVG | | | Validated. No cal
required. | |----------------------------------|--------------|----------|---------|--------------------------------| | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2024 | 06/2027 | Page: 11/11 Dielectric Probe Calibration Report No.: TCT241017E008 # **Dielectric Probe Calibration Report** Ref: ACR.138.4.33.SATU.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE FREQUENCY: 0.3-6 GHZ SERIAL NO.: SN 19/15 OCPG 71 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 _Calibration Date: 06/05/2024_ # Summary: This document presents the method and results from an accredited Dielectric Probe calibration performed in MVG USA using the LIMESAR test bench. All calibration results are traceable to national metrology institutions. # SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A | | Name | Function | Date | Signature | |--------------|---------------|-----------------|------------|----------------| | Prepared by: | Jérôme LUC | Product Manager | 06/05/2024 | JES | | Checked by : | Jérôme LUC | Product Manager | 06/05/2024 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | Kim Putthmerti | | | Customer Name | |------------------|--------------------------------| | / 11613707111011 | SHENZHEN TONGCE
TESTING LAB | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2024 | Initial release | | | | | | | | | | | | | Page: 2/7 # SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A # TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|-------------------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Liquid Permittivity Measurements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Dielectric Permittivity Measurement | 5 | | 6 | Cal | bration Measurement Results 6 | | | | 6.1 | Liquid Permittivity Measurement | 6 | | 7 | List | of Equipment | | Page: 3/7 # SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A # 1 INTRODUCTION This document contains a summary of the suggested methods and requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards. # 2 DEVICE UNDER TEST | Device Under Test | | | |-------------------------------------|--------------------------|--| | Device Type | LIMESAR DIELECTRIC PROBE | | | Manufacturer | MVG | | | Model | SCLMP | | | Serial Number | SN 19/15 OCPG 71 | | | Product Condition (new / used) Used | | | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's Dielectric Probes are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. The product is designed for use with the LIMESAR test bench only. Figure 1 - MVG LIMESAR Dielectric Probe Page: 4/7 ### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A # 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209-1 & 2 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 LIQUID PERMITTIVITY MEASUREMENTS The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards. # 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 <u>DIELECTRIC PERMITTIVITY MEASUREMENT</u> The following uncertainties apply to the Dielectric Permittivity measurement: | Uncertainty analysis of Permittivity Measurement | | | | | | |---|-----------------------------|-----------------------------|---------|--------|--------------------------------| | ERROR SOURCES | Uncertainty
value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | | Repeatability (n repeats, mid-band) | 4.00% | N | 1 | 1 | 4.000% | | Deviation from reference liquid | 5.00% | R | √3 | 1 | 2.887% | | Network analyser-drift, linearity | 2.00% | R | √3 | 1 | 1.155% | | Test-port cable variations 0.00% U $\sqrt{2}$ 1 | | | | 0.000% | | | Combined standard uncertainty | | | | | 5.066% | | Expanded uncertainty (confidence level of 95%, k = 2) | | | | | 10.0% | | Uncertainty analysis of Conductivity Measurement | | | | | | |---|-----------------------------|-----------------------------|---------|--------|--------------------------------| | ERROR SOURCES | Uncertainty
value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | | Repeatability (n repeats, mid-band) | 3.50% | N | 1 | 1 | 3.500% | | Deviation from reference liquid | 3.00% | R | √3 | 1 | 1.732% | | Network analyser-drift, linearity | 2.00% | R | √3 | 1 | 1.155% | | Test-port cable variations | 0.00% | U | √2 | 1 | 0.000% | | Combined standard uncertainty | | | | 4.072% | | | Expanded uncertainty (confidence level of 95%, k = 2) | | | | | 8.1% | Page: 5/7 # SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A # 6 CALIBRATION MEASUREMENT RESULTS Measurement Condition | Software | LIMESAR | |--------------------|---------| | Liquid Temperature | 21°C | | Lab Temperature | 21°C | | Lab Humidity | 44% | # 6.1 LIQUID PERMITTIVITY MEASUREMENT A liquid of known characteristics (methanol at 20°C) is measured with the probe and the results (complex permittivity $\epsilon'+j\epsilon''$) are compared with the well-known theoretical values for this liquid. Page: 6/7 # SAR DIELECTRIC PROBE CALIBRATION REPORT Ref:
ACR.138.4.33..SATU.A # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |--|------------------------|-----------------------------|-----------------------------|-----------------------------| | Equipment Manufacturer / Description Model Identification No. Current Calibration Da | | Current
Calibration Date | Next Calibration
Date | | | LIMESAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02/2027 | | Methanol CAS 67-56-1 | Alpha Aesar | Lot D13W011 | Validated. No cal required. | Validated. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 09/2024 | 09/2025 | # **Appendix D: Dipole Calibration Report** SID 750 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.3.15.SATU.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA # **COMOSAR REFERENCE DIPOLE** FREQUENCY: 750 MHZ SERIAL NO.: SN 16/15 DIP 0G750-368 # Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2024 # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2024 | Jes | | Checked by : | Jérôme LUC | Product Manager | 06/05/2024 | Jes | | Approved by: | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | them Puthowski | Customer Name SHENZHEN TONGCE TESTING LAB | Date | Modifications | |------------|-----------------| | 06/05/2024 | Initial release | | | | | | | | | | | | | Page: 2/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A # TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|--|----| | 2 | Dev | ice Under Test | | | 3 | Proc | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | 8 | List | of Equipment 11 | | # SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.156.3.15.SATU.A # 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. # 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|----------------------------------|--| | Device Type | COMOSAR 750 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID750 | | | Serial Number | SN 16/15 DIP 0G750-368 | | | Product Condition (new / used) | Used | | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. **Figure 1** – MVG COMOSAR Validation Dipole Page: 4/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A # 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. # 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | # 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|---------------------------------------| | 3 - 300 | 0.05 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|-----------------------------| | 1 g | 20.3 % | Page: 5/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.156.3.15.SATU.A | 10 g | 20.1 % | |------|--------| | | | # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 750 | -26.63 | -20 | $54.1 \Omega + 1.4 j\Omega$ | # 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 750 | -24.18 | -20 | $52.4 \Omega + 5.8 j\Omega$ | # 6.3 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h m | m | d n | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | PASS | 100.0 ±1 %. | PASS | 6.35 ±1 %. | PASS | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | # 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 <u>HEAD LIQUID MEASUREMENT</u> | Relative per | mittivity (ε _r ') | Conductiv | ity (σ) S/m | |--------------|--|---|---| | required | measured | required | measured | | 45.3 ±5 % | | 0.87 ±5 % | | | 43.5 ±5 % | | 0.87 ±5 % | | | 41.9 ±5 % | PASS | 0.89 ±5 % | PASS | | 41.5 ±5 % | | 0.90 ±5 % | | | 41.5 ±5 % | | 0.97 ±5 % | | | 40.5 ±5 % | | 1.20 ±5 % | | | 40.4 ±5 % | | 1.23 ±5 % | | | 40.2 ±5 % | | 1.31 ±5 % | | | 40.1 ±5 % | |
1.37 ±5 % | | | | required 45.3 ±5 % 43.5 ±5 % 41.9 ±5 % 41.5 ±5 % 40.5 ±5 % 40.2 ±5 % | 45.3 ±5 % 43.5 ±5 % 41.9 ±5 % PASS 41.5 ±5 % 40.5 ±5 % 40.4 ±5 % 40.2 ±5 % | required measured required 45.3 ±5 % 0.87 ±5 % 43.5 ±5 % 0.87 ±5 % 41.9 ±5 % PASS 0.89 ±5 % 41.5 ±5 % 0.90 ±5 % 40.5 ±5 % 1.20 ±5 % 40.4 ±5 % 1.23 ±5 % 40.2 ±5 % 1.31 ±5 % | Page: 7/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A Report No.: TCT241017E008 | 1800 | 40.0 ±5 % | 1.40 ±5 % | | |------|-----------|-----------|--| | 1900 | 40.0 ±5 % | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | 2.91 ±5 % | | | | | | | # 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 41.8 sigma: 0.90 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR | 1 g SAR (W/kg/W) | | (W/kg/W) | |------------------|----------|------------------|----------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | 8.31 (0.73) | 5.55 | 5.71 (0.54) | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A | 1900 | 39.7 | 20.5 | | |------|------|------|--| | 1950 | 40.5 | 20.9 | | | 2000 | 41.1 | 21.1 | | | 2100 | 43.6 | 21.9 | | | 2300 | 48.7 | 23.3 | | | 2450 | 52.4 | 24 | | | 2600 | 55.3 | 24.6 | | | 3000 | 63.8 | 25.7 | | | 3500 | 67.1 | 25 | | # 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_r') | | Conductiv | ity (σ) S/m | |------------------|---------------------------------------|----------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | PASS | 0.96 ±5 % | PASS | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | Page: 9/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.3.15.SATU.A | 2600 | 52.5 ±5 % | 2.16 ±5 % | | |------|------------|------------|--| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | 6.00 ±10 % | | # 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 56.3 sigma: 0.98 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 750 | 8.46 (0.77) | 5.81 (0.45) | Page: 10/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.156.3.15.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|-----------------------------|-----------------|---|---|--| | Equipment
Description | · · · I Identification No I | | Next Calibration
Date | | | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02/2027 | | | Calipers | Carrera | CALIPER-01 | 02/2024 | 02/2027 | | | Reference Probe | MVG | EPG122 SN 18/11 | 02/2024 | 02/2025 | | | Multimeter | Keithley 2000 | 1188656 | 02/2024 | 02/2027 | | | Signal Generator | Agilent E4438C | MY49070581 | 02/2024 | 02/2027 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | HP E4418A | US38261498 | 02/2024 | 02/2027 | | | Power Sensor | HP ECP-E26A | US37181460 | 02/2024 | 02/2027 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 02/2024 | 02/2027 | | # **SAR Reference Dipole Calibration Report** Ref: ACR.156.4.15.SATU.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 16/15 DIP 0G835-369 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2024 # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2024 | JS | | Checked by: | Jérôme LUC | Product Manager | 06/05/2024 | JS | | Approved by : | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | Jum Putthowski | |
Customer Name | |--------------------------------| | SHENZHEN TONGCE
TESTING LAB | | Issue | Date 6 | Modifications | |-------|------------|-----------------| | A | 06/05/2024 | Initial release | | | | | | | | | | | | | | | | | Page: 2/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A # TABLE OF CONTENTS | I | Intr | oduction4 | | |---|------|--|----| | 2 | Dev | rice Under Test4 | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | 8 | List | of Fauinment 11 | | Page: 3/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A # 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. # 2 DEVICE UNDER TEST | Device Under Test | | |--------------------------------|----------------------------------| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | Manufacturer | MVG | | Model | SID835 | | Serial Number | SN 16/15 DIP 0G835-369 | | Product Condition (new / used) | Used | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528
and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 3 - 300 | 0.05 mm | | #### 5.3 <u>VALIDATION MEASUREMENT</u> The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A | 10 g | 20.1 % | |------|--------| #### 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | | |-----------------|------------------|------------------|-----------------------------|--| | 835 | -32.78 | -20 | $51.5 \Omega + 1.7 j\Omega$ | | ## 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 835 | -23.99 | -20 | $47.3 \Omega + 5.6 i\Omega$ | #### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | ency MHz L mm h mm | | L mm h mm d mm | | | | |---------------|--------------------|----------|----------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A | I | | | | | | | |----------|-------------|------|-------------|------|------------|------| | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | PASS | 89.8 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductivity (σ) S/m | | |------------------|--|----------|----------------------|----------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | PASS | 0.90 ±5 % | PASS | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A | 1800 | 40.0 ±5 % | 1.40 ±5 % | |------|-----------|-----------| | 1900 | 40.0 ±5 % | 1.40 ±5 % | | 1950 | 40.0 ±5 % | 1.40 ±5 % | | 2000 | 40.0 ±5 % | 1.40 ±5 % | | 2100 | 39.8 ±5 % | 1.49 ±5 % | | 2300 | 39.5 ±5 % | 1.67 ±5 % | | 2450 | 39.2 ±5 % | 1.80 ±5 % | | 2600 | 39.0 ±5 % | 1.96 ±5 % | | 3000 | 38.5 ±5 % | 2.40 ±5 % | | 3500 | 37.9 ±5 % | 2.91 ±5 % | | | | | ## 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 42.3 sigma: 0.92 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------|-------------------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 9.53 (0.82) | 6.22 | 6.12 (0.58) | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A | 1900 | 39.7 | 20.5 | | |------|------|------|--| | 1950 | 40.5 | 20.9 | | | 2000 | 41.1 | 21.1 | | | 2100 | 43.6 | 21.9 | | | 2300 | 48.7 | 23.3 | | | 2450 | 52.4 | 24 | | | 2600 | 55.3 | 24.6 | | | 3000 | 63.8 | 25.7 | | | 3500 | 67.1 | 25 | | ## 7.3 <u>BODY LIQUID MEASUREMENT</u> | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | PASS | 0.97 ±5 % | PASS | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | Page: 9/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.4.15.SATU.A | 2600 | 52.5 ±5 % | 2.16 ±5 % | |------|------------|------------| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | 5800 | 48.2 ±10 % | 6.00 ±10 % | # 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 53.3 sigma: 0.97 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 835 | 9.62 (0.91) | 6.44 (0.59) | Page: 10/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.156.4.15.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |--|------------------------|--------------------|---|---| | Equipment Manufacturer / Description Model | | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02/2027 | | Calipers | Carrera | CALIPER-01 | 02/2024 | 02/2027 | | Reference Probe | MVG | EPG122 SN 18/11 | 02/2024 | 02/2025 | | Multimeter | Keithley 2000 | 1188656 | 02/2024 | 02/2027 | | Signal Generator | Agilent E4438C | MY49070581 | 02/2024 |
02/2027 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 02/2024 | 02/2027 | | Power Sensor | HP ECP-E26A | US37181460 | 02/2024 | 02/2027 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 02/2024 | 02/2027 | Page: 11/11 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.5.15.SATU.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA # MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 900 MHZ SERIAL NO.: SN 16/15 DIP 0G900-370 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2021 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. ## SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT241017E008 Ref: ACR.156.5.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2021 | JES | | Checked by: | Jérôme LUC | Product Manager | 06/05/2021 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 06/05/2021 | them Putthowski | | | Customer Name | |----------------|--------------------------------| | Distribution : | SHENZHEN TONGCE
TESTING LAB | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2021 | Initial release | | | | | | | | | | | | | | | | | Page: 2/11 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A ## TABLE OF CONTENTS | 1 | mtre | oduction | | |---|------|--|----| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | 8 | List | of Equipment 11 | | Page: 3/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A ## 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |---|-----|--| | Device Type COMOSAR 1800 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | Model SID1800 | | | | Serial Number SN 16/15 DIP 1G800-371 | | | | Product Condition (new / used) Used | | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A Report No.: TCT241017E008 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. ## 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | # 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 <u>VALIDATION MEASUREMENT</u> The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | | |-------------|----------------------|--|--| | 1 g | 20.3 % | | | Page: 5/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 183 of 237 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 10 g | 20.1 % | |------|--------| #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) Return Loss (dB) | | Requirement (dB) | Impedance | |----------------------------------|--------|------------------|-----------------| | 1800 | -36.92 | -20 | 48.3 Ω - 0.5 iΩ | #### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 1800 | -24.67 | -20 | 47.6 Ω - 5.1 iΩ | # 6.3 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | PASS | 41.7 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | | | | | | - | - | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductivity (σ) S/m | | |------------------|--|----------|----------------------|----------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11