21_GSM1900_GPRS (2 Tx slots)_Back_10mm_Ch512 Communication System: UID 0, GPRS/EDGE (2 Tx slots) (0); Frequency: 1850.2 MHz; Duty Cycle: Date: 2018.9.9 1:4.15 Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; σ = 1.445 S/m; ϵ_r =52.961; ρ = 1000 kg/m^3 Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.3, 8.3, 8.3); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch512/Area Scan (71x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.397 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.14 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.473 W/kg SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.145 W/kg Maximum value of SAR (measured) = 0.401 W/kg 0 dB = 0.401 W/kg = -3.97 dBW/kg #### 22_WCDMA V_RMC 12.2Kbps_Back_10mm_Ch4132 Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 826.4 MHz; $\sigma = 0.977$ S/m; $\epsilon_r = 54.45$; $\rho = 1000$ kg/m³ Date: 2018.9.6 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(10.33, 10.33, 10.33); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch4132/Area Scan (71x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.281 W/kg Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.89 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.494 W/kg SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.136 W/kg Maximum value of SAR (measured) = 0.328 W/kg #### 23_WCDMA II_RMC 12.2Kbps_Back_10mm_Ch9538 Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.524$ S/m; $\epsilon_r = 52.8$; $\rho = 1000_{kg/m}^3$ Date: 2018.9.9 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.3, 8.3, 8.3); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch9538/Area Scan (71x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.837 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.15 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.981 W/kg SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.290 W/kg SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.290 W/kg Maximum value of SAR (measured) = 0.834 W/kg 0 dB = 0.834 W/kg = -0.79 dBW/kg #### 24_LTE Band 13_10M_QPSK_1RB_25Offset_Back _10mm_Ch23230 Communication System: UID 0, LTE (0); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL_750 Medium parameters used: f = 782 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 54.881$; $\rho = 1000$ Date: 2018.9.6 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(10.65, 10.65, 10.65); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch23230/Area Scan (71x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.339 W/kg Ch23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.40 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.624 W/kg SAR(1 g) = 0.318 W/kg; SAR(10 g) = 0.176 W/kg Maximum value of SAR (measured) = 0.406 W/kg #### 25_LTE Band 5_10M_QPSK_1RB_25Offset_Back _10mm_Ch20525 Communication System: UID 0, LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.988$ S/m; $\varepsilon_r = 54.345$; $\rho =$ Date: 2018.9.6 1000 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(10.33, 10.33, 10.33); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch20525/Area Scan (71x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.475 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.57 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.799 W/kg SAR(1 g) = 0.433 W/kg; SAR(10 g) = 0.232 W/kg Maximum value of SAR (measured) = 0.555 W/kg 0 dB = 0.475 W/kg = -3.23 dBW/kg #### 26_LTE Band 4_20M_QPSK_1RB_49Offset_Back_10mm_Ch20175 Communication System: UID 0, FDD_LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: MSL_1750 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.426$ S/m; $\varepsilon_r = 54.754$; $\rho = 1000$ kg/m³ Date: 2018.9.8 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.71, 8.71, 8.71); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch20175/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.08 W/kg Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.78 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.802 W/kg; SAR(10 g) = 0.452 W/kg SAR(1 g) = 0.802 W/kg; SAR(10 g) = 0.452 W/kg Maximum value of SAR (measured) = 1.19 W/kg 0 dB = 1.19 W/kg = 0.76 dBW/kg #### 27 LTE Band 2 20M QPSK 1RB 49Offset Back 10mm 18900 Communication System: UID 0, FDD_LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.486$ S/m; $\epsilon_r = 52.847$; $\rho = 1000$ kg/m³ Date: 2018.9.9 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.3, 8.3, 8.3); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch18900/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.771 W/kg Ch18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.50 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.927 W/kg SAR(1 g) = 0.515 W/kg; SAR(10 g) = 0.279 W/kg Maximum value of SAR (measured) = 0.279 W/kg 0 dB = 0.772 W/kg = -1.12 dBW/kg #### 28_WLAN2.4GHz_802.11b 1Mbps_Back_10mm_Ch6 Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1.025 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2.004$ S/m; $\varepsilon_r = 53.091$; $\rho = 1000$ Date: 2018.9.11 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.99, 7.99, 7.99); Calibrated: 2017.12.14; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2017.12.4 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch6/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.319 W/kg Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.23 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.391 W/kg SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.102 W/kg Maximum value of SAR (measured) = 0.320 W/kg 0 dB = 0.320 W/kg = -4.95 dBW/kg ### Appendix C. DASY Calibration Certificate The DASY calibration certificates are shown as follows. Sporton International (Kunshan) Inc. TEL: 86-512-57900158 / FAX: 86-512-57900958 FCC ID : SRQ-Z5151V Page C1 of C1 Form version. : 170509 Issued Date : Oct. 12, 2018 **Report No. : FA831902** Client Sporton Certificate No: Z17-97258 ### CALIBRATION CERTIFICATE Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Object D750V3 - SN: 1065 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 4, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|--------------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 |
23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled
Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | E 200 E 300 | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | G. E. | | Reviewed by: | Lin Hao | SAR Test Engineer | 林枪 | | Approved by: | Qi Dianyuan | SAR Project Leader | and . | Issued: December 8, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.4 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.10 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 8.33 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.39 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 5.53 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1,0 °C | **** | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.14 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 8.72 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1VV | 5.76 mW /g ±18.7 % (k=2) | | | | | ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.9Ω- 3.76jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.8Ω- 2.81jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 30.2dB | | #### General Antenna Parameters and Design | THE ACCUMENT OF THE ACCUMENT | | |--|----------| | Electrical Delay (one direction) | 0.896 ns | | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | Manufactured by | SPEAG | |--|-----------------|-------| |--|-----------------|-------| #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1065 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.896$ S/m; $\varepsilon_r = 41.36$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(10.05, 10.05, 10.05); Calibrated: 1/23/2017; Date: 12.04.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.21 V/m; Power Drift = 0.01 dB Peak SAR
(extrapolated) = 3.20 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.82 W/kg 0 dB = 2.82 W/kg = 4.50 dBW/kg Certificate No: Z17-97258 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1065 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.936$ S/m; $\epsilon_r = 55.23$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.8, 9.8, 9.8); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Date: 12.04.2017 ## Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.07 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 2.83 W/kg 0 dB = 2.83 W/kg = 4.52 dBW/kg Certificate No: Z17-97258 Page 7 of 8 #### Impedance Measurement Plot for Body TSL In Collaboration with ### CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z17-97259 #### CALIBRATION CERTIFICATE Object D835V2 - SN: 4d091 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 5, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 9, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97259 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.7 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | · | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.32 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.48 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.53 mW / g | | SAR for nominal Head TSL parameters | normalized to 1VV | 6.22 mW /g ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) *C | 54.7 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | U ==== | | SAR result with Body TSL | Condition | | |--------------------|---| | 250 mW input power | 2.42 mW / g | | normalized to 1W | 9.72 mW /g ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 1.60 mW / g | | normalized to 1W | 6.42 mW /g ± 18.7 % (k=2) | | | 250 mW input power
normalized to 1W
Condition
250 mW input power | Certificate No: Z17-97259 Page 3 of 8 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.7Ω- 3.69jΩ | | |--------------------------------------|---------------|--| | Return Loss | -28.1dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.6Ω- 4.62jΩ | |--------------------------------------|---------------| | Return Loss | - 24.5dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.258 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z17-97259 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.876$ S/m; $\epsilon_r = 41.67$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(9.73, 9.73, 9.73); Calibrated:
1/23/2017; Date: 12.04.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.89V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.48 W/kg SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 3.10 W/kg 0 dB = 3.10 W/kg = 4.91 dBW/kg Certificate No: Z17-97259 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.962$ S/m; $\varepsilon_r = 54.65$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017; Date: 12.05.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.88 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.20 W/kg 0 dB = 3.20 W/kg = 5.05 dBW/kg Certificate No: Z17-97259 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Page 8 of 8 ## S D E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client Sporton Certificate No: Z17-97260 ### CALIBRATION CERTIFICATE Object D1750V2 - SN: 1069 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 5, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ™ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 先生 | | Reviewed by: | Lin Hao | SAR Test Engineer | 献光 | | Approved by: | Qi Dianyuan | SAR Project Leader | and | Issued: December 9, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97260 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | | | The state of s | | ### Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 200 | 593 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.31 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 37.0 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.96 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.8 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body
TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | 222 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.40 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 38.0 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.03 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 mW /g ± 18.7 % (k=2) | ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.3Ω+ 1.19 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 37.2 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.3Ω+ 0.51 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.0 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.084 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|---------| | | 31 2.13 | Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.378$ S/m; $\epsilon r = 39.46$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.49, 8.49, 8.49); Calibrated: 1/23/2017; Date: 12.05.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.28 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.31 W/kg; SAR(10 g) = 4.96 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Certificate No: Z17-97260 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle; 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.469 \text{ S/m}$; $\epsilon_r = 53.75$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.21, 8.21, 8.21); Calibrated: 1/23/2017; Date: 12.05.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.22 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.4 W/kg; SAR(10 g) = 5.03 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Certificate No: Z17-97260 Page 7 of 8 #### Impedance Measurement Plot for Body TSL In Collaboration with ## S D e a g Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client Sporton Certificate No: Z17-97262 ### **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d118 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 6, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) € and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 数机 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林·格 | | Approved by: | Qi Dianyuan | SAR Project Leader | 23 | Issued: December 10, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97262 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | Cara | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input
power | 10.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1VV | 39.7 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.19 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.54 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 17 | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | | |---|--------------------|---------------------------|--| | SAR measured | 250 mW input power | 10.2 mW/g | | | SAR for nominal Body TSL parameters | normalized to 1W | 40.4 mW/g ± 18.8 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | | SAR measured | 250 mW input power | 5.30 mW / g | | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 mW /g ± 18.7 % (k=2) | | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω+ 6.60jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.6Ω+ 6.11jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.8dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) 1.067 ns | |---| |---| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.409 \text{ S/m}$; $\epsilon r = 39.36$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017; Date: 12.06.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z17-97262 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\varepsilon_r = 52.89$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017; Date: 12.06,2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.27 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.3 W/kg Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: Z17-97262 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z17-97263 #### CALIBRATION CERTIFICATE Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Object D2450V2 - SN: 840 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 7, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | STATE TO SW | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 临礼 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | and_ | Issued: December 10, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage
probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0,1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | Temperature | Permittivity | Conductivity | |-----------------|----------------------------|--| | 22.0 °C | 39.2 | 1.80 mho/m | | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.83 mho/m ±6 % | | <1.0 °C | 5,500 | | | | 22.0 °C
(22.0 ± 0.2) °C | 22.0 °C 39.2
(22.0 ± 0.2) °C 39.8 ± 6 % | #### SAR result with Head TSL | Condition | | |--------------------|---| | 250 mW input power | 13.2 mW / g | | normalized to 1W | 52.6 mW /g ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 6.14 mW / g | | normalized to 1W | 24.5 mW /g ± 18.7 % (k=2) | | | 250 mW input power
normalized to 1W
Condition
250 mW input power | **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.93 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.9 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.9 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.99 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97263 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.0Ω+ 4.51jΩ | |--------------------------------------|---------------| | Return Loss | - 26.3dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.1Ω+ 5.09jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.8dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.025 ns | |----------------------------------|----------| | 63 72 2007 5005 | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z17-97263 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctil@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.826 \text{ S/m}$; $\epsilon r = 39.84$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017; Date: 12.06.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Certificate No: Z17-97263 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.926 \text{ S/m}$; $\epsilon_r = 52.48$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Date: 12.07.2017 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.77 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.99 W/kg Maximum value of SAR (measured) = 21.7 W/kg 0 dB = 21.7 W/kg = 13.36 dBW/kg Certificate No: Z17-97263 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Client : Sporton International INC Certificate No: Z17-97245 #### CALIBRATION CERTIFICATE Object DAE4 - SN: 1338 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: December 04, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 27-Jun-17 (CTTL, No.J17X05859) | June-18 | | | | | | Calibrated by: Name Function Signature Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 05, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2209 Http://www.chinattl.cn #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1 \mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.689 ± 0.15% (k=2) | 404.263 ± 0.15% (k=2) | 404.219 ± 0.15% (k=2) | | Low Range | 3.97174 ± 0.7% (k=2) | 3.97734 ± 0.7% (k=2) | 3.97338 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 64° ± 1 ° | |---|-----------| |---|-----------| Http://www.chinattl.cn Client **Sporton International INC** CALIBRATION **CNAS L0570** Certificate No: Z17-97257 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3935 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 14, 2017 This calibration Certificate documents the
traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date/Calibrated by Continue 11 | | |-------------------------|-------------|--|--| | Power Meter NRP2 | 101919 | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Power sensor NRP-Z91 | 1 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | | 101547 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | | 101548 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Reference10dBAttenuator | 18N50W-10dB | 10(0112,10:010,1047) | Mar-18 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 549 | 13-Dec-16(SPEAG, No.DAE4-549_Dec16) | · | | DAE4 | SN 1524 | 13-Sep-17(SPEAG, No.DAE4-1524_Sep17 | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | ' ' <u>'</u>] | | SignalGeneratorMG3700A | 6201052605 | | Scheduled Calibration | | Network Analyzer E5071C | MY46110673 | 27-Jun-17 (CTTL, No.J17X05858) | Jun-18 | | | | 13-Jan-17 (CTTL, No.J17X00285) | Jan -18 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | | | Basico de | | | | | Reviewed by: | Lin Hao | SAR Test Engineer | - AND WAR | | | | | MA D | | Approved by: | Qi Dianyuan | SAR Project Leader | | | | | Contrologic Leader | | | 1 | | | The second secon | Issued: December 16, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL $NORM_{X,y,z}$ tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center) Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). - $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx # Probe EX3DV4 SN: 3935 Calibrated: December 14, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3935 ### **Basic Calibration Parameters** | A | Sensor X | Sensor Y | Sensor Z | 11 41 - 01 | |------------------------------|----------|----------|----------|------------| | Norm(μV/(V/m)²) ^A | 0.48 | 0.54 | | Unc (k=2) | | OCP(mV) ^B | 104.4 | | 0.49 | ±10.0% | | | 104.4 | 104.3 | 106.1 | | ### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dBõV | С | D | VR | Unc ^E | |-----|---------------------------|---|---------|-----------|-----|----------------|-------------|------------------| | 0 | cw | X | 0.0 | 0.0 | 1.0 | dB 0.00 | mV
162.8 | (k=2)
±2.2% | | | | Y | 0.0 | 0.0 | 1.0 | | 176.1 | 12.2% | | | | Z | 0.0 | 0.0 | 1.0 | | 165.6 | - | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97257 Page 4 of 11 ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3935 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unct. | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|--------------------|--------| | 750 | 41.9 | 0.89 | 10.68 | 40.00 | | 7 iipiid | (mm) | (k=2) | | 835 | 41.5 | 0.90 | | 10.68 | 10.68 | 0.40 | 0.70 | ±12.19 | | 900 | 41.5 | 0.97 | 10.36 | 10.36 | 10.36 | 0.10 | 1.67 | ±12.19 | | 1750 | 40.1 | | 10.22 | 10.22 | 10.22 | 0.16 | 1.29 | ±12.1% | | 1900 | 40.0 | 1.37 | 8.85 | 8.85 | 8.85 | 0.22 | 1.08 | ±12.1% | | 2000 | | 1.40 | 8.41 | 8.41 | 8.41 | 0.26 | 0.94 | ±12.1% | | 2300 | 40.0 | 1.40 | 8.41 | 8.41 | 8.41 | 0.28 | 0.90 | | | | 39.5 | 1.67 | 8.39 | 8.39 | 8.39 | 0.44 | | ±12.1% | | 2450 | 39.2 | 1.80 | 7.87 | 7.87 | 7.87 | | 0.79 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.67 | 7.67 | | 0.53 | 0.73 | ±12.1% | | 5200 | 36.0 | 4.66 | 5.91 | 5.91 |
7.67 | 0.60 | 0.68 | ±12.1% | | 5300 | 35.9 | 4.76 | 5.63 | | 5.91 | 0.35 | 1.50 | ±13.3% | | 5500 | 35.6 | 4.96 | | 5.63 | 5.63 | 0.35 | 1.50 | ±13.3% | | 5600 | 35.5 | | 5.29 | 5.29 | 5.29 | 0.35 | 1.60 | ±13.3% | | 5800 | 35.3 | 5.07 | 5.08 | 5.08 | 5.08 | 0.35 | 1.60 | ±13.3% | | 0000 | 30.3 | 5.27 | 5.15 | 5.15 | 5.15 | 0.40 | 1.40 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97257 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3935 ## Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unct. | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|--------------------|--------| | 750 | 55.5 | 0.96 | 10.65 | 40.05 | | Тирпа | (mm) | (k=2) | | 835 | 55.2 | 0.97 | | 10.65 | 10.65 | 0.40 | 0.80 | ±12.1% | | 1750 | 53.4 | | 10.33 | 10.33 | 10.33 | 0.17 | 1.41 | ±12.1% | | 1900 | 53.3 | 1.49 | 8.71 | 8.71 | 8.71 | 0.26 | 0.99 | ±12.1% | | 2300 | 52.9 | 1.52 | 8.30 | 8.30 | 8.30 | 0.16 | 1.39 | ±12.1% | | 2450 | | 1.81 | 8.10 | 8.10 | 8.10 | 0.32 | 1.16 | | | | 52.7 | 1.95 | 7.99 | 7.99 | 7.99 | 0.29 | | ±12.1% | | 2600 | 52.5 | 2.16 | 7.71 | 7.71 | 7.71 | | 1.25 | ±12.1% | | 5200 | 49.0 | 5.30 | 5.41 | 5.41 | 5.41 | 0.39 | 0.95 | ±12.1% | | 5300 | 48.9 | 5.42 | 5.20 | 5.20 | | 0.45 | 1.30 | ±13.3% | | 5500 | 48.6 | 5.65 | 4.62 | | 5.20 | 0.40 | 1.30 | ±13.3% | | 5600 | 48.5 | 5.77 | | 4.62 | 4.62 | 0.40 | 1.70 | ±13.3% | | 5800 | 48.2 | | 4.51 | 4.51 | 4.51 | 0.45 | 1.55 | ±13.3% | | | 70.2 | 6.00 | 4.64 | 4.64 | 4.64 | 0.58 | | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97257 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z17-97257 Page 7 of 11 Http://www.chinattl.cn ## Receiving Pattern (Φ), $\theta=0^{\circ}$ ### f=600 MHz, TEM ### f=1800 MHz, R22 Certificate No: Z17-97257 Page 8 of 11 Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z17-97257 Page 9 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## **Conversion Factor Assessment** ### f=850 MHz, WGLS R9(H_convF) ### f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3935 ### Other Probe Parameters | Sensor Arrangement | Trionout | |---|------------| | Connector Angle (°) | Triangular | | | 42.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | | | Probe Body Diameter | 337mm | | Tip Length | 10mm | | | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | | | | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z17-97257 Page 11 of 11