# Shenzhen CTA Testing Technology Co., Ltd.



Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

| 50                                                                                                                                                                                                                                                                                                                               | FCC PART 15.247                                                                                                                                                                                                                                                |                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Report Reference No                                                                                                                                                                                                                                                                                                              | : CTA24122000801                                                                                                                                                                                                                                               |                                                                                             |
| FCC ID                                                                                                                                                                                                                                                                                                                           | :: : 2AY45-MD-TWS-039                                                                                                                                                                                                                                          | CTA                                                                                         |
| Compiled by                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                | Vidante Thomas                                                                              |
| (position+printed name+signa                                                                                                                                                                                                                                                                                                     | ature): File administrators Xudong Zhang                                                                                                                                                                                                                       | Testing Technolog                                                                           |
| Supervised by                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                | Const Const                                                                                 |
| (position+printed name+signa                                                                                                                                                                                                                                                                                                     | ature): Project Engineer Zoey Cao                                                                                                                                                                                                                              | A CI A VYZ                                                                                  |
| Approved by                                                                                                                                                                                                                                                                                                                      | STING                                                                                                                                                                                                                                                          | approved                                                                                    |
| (position+printed name+signa                                                                                                                                                                                                                                                                                                     | ature): RF Manager Eric Wang                                                                                                                                                                                                                                   | G EVIC Volung                                                                               |
| Date of issue                                                                                                                                                                                                                                                                                                                    | : Jan. 03, 2025                                                                                                                                                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                  | Shenzhen CTA Testing Technolo                                                                                                                                                                                                                                  |                                                                                             |
| Addroop                                                                                                                                                                                                                                                                                                                          | Room 106, Building 1, Yibaolai Indu                                                                                                                                                                                                                            | ustrial Park, Qiaotou Community,                                                            |
| Audress                                                                                                                                                                                                                                                                                                                          | Fuhai Street, Baoʻan District, Shenz                                                                                                                                                                                                                           | zhen, China                                                                                 |
| Applicant's name                                                                                                                                                                                                                                                                                                                 | Chengdu Shuiyueyu Technology                                                                                                                                                                                                                                   | Co.,Ltd.                                                                                    |
| TING                                                                                                                                                                                                                                                                                                                             | 13th Floor, Building B, Building 1, Y                                                                                                                                                                                                                          |                                                                                             |
| Address                                                                                                                                                                                                                                                                                                                          | Project, No.159 Haichuan Road, W                                                                                                                                                                                                                               | enjiang District, Chengdu City,                                                             |
|                                                                                                                                                                                                                                                                                                                                  | Sichuan Province, China                                                                                                                                                                                                                                        |                                                                                             |
| Test specification                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                | TATESTIN                                                                                                                                                                                                                                                       | ING                                                                                         |
| Test specification                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                | TATESTING                                                                                   |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprov<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting                                                                                                                                                         | TATESTIN                                                                                                                                                                                                                                                       | ght owner and source of the ibility for and will not assume                                 |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be repro-<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi                                                                                                                                                                                            | <b>FCC Part 15.247</b><br><b>Inology Co., Ltd. All rights reserved.</b><br>duced in whole or in part for non-commercia<br>ology Co., Ltd. is acknowledged as copyriging Technology Co., Ltd. takes no respons<br>from the reader's interpretation of the repro | ght owner and source of the ibility for and will not assume                                 |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark                                                                                     |                                                                                                                                                                                                                                                                | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark                                                                                     |                                                                                                                                                                                                                                                                | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark<br>Manufacturer                                                                     | FCC Part 15.247 FCC Part 15.247                                                                                                                                                                                                                                | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark<br>Manufacturer<br>Model/Type reference.                                            | FCC Part 15.247 FCC Part 15.247                                                                                                                                                                                                                                | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark<br>Manufacturer                                                                     | : FCC Part 15.247 FCC Part 15.247                                                                                                                                                                                                                              | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark<br>Manufacturer<br>Model/Type reference<br>Listed Models<br>Modulation              | : FCC Part 15.247 FCC Part 15.247                                                                                                                                                                                                                              | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |
| Standard<br>Shenzhen CTA Testing Tech<br>This publication may be reprod<br>Shenzhen CTA Testing Techn<br>material. Shenzhen CTA Testi<br>liability for damages resulting to<br>placement and context.<br>Test item description<br>Trade Mark<br>Manufacturer<br>Model/Type reference<br>Listed Models<br>Modulation<br>Frequency | : FCC Part 15.247 FCC Part 15.247                                                                                                                                                                                                                              | ght owner and source of the<br>ibility for and will not assume<br>duced material due to its |

| Equipment under Test | : MD-TWS-039                      |                                                                             |
|----------------------|-----------------------------------|-----------------------------------------------------------------------------|
| Model /Type          | : MD-TWS-039                      | GTA CTATESTING                                                              |
| Listed Models        | <u>.</u> N/A                      |                                                                             |
| Applicant            | : Chengdu Shuiyueyu Techn         | ology Co.,Ltd.                                                              |
| Address              |                                   | ng 1, Yuetiandi Commercial Building<br>ad, Wenjiang District, Chengdu City, |
| Manufacturer         | : Chengdu MOONDROP Co.,           | Ltd.                                                                        |
| Address              | : Haixia Technology Industry F    | ark, Wenjiang District, Chengdu, China                                      |
| CTATES Test          | Result:                           | PASS                                                                        |
| The test report mere | y corresponds to the test sample. | TESTING                                                                     |
|                      |                                   | ult without the written permission of                                       |
|                      |                                   |                                                                             |

|          | TATESTING                               | Contents           |
|----------|-----------------------------------------|--------------------|
| Gran C   |                                         | STINC              |
| 1        | TEST STANDARDS                          |                    |
| 2        | SUMMARY                                 | TESTIN             |
| <u>2</u> | <u>30 M MAR 1</u>                       |                    |
| 2.1      | General Remarks                         | 5                  |
| 2.1      | Product Description                     | 5                  |
| 2.3      | Equipment Under Test                    | 5                  |
| 2.4      | Short description of the Equipment      | under Test (EUT) 5 |
| 2.5      | EUT configuration                       | 5                  |
| 2.6      | EUT operation mode                      | 6                  |
| 2.7      | Block Diagram of Test Setup             | 6                  |
| 2.8      | Related Submittal(s) / Grant (s)        | 6                  |
| 2.9      | Modifications                           | GTING 6            |
|          |                                         |                    |
| <u>3</u> | TEST ENVIRONMENT                        |                    |
|          |                                         | CT TES             |
| 3.1      | Address of the test laboratory          | CTATES 7           |
| 3.2      | Test Facility                           | 7                  |
| 3.3      | Environmental conditions                | 7                  |
| 3.4      | Summary of measurement results          | 8                  |
| 3.5      | Statement of the measurement unce       |                    |
| 3.6      | Equipments Used during the Test         | 9                  |
|          |                                         |                    |
| <u>4</u> | TEST CONDITIONS AND RI                  |                    |
|          | CTA                                     | 20<br>21           |
| 4.1      | AC Power Conducted Emission             | TES' 11            |
| 4.2      | <b>Radiated Emissions and Band Edge</b> | e 14               |
| 4.3      | Maximum Peak Output Power               | 20                 |
| 4.4      | Power Spectral Density                  |                    |
| 4.5      | 6dB Bandwidth                           | 26                 |
| 4.6      | Out-of-band Emissions                   | 31                 |
| 4.7      | Antenna Requirement                     | 40                 |
| _        | G                                       |                    |
| <u>5</u> | TEST SETUP PHOTOS OF                    | <u>THE EUT</u>     |
| •        |                                         | TING               |
| <u>6</u> | PHOTOS OF THE EUT                       |                    |
|          |                                         | CTATESTING         |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         |                    |
|          |                                         | (ESI)              |
|          | TATESTING                               |                    |
|          |                                         | ~ESTIT             |
|          | TATES.                                  | CTA TESTING        |
|          |                                         | Give V             |
|          |                                         |                    |

# 1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

#### <u>SUMMARY</u> 2

# 2.1 General Remarks

| 2.1 General Remarks            |                           |               |                |
|--------------------------------|---------------------------|---------------|----------------|
| Date of receipt of test sample | :                         | Dec. 24, 2024 |                |
|                                |                           | 0             |                |
| Testing commenced on           | Contraction of the second | Dec. 24, 2024 | cT.            |
|                                |                           |               | Gent .         |
| Testing concluded on           | :                         | Jan. 03, 2025 | and the second |

# 2.2 Product Description

| Testing commenced on  | : Dec. 24, 2024                                                       |
|-----------------------|-----------------------------------------------------------------------|
| Testing concluded on  | i Jan. 03, 2025                                                       |
| 2.2 Product Descrip   | otion 🤄                                                               |
| Product Description:  | MD-TWS-039                                                            |
| Model/Type reference: | MD-TWS-039                                                            |
| Power supply:         | DC 3.6V From battery and DC 5.0V From external circuit                |
| Testing sample ID:    | CTA241220008-1# (Engineer sample),<br>CTA241220008-2# (Normal sample) |
| Hardware version:     | V1.0                                                                  |
| Software version:     | V1.0                                                                  |
| Bluetooth BLE         |                                                                       |
| Supported type:       | Bluetooth low Energy                                                  |
| Modulation:           | GFSK                                                                  |
| Operation frequency:  | 2402MHz to 2480MHz                                                    |
| Channel number:       | 40 CTA                                                                |
| Channel separation:   | 2 MHz                                                                 |
| Antenna type:         | Ceramic antenna                                                       |
| Antenna gain:         | 1.9 dBi                                                               |

# 2.3 Equipment Under Test

# Power supply system utilised

| Power supply voltage         | :      | Ο    | 230V / 50 Hz                 | 0    | 120V / 60Hz |  |
|------------------------------|--------|------|------------------------------|------|-------------|--|
| (CT)                         |        | Ο    | 12 V DC                      | 0    | 24 V DC     |  |
|                              |        |      | Other (specified in blank be | low  | )           |  |
| DC 3.6\                      | / Fron | n ba | attery and DC 5.0V From ext  | erna | al circuit  |  |
| 2.4 Short description of the | ne Eo  | qui  | pment under Test (EU         | T)   |             |  |
| This is a MD TWC 020         |        |      |                              |      |             |  |

# 2.4 Short description of the Equipment under Test (EUT)

This is a MD-TWS-039.

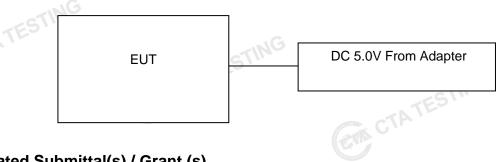
For more details, refer to the user's manual of the EUT.

# 2.5 EUT configuration

...easi The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\bigcirc$  supplied by the lab

|                        | Model: EP-TA20CBC          |
|------------------------|----------------------------|
| TING                   | Input: AC 100-240V 50/60Hz |
| TESI                   | Output: DC 5V 2A           |
| CACIA                  | STING                      |
| 2.6 EUT operation mode | NTED.                      |
| C C                    |                            |


# 2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels GACTATE provided to the EUT and Channel 00/19/39 were selected to test.

### **Operation Frequency:**

|       | operation i requency: |                 |
|-------|-----------------------|-----------------|
|       | Channel               | Frequency (MHz) |
|       | 00                    | 2402            |
| CIAIL | 01 G                  | 2404            |
| , Cri | 02 51                 | 2406            |
| 1     | CIA IL                | TING            |
|       | 19                    | 2440            |
|       |                       | CTA TING        |
|       | 37                    | 2476            |
|       | 38                    | 2478            |
| 6     | 39                    | 2480            |
|       |                       |                 |

#### **Block Diagram of Test Setup** 2.7



#### Related Submittal(s) / Grant (s) 2.8

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 2.9 **Modifications**

CTATESTING No modifications were implemented to meet testing criteria.

#### 3 TEST ENVIRONMENT

#### 3.1 Address of the test laboratory

#### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

#### 3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission

| Radiated Emission:    |              |
|-----------------------|--------------|
| Temperature:          | 25 ° C       |
|                       | TES          |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |
|                       |              |

#### AC Main Conducted testing:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
| NG                    |              |
| Humidity:             | 46 %         |
|                       | -16          |
| Atmospheric pressure: | 950-1050mbar |
| / aneophone procedue. |              |

| Temperature: | 25 ° C   |
|--------------|----------|
|              | Course C |
| Humidity:    | 44 %     |
| ,<br>,       |          |

|      | Test<br>Specification<br>clause | Test case                                          | Test<br>Mode        | Test Channel                                                      |                        | ecorded<br>Report                                                 | Test result |
|------|---------------------------------|----------------------------------------------------|---------------------|-------------------------------------------------------------------|------------------------|-------------------------------------------------------------------|-------------|
|      | §15.247(e)                      | Power spectral density                             | BLE 1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | BLE<br>1Mpbs<br>2 Mpbs | <ul> <li>☑ Lowest</li> <li>☑ Middle</li> <li>☑ Highest</li> </ul> | complies    |
|      | §15.247(a)(2)                   | Spectrum<br>bandwidth<br>– 6 dB bandwidth          | BLE 1Mpbs<br>2 Mpbs | <ul> <li>☑ Lowest</li> <li>☑ Middle</li> <li>☑ Highest</li> </ul> | BLE<br>1Mpbs<br>2 Mpbs | └ Lowest<br>│ Middle<br>│ Highest                                 | complies    |
|      | §15.247(b)(1)                   | Maximum output<br>power                            | BLE 1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | BLE<br>1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | complies    |
| TATE | §15.247(d)                      | Band edge<br>compliance<br>conducted               | BLE 1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Highest                                             | BLE<br>1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Highest                                             | complies    |
|      | §15.205                         | Band edge<br>compliance<br>radiated                | BLE 1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Highest                                             | BLE<br>1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Highest                                             | complies    |
|      | §15.247(d)                      | TX spurious<br>emissions<br>conducted              | BLE 1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | BLE<br>1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | complies    |
|      | §15.247(d)                      | TX spurious<br>emissions<br>radiated               | BLE 1Mpbs<br>2 Mpbs | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | BLE<br>1Mpbs<br>2 Mpbs | <ul> <li>☑ Lowest</li> <li>☑ Middle</li> <li>☑ Highest</li> </ul> | complies    |
|      | §15.209(a)                      | TX spurious<br>Emissions<br>radiated<br>Below 1GHz | BLE 1Mpbs<br>2 Mpbs | -/-                                                               | BLE<br>1Mpbs           | -/-                                                               | complies    |
|      | §15.107(a)<br>§15.207           | Conducted<br>Emissions<br>< 30 MHz                 | BLE 1Mpbs<br>2 Mpbs | ING -/-                                                           | BLE<br>1Mpbs           | -/-                                                               | complies    |
|      |                                 | ement uncertainty is<br>Il test mode and reco      |                     | n the test result.<br>se in report                                | TP                     | TESTING                                                           |             |

#### 3.4 Summary of measurement results

#### 3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in ESTING additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

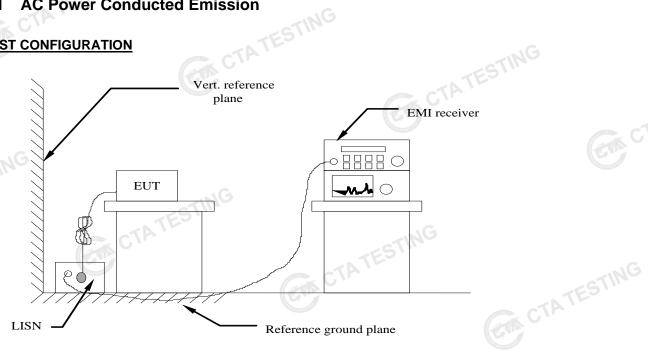
| Test                                       | Range       | Measurement<br>Uncertainty | Notes |
|--------------------------------------------|-------------|----------------------------|-------|
| Radiated Emission                          | 9KHz~30MHz  | 3.02 dB                    | (1)   |
| Radiated Emission                          | 30~1000MHz  | 4.06 dB 🕥                  | (1)   |
| Radiated Emission                          | 1~18GHz     | 5.14 dB                    | (1)   |
| Radiated Emission                          | 18-40GHz    | 5.38 dB                    | (1)   |
| Conducted Disturbance                      | 0.15~30MHz  | 2.14 dB                    | (1)   |
| Output Peak power                          | 30MHz~18GHz | 0.55 dB                    | (1)   |
| Power spectral density                     | GTIN        | 0.57 dB                    | (1)   |
| Spectrum bandwidth                         | TES I       | 1.1%                       | (1)   |
| Radiated spurious emission<br>(30MHz-1GHz) | 30~1000MHz  | 4.10 dB                    | (1)   |
| Radiated spurious emission (1GHz-18GHz)    | 1~18GHz     | 4.32 dB                    | (1)   |
| Radiated spurious emission (18GHz-40GHz)   | 18-40GHz    | 5.54 dB                    | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# 3.6 Equipments Used during the Test

| Te           | est Equipment                  | Manufacturer              | Model No.   | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |
|--------------|--------------------------------|---------------------------|-------------|------------------|---------------------|-------------------------|
|              | LISN                           | R&S                       | ENV216      | CTA-308          | 2024/08/03          | 2025/08/0               |
|              | LISN                           | R&S                       | ENV216      | CTA-314          | 2024/08/03          | 2025/08/0               |
| EM           | II Test Receiver               | R&S                       | ESPI        | CTA-307          | 2024/08/03          | 2025/08/0               |
| EM           | II Test Receiver               | R&S                       | ESCI        | CTA-306          | 2024/08/03          | 2025/08/0               |
| Spe          | ectrum Analyzer                | Agilent                   | N9020A      | CTA-301          | 2024/08/03          | 2025/08/0               |
| Spe          | ectrum Analyzer                | R&S                       | FSU         | CTA-337          | 2024/08/03          | 2025/08/0               |
| \            | /ector Signal generator        | Agilent                   | N5182A      | CTA-305          | 2024/08/03          | 2025/08/0               |
| A            | Analog Signal<br>Generator     | R&S                       | SML03       | CTA-304          | 2024/08/03          | 2025/08/02              |
|              | niversal Radio<br>ommunication | G CMW500                  | R&S         | CTA-302          | 2024/08/03          | 2025/08/02              |
|              | mperature and<br>umidity meter | Chigo                     | ZG-7020     | CTA-326          | 2024/08/03          | 2025/08/02              |
|              | tra-Broadband<br>Antenna       | Schwarzbeck               | VULB9163    | CTA-310          | 2023/10/17          | 2026/10/1               |
| F            | Iorn Antenna                   | Schwarzbeck               | BBHA 9120D  | CTA-309          | 2023/10/13          | 2026/10/1               |
| L            | .oop Antenna                   | Zhinan                    | ZN30900C    | CTA-311          | 2023/10/17          | 2026/10/10              |
| Horn Antenna |                                | Beijing Hangwei<br>Dayang | OBH100400   | CTA-336          | 2023/10/17          | 2026/10/10              |
|              | Amplifier                      | Schwarzbeck               | BBV 9745    | CTA-312          | 2024/08/03          | 2025/08/02              |
| 31,          | Amplifier                      | Taiwan chengyi            | EMC051845B  | CTA-313          | 2024/08/03          | 2025/08/02              |
| Dire         | ectional coupler               | NARDA                     | 4226-10     | CTA-303          | 2024/08/03          | 2025/08/02              |
| Hi           | gh-Pass Filter                 | XingBo                    | XBLBQ-GTA18 | CTA-402          | 2024/08/03          | 2025/08/02              |
| Hi           | gh-Pass Filter                 | XingBo                    | XBLBQ-GTA27 | CTA-403          | 2024/08/03          | 2025/08/02              |
| A            | utomated filter<br>bank        | Tonscend                  | JS0806-F    | CTA-404          | 2024/08/03          | 2025/08/02              |
| F            | ower Sensor                    | Agilent                   | U2021XA     | CTA-405          | 2024/08/03          | 2025/08/02              |
|              | Amplifier                      | Schwarzbeck               | BBV9719     | CTA-406          | 2024/08/03          | 2025/08/02              |
| GA           | CTATL                          | G                         | TATESTING   |                  | TESTING             |                         |




# Page 10 of 52

|       | Test Equipment    | Manufacturer | Model No.   | Version<br>number | Calibration<br>Date | Calibration<br>Due Date |     |
|-------|-------------------|--------------|-------------|-------------------|---------------------|-------------------------|-----|
|       | EMI Test Software | Tonscend     | TS®JS32-RE  | 5.0.0.2           | N/A                 | N/A                     |     |
|       | EMI Test Software | Tonscend     | TS®JS32-CE  | 5.0.0.1           | N/A G               | N/A                     |     |
|       | RF Test Software  | Tonscend     | TS®JS1120-3 | 3.1.65            | N/A                 | N/A                     |     |
|       | RF Test Software  | Tonscend     | TS®JS1120   | 3.1.46            | N/A                 | N/A                     | TAT |
|       | TING              |              |             |                   |                     | GTA (                   |     |
| CTATE | STING             | CTATESTING   |             |                   |                     |                         |     |
|       |                   | CTA          |             |                   |                     |                         |     |

#### TEST CONDITIONS AND RESULTS 4

#### 4.1 AC Power Conducted Emission

# **TEST CONFIGURATION**



### TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63, 10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

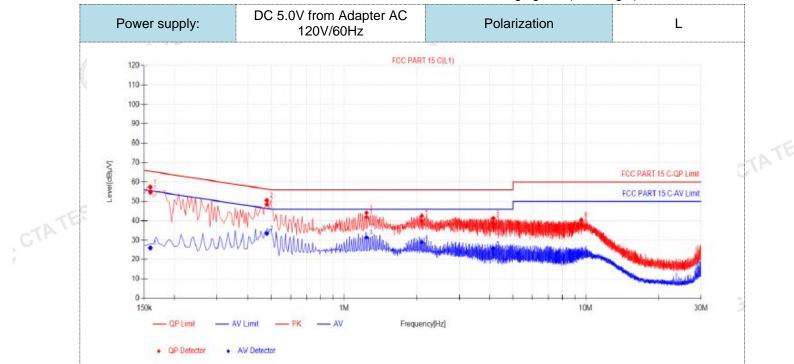
6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

#### AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :


| Eroquonov rango (MHz)                         | Limit      | (dBuV)    |
|-----------------------------------------------|------------|-----------|
| Frequency range (MHz)                         | Quasi-peak | Average   |
| 0.15-0.5                                      | 66 to 56*  | 56 to 46* |
| 0.5-5                                         | 56         | 46        |
| 5-30                                          | 60         | 50        |
| * Decreases with the logarithm of the frequer | ncy        | ·         |

## **TEST RESULTS**

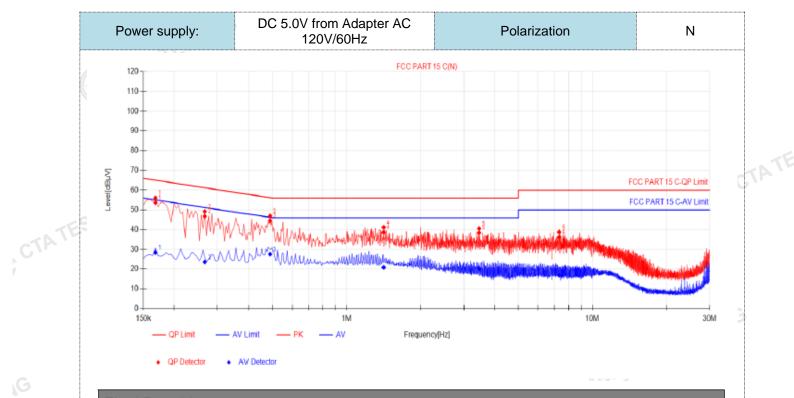
Remark:

- 1. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 2. 120 VAC, 60 Hz was reported as below:. TATESTING

3. We tested all the modes and recorded that the worst mode was charging+TX (Left+Right).



#### **Final Data List**


CTATE

| NO.         Freq.<br>[MHz]         Factor<br>[dB]         QP<br>Reading[dB<br>µV]         QP<br>Value<br>[dBµV]         QP<br>Margin<br>[dB]         AV<br>Reading<br>[dBµV]         AV<br>Value<br>[dBµV]         AV<br>Limit<br>[dBµV]         AV<br>Margin<br>[dB]         AV           1         0.159         9.91         44.85         54.76         65.52         10.76         16.09         26.00         55.52         29.52         PASS           2         0.4785         9.99         38.37         48.36         56.37         8.01         23.46         33.45         46.37         12.92         PASS           3         1.239         9.90         31.97         41.87         56.00         14.13         21.54         31.44         46.00         14.56         PASS |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         0.4785         9.99         38.37         48.36         56.37         8.01         23.46         33.45         46.37         12.92         PASS           3         1.239         9.90         31.97         41.87         56.00         14.13         21.54         31.44         46.00         14.56         PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 1.239 9.90 31.97 41.87 56.00 14.13 21.54 31.44 46.00 14.56 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 2.0985 9.96 29.96 39.92 56.00 16.08 18.95 28.91 46.00 17.09 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 4.146 9.93 28.87 38.80 56.00 17.20 15.77 25.70 46.00 20.30 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 9.6045 10.26 27.52 37.78 60.00 22.22 12.77 23.03 50.00 26.97 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

CTATESTING

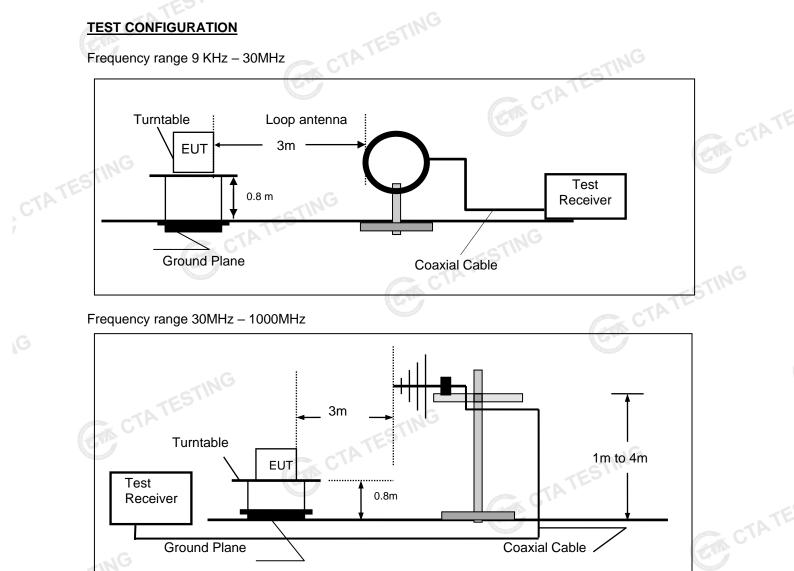
- 3). QPMargin(dB) = QP Limit (dB $\mu$ V) QP Value (dB $\mu$ V)
- 4). AVMargin(dB) = AV Limit (dB $\mu$ V) AV Value (dB $\mu$ V)

CTATES

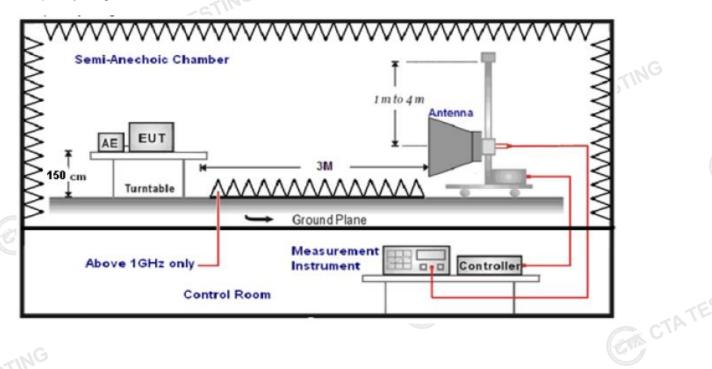


# Final Data List

CTATE


| _ I | 1 IIIG |                         | ~              |                         |                       |                       |                      |                         |                       |                       |                      |         |     |
|-----|--------|-------------------------|----------------|-------------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|---------|-----|
|     | NO.    | Freq.<br>[MHz]          | Factor<br>[dB] | QP<br>Reading[dB<br>µV] | QP<br>Value<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>[dBµV] | AV<br>Value<br>[dBµV] | AV<br>Limit<br>[dBµV] | AV<br>Margin<br>[dB] | Verdict |     |
|     | 1      | 0.168                   | 10.08          | 43.60                   | 53.68                 | 65.06                 | 11.38                | 18.32                   | 28.40                 | 55.06                 | 26.66                | PASS    |     |
|     | 2      | 0.267                   | 9.97           | 36.79                   | 46.76                 | 61.21                 | 14.45                | 13.60                   | 23.57                 | 51.21                 | 27.64                | PASS    |     |
|     | 3      | 0.4875                  | 10.00          | 34.51                   | 44.51                 | 56.21                 | 11.70                | 17.58                   | 27.58                 | 46.21                 | 18.63                | PASS    |     |
|     | 4      | 1.4145                  | 10.15          | 28.56                   | 38.71                 | 56.00                 | 17.29                | 10.75                   | 20.90                 | 46.00                 | 25.10                | PASS    |     |
|     | 5      | 3.4575                  | 10.19          | 28.26                   | 38.45                 | 56.00                 | 17.55                | 9.93                    | 20.12                 | 46.00                 | 25.88                | PASS    |     |
|     | 6      | 7.3185                  | 10.42          | 25.73                   | 36.15                 | 60.00                 | 23.85                | 6.50                    | 16.92                 | 50.00                 | 33.08                | PASS    |     |
| 2)  | Facto  | QP Value<br>or (dB)=ins | ertion los     | ss of LISN              | l (dB) + (            | Cable los             | ss (dB)              |                         |                       |                       |                      |         | CTA |
| 3)  | . QPM  | largin(dB) :            | = QP Lin       | nit (dBµV)              | - QP Va               | lue (dBµ              | V)                   |                         |                       |                       |                      |         |     |
| Ň   | A\/M   | argin(dB) -             | - ^\/ L im     | it (dBu\/)              | - A\/ \/al            | uo (dRu)              | Δ                    |                         |                       |                       |                      |         |     |

- 3). QPMargin(dB) = QP Limit (dB $\mu$ V) QP Value (dB $\mu$ V)
- 4). AVMargin(dB) = AV Limit (dB $\mu$ V) AV Value (dB $\mu$ V) CTATEST


#### 4.2 Radiated Emissions and Band Edge

#### **TEST CONFIGURATION**

Frequency range 9 KHz – 30MHz



Frequency range above 1GHz-25GHz



#### TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and 2. rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. 6

| <b>)</b> . | The distance between test a | antenna and EUT as following tabl | e states:     |
|------------|-----------------------------|-----------------------------------|---------------|
|            | Test Frequency range        | Test Antenna Type                 | Test Distance |
|            | 9KHz-30MHz                  | Active Loop Antenna               | 3             |
|            | 30MHz-1GHz                  | Ultra-Broadband Antenna           | 3             |
|            | 1GHz-18GHz                  | Double Ridged Horn Antenna        | 3             |
|            | 18GHz-25GHz                 | Horn Anternna                     | 1             |

Setting test receiver/spectrum as following table states:

| Octaing tost receiver/spo | ection as following table states.                                                                         |          |
|---------------------------|-----------------------------------------------------------------------------------------------------------|----------|
| Test Frequency range      | Test Receiver/Spectrum Setting                                                                            | Detector |
| 9KHz-150KHz               | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                                        | QP       |
| 150KHz-30MHz              | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP       |
| 30MHz-1GHz                | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                    | QP       |
| 1GHz-40GHz                | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |

#### **Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Los | ss)          |
|---------------------------|------------------------------------------|--------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                      | G            |
| AF = Antenna Factor       |                                          | A PER UNITED |
| ansd=AF +CL-AG            |                                          |              |
| ATION LIMIT               |                                          |              |

CTATESTING Transd=AF +CL-AG

#### **RADIATION LIMIT**

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

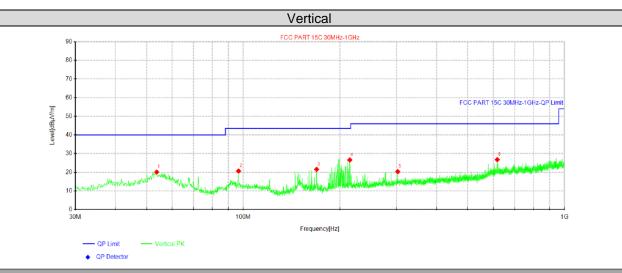
| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                    | 40.0                             | 100             |
| 88-216          | 3                    | 43.5                             | 150             |
| 216-960         | 3                    | 46.0                             | 200             |
| Above 960       | 3                    | 54.0                             | 500             |
| STING           |                      |                                  | C.              |

#### **TEST RESULTS**

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at High channel of BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- We tested all the modes and recorded that the worst mode was charging+TX (Left+Right). 4.

#### For 30MHz-1GHz




| ouope | biod Bala | LIOU    |          |        |          |        |        |       |            |              |  |
|-------|-----------|---------|----------|--------|----------|--------|--------|-------|------------|--------------|--|
| NO.   | Freq.     | Reading | Level    | Factor | Limit    | Margin | Height | Angle | Delority   |              |  |
| NO.   | [MHz]     | [dBµV]  | [dBµV/m] | [dB/m] | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity   |              |  |
| 1     | 50.1275   | 27.39   | 16.24    | -11.15 | 40.00    | 23.76  | 100    | 3     | Horizontal |              |  |
| 2     | 96.8088   | 29.26   | 15.73    | -13.53 | 43.50    | 27.77  | 100    | 205   | Horizontal |              |  |
| 3     | 199.265   | 32.51   | 19.65    | -12.86 | 43.50    | 23.85  | 200    | 137   | Horizontal |              |  |
| 4     | 264.255   | 36.15   | 24.33    | -11.82 | 46.00    | 21.67  | 200    | 250   | Horizontal | - <b>T</b> P |  |
| 5     | 406.602   | 28.54   | 18.43    | -10.11 | 46.00    | 27.57  | 100    | 341   | Horizontal |              |  |
| 6     | 680.991   | 28.69   | 23.41    | -5.28  | 46.00    | 22.59  | 100    | 250   | Horizontal |              |  |

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) CTATESTIN 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

OTATE



#### Suspected Data List

| -   |         |         |          |        |          |        |        |       |          |
|-----|---------|---------|----------|--------|----------|--------|--------|-------|----------|
| NO. | Freq.   | Reading | Level    | Factor | Limit    | Margin | Height | Angle | Polarity |
| NO. | [MHz]   | [dBµV]  | [dBµV/m] | [dB/m] | [dBµV/m] | [dB]   | [cm]   | [°]   | Folanty  |
| 1   | 53.765  | 31.52   | 20.08    | -11.44 | 40.00    | 19.92  | 100    | 6     | Vertical |
| 2   | 96.6875 | 34.21   | 20.65    | -13.56 | 43.50    | 22.85  | 100    | 1     | Vertical |
| 3   | 169.195 | 36.62   | 21.56    | -15.06 | 43.50    | 21.94  | 200    | 201   | Vertical |
| 4   | 214.663 | 39.21   | 26.60    | -12.61 | 43.50    | 16.90  | 100    | 224   | Vertical |
| 5   | 302.691 | 31.20   | 20.32    | -10.88 | 46.00    | 25.68  | 100    | 246   | Vertical |
| 6   | 617.82  | 32.46   | 26.76    | -5.70  | 46.00    | 19.24  | 200    | 19    | Vertical |

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

## For 1GHz to 25GHz

Note: BLE 1Mpbs and 2Mpbs all have been tested, only worse case 1Mpbs is reported. GFSK (above 1GHz)

|                    |       |                     |                   |                | - 20 - 2               |                             |                         |                           |                                |
|--------------------|-------|---------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency(MHz):    |       | 2402                |                   | Polarity:      |                        | HORIZONTAL                  |                         |                           |                                |
| Frequency<br>(MHz) | Le    | sion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 61.86 | PK                  | 74                | 12.14          | 66.13                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 4804.00            | 44.39 | AV                  | 54                | 9.61           | 48.66                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 7206.00            | 53.91 | PK                  | 74                | 20.09          | 54.43                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |
| 7206.00            | 43.18 | AV                  | 54                | 10.82          | 43.70                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |
|                    |       |                     |                   |                |                        |                             |                         | 6                         |                                |

| Frequency(MHz):    |                      | 2402 |                   | Polarity:      |                        | VERTICAL                    |                         |                           |                                |
|--------------------|----------------------|------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) |      | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 59.93                | PK   | 74                | 14.07          | 64.20                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 4804.00            | 42.34                | AV   | 54                | 11.66          | 46.61                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 7206.00            | 51.89                | PK   | 74                | 22.11          | 52.41                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |
| 7206.00            | 41.15                | AV   | 54                | 12.85          | 41.67                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |
|                    |                      |      |                   | A DECK         |                        |                             | a second                | GVP                       |                                |

| Frequency(MHz):    |                      |     | 2440              |                | Polarity:              |                             | HORIZONTAL              |                           | \L                             |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | /el | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4880.00            | 61.26                | PK  | 74                | 12.74          | 65.14                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |
| 4880.00            | 43.75                | AV  | 54                | 10.25          | 47.63                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |
| 7320.00            | 53.02                | PK  | 74                | 20.98          | 53.13                  | 36.8                        | 6.81                    | 43.72                     | -0.11                          |
| 7320.00            | 42.55                | AV  | 54                | 11.45          | 42.66                  | 36.8                        | 6.81                    | JA3.72                    | -0.11                          |
|                    |                      |     |                   |                |                        |                             | ESI"                    |                           |                                |

| Frequency(MHz):    |                     | 2440 |                   | Polarity:      |                        | VERTICAL                    |                         |                           |                                |
|--------------------|---------------------|------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu | vel  | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4880.00            | 59.56               | PK   | 74                | 14.44          | 63.44                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |
| 4880.00            | 42.00               | AV   | 54                | 12.00          | 45.88                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |
| 7320.00            | 50.77               | PK   | 74                | 23.23          | 50.88                  | 36.8                        | 6.81                    | 43.72                     | -0.11                          |
| 7320.00            | 40.96               | AV   | 54                | 13.04          | 41.07                  | 36.8                        | 6.81                    | 43.72                     | -0.11                          |
|                    |                     | -117 | E                 |                |                        |                             |                         |                           |                                |

| Frequency(MHz):    |       | 2480                 |                   | Polarity:      |                        | HORIZONTAL                  |                         |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le    | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 60.49 | PK                   | 74                | 13.51          | 63.57                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 4960.00            | 43.19 | AV                   | 54                | 10.81          | 46.27                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 7440.00            | 52.46 | PK                   | 74                | 21.54          | 52.01                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
| 7440.00            | 41.78 | AV                   | 54                | 12.22          | 41.33                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
|                    |       | 10                   |                   |                |                        |                             |                         |                           |                                |

| Freque             | Frequency(MHz): |                      | 2480              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|-----------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le              | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 59.89           | PK                   | 74                | 14.11          | 62.97                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 4960.00            | 41.27           | AV                   | 54                | 12.73          | 44.35                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 7440.00            | 50.65           | PK                   | 74                | 23.35          | 50.20                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
| 7440.00            | 39.93           | AV                   | 54                | 14.07          | 39.48                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) 1.
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier 2.
- 3. Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit. 4. The other emission levels were very low against the limit. 5.

#### Results of Band Edges Test (Radiated)

Note: BLE 1Mpbs and 2Mpbs all have been tested, only worse case 1Mpbs is reported.

|                    |                          |                      |                         | GFS                  | ~                              |                                       |                         |                                       |                                |
|--------------------|--------------------------|----------------------|-------------------------|----------------------|--------------------------------|---------------------------------------|-------------------------|---------------------------------------|--------------------------------|
| Freq               | uency(MHz)               | ):                   | 24                      | 02                   | Pola                           | arity:                                | F                       | IORIZONTA                             | AL                             |
| Frequency<br>(MHz) | Le                       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m)       | Margin<br>(dB)       | Raw<br>Value<br>(dBuV)         | Antenna<br>Factor<br>(dB/m)           | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB)             | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 62.21                    | PK                   | 74                      | 11.79                | 72.63                          | 27.42                                 | 4.31                    | 42.15                                 | -10.42                         |
| 2390.00            | 42.98                    | AV                   | 54                      | 11.02                | 53.40                          | 27.42                                 | 4.31                    | 42.15                                 | -10.42                         |
| Freq               | uency(MHz)               | ):                   | 24                      | 02                   | Pola                           | arity:                                |                         | VERTICAL                              | -                              |
| Frequency<br>(MHz) | Le<br>(dBu               | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m)       | Margin<br>(dB)       | Raw<br>Value<br>(dBuV)         | Antenna<br>Factor<br>(dB/m)           | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB)             | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 60.13                    | PK                   | 74                      | 13.87                | 70.55                          | 27.42                                 | 4.31                    | 42.15                                 | -10.42                         |
| 2390.00            | 41.19                    | AV                   | 54                      | 12.81                | 51.61                          | 27.42                                 | 4.31                    | 42.15                                 | -10.42                         |
| Freq               | uency(MHz)               | ):                   | 24                      | 80                   | P ola                          | arity:                                | F                       | IORIZONTA                             | AL .                           |
| Frequency<br>(MHz) | Le                       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m)       | Margin<br>(dB)       | Raw<br>Value<br>(dBuV)         | Antenna<br>Factor<br>(dB/m)           | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB)             | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 61.54                    | PK                   | 74                      | 12.46                | 71.65                          | 27.7                                  | 4.47                    | 42.28                                 | -10.11                         |
|                    | 40.00                    | AV                   | 54                      | 11.62                | 52.49                          | 27.7                                  | 4.47                    | 42.28                                 | -10.11                         |
| 2483.50            | 42.38                    |                      |                         |                      |                                |                                       |                         |                                       |                                |
|                    | uency(MHz)               |                      | 24                      | 80                   | Pola                           | arity:                                |                         | VERTICAL                              | -                              |
|                    | uency(MHz)<br>Emis<br>Le |                      | 24<br>Limit<br>(dBuV/m) | 80<br>Margin<br>(dB) | Pola<br>Raw<br>Value<br>(dBuV) | Arity:<br>Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | VERTICAL<br>Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| Freq<br>Frequency  | uency(MHz)<br>Emis<br>Le | :<br>ssion<br>vel    | Limit                   | Margin               | C Raw<br>Value                 | Antenna<br>Factor                     | Factor                  | Pre-<br>amplifier                     | Correction<br>Factor           |

#### 4.3 **Maximum Peak Output Power**


# Limit CTP

The Maximum Peak Output Power Measurement is 30dBm.

#### **Test Procedure**

CTATESTING CTATE Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

# Test Configuration CTATES



### Test Results

| Test Results<br>Left: |                               | GA CTATES. |             |        |  |
|-----------------------|-------------------------------|------------|-------------|--------|--|
| Туре                  | Channel Output power<br>(dBm) |            | Limit (dBm) | Result |  |
|                       | 00                            | 0.76       |             |        |  |
| GFSK 1Mbps            | <b>b</b> 19                   | 0.08       | 30.00       | Pass   |  |
| TATEST                | 39                            | -0.17      |             |        |  |
| C                     | 00                            | 0.71       |             |        |  |
| GFSK 2Mbps            | 19                            | 0.03       | 30.00 G     | Pass   |  |
|                       | 39                            | -0.23      | TATES       |        |  |
| Right:                |                               | (F         |             |        |  |

#### Right:

| Right:  |           |         |                       | <b>U</b>    |        |
|---------|-----------|---------|-----------------------|-------------|--------|
|         | Туре      | Channel | Output power<br>(dBm) | Limit (dBm) | Result |
| TESTIN  |           | 00      | 1.88                  |             | 25.034 |
| CTATE G | FSK 1Mbps | 19      | 1.24                  | 30.00       | Pass   |
|         |           | 39      | 1.09                  | G           |        |
|         | CIA       | 00      | 0.77                  |             |        |
| G       | FSK 2Mbps | 19      | 0.09                  | 30.00       | Pass   |
|         |           | 39      | -0.10                 |             | ATES   |

Note: 1.The test results including the cable lose.

#### Power Spectral Density 4.4

# Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### **Test Procedure**

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW  $\geq$  3 kHz.
- Set the VBW  $\geq$  3× RBW. 3.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

#### **Test Configuration**

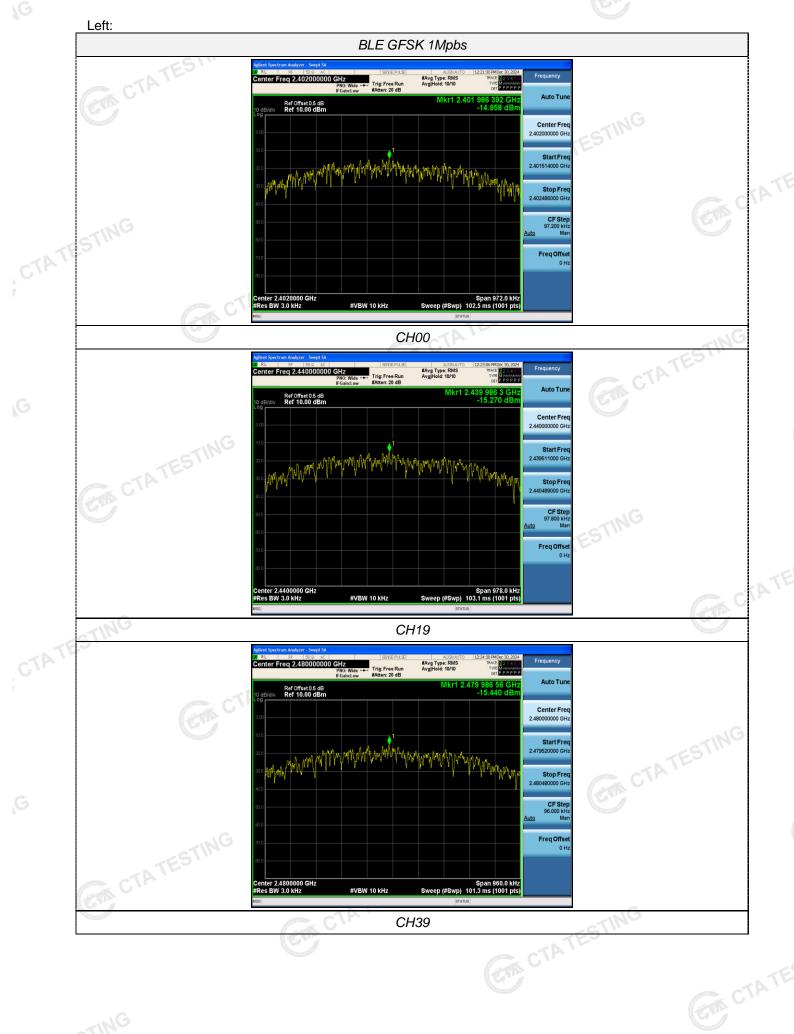




CTA TESTING SPECTRUM ANALYZER

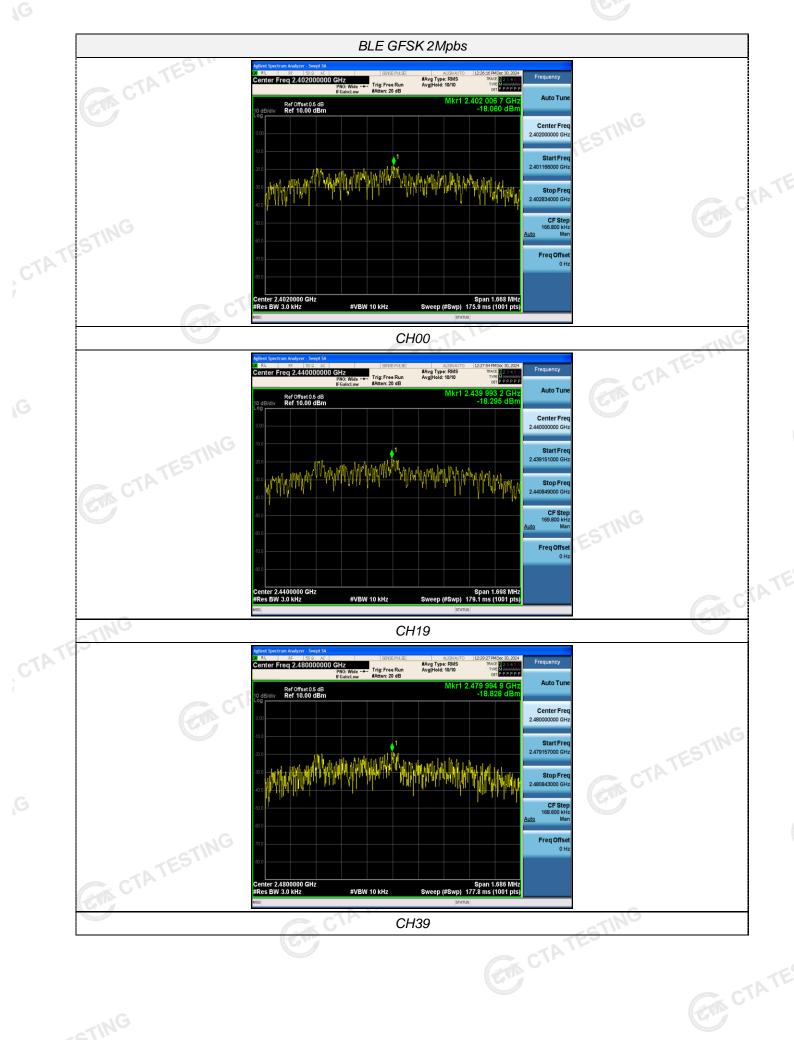
#### **Test Results**

#### Left:

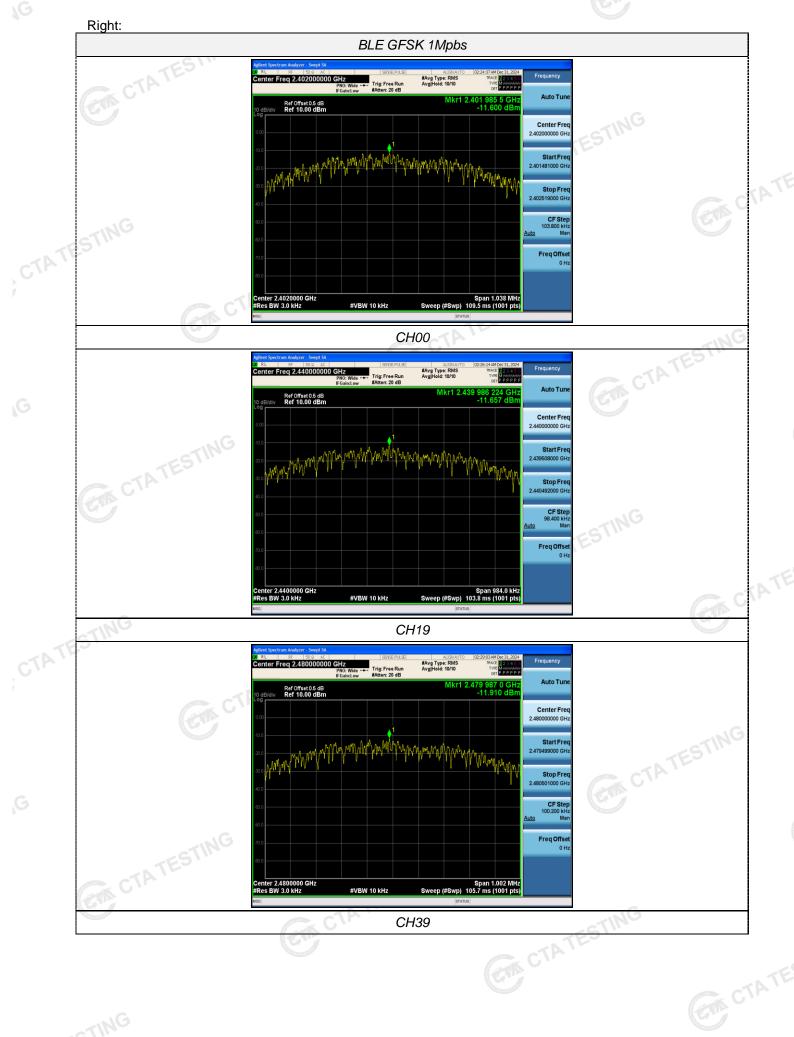

| Test Results |         |                                      | GV               |         |  |
|--------------|---------|--------------------------------------|------------------|---------|--|
| Left:        |         |                                      |                  |         |  |
| Туре         | Channel | Power Spectral Density<br>(dBm/3KHz) | Limit (dBm/3KHz) | Result  |  |
| STIL         | 00      | -14.96                               |                  |         |  |
| GFSK 1Mbps   | 19      | -15.27                               | 8.00             | Pass    |  |
|              | 39      | -15.44                               |                  |         |  |
|              | 00      | -18.06                               | -NG              |         |  |
| GFSK 2Mbps   | 19      | -18.30 🦯 🗸                           | 8.00             | Pass    |  |
|              | 39      | -18.83                               |                  | G       |  |
| Right:       |         | CIT CIT                              |                  | TESTINC |  |
|              |         | Power Spectral Density               |                  |         |  |

#### **Right:**

| Tugina .            |         |                                      |                  |        |
|---------------------|---------|--------------------------------------|------------------|--------|
| Туре                | Channel | Power Spectral Density<br>(dBm/3KHz) | Limit (dBm/3KHz) | Result |
|                     | 00      | -11.60                               | 6                |        |
| GFSK 1Mbps          | 19      | -11.66                               | 8.00             | Pass   |
|                     | G 39    | -11.91                               |                  |        |
| TES                 | 00      | -17.74                               |                  |        |
| GFSK 2Mbps          | 19      | -18.30                               | 8.00             | Pass   |
| Sec. C.             | 39      | -18.52                               |                  |        |
| Test plot as follow | s:      | CTATE                                | CTA TESTING      |        |
|                     |         |                                      |                  |        |

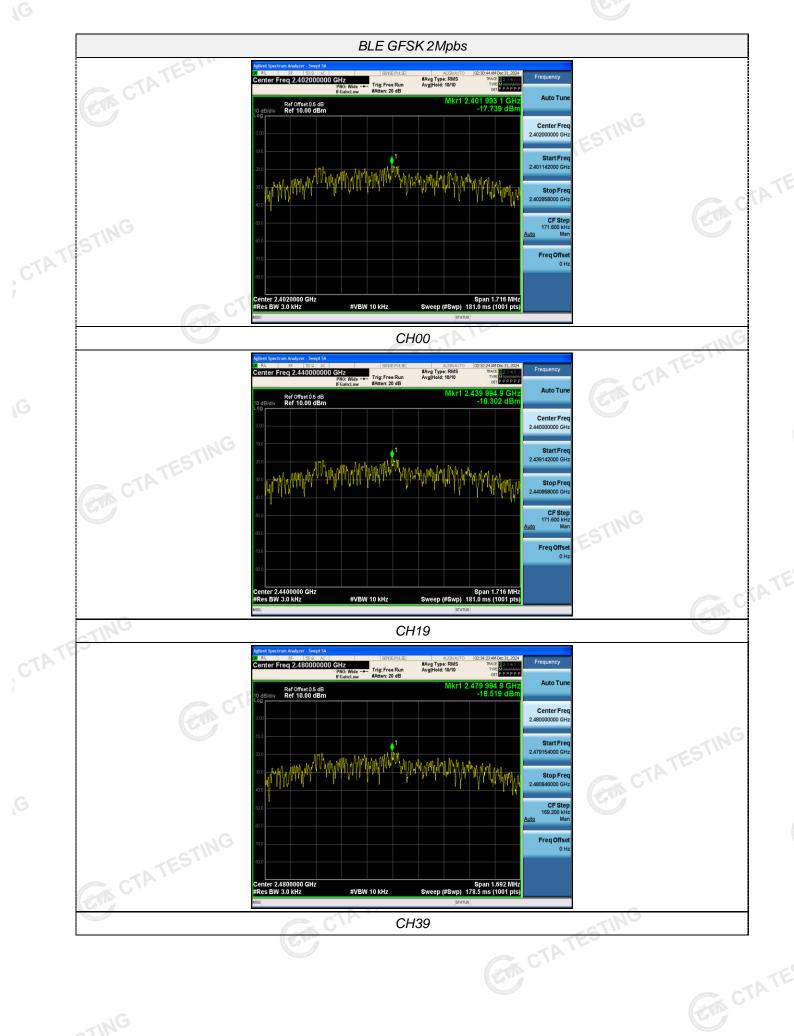

#### Test plot as follows:




















....G

#### 4.5 6dB Bandwidth

## Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz ESTING

#### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

#### **Test Configuration**



#### **Test Results**

| Left:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                        |             | TATL   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|-------------|--------|
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channel     | 6dB Bandwidth<br>(MHz) | Limit (KHz) | Result |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00          | 0.648                  |             |        |
| GFSK 1Mbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>G</b> 19 | 0.652                  | ≥500        | Pass   |
| TESTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39          | 0.640                  |             |        |
| CTA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00          | 1.112                  |             |        |
| GFSK 2Mbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19          | 1.132                  | ≥500        | Pass   |
| ALL TO BE AND AL | 39          | 1.124                  | TIN         | G      |

#### **Right:**

CTATE

| 39      |                                                                          | TING                                                                                                                                                                          |                                                                                                                                                                                                                                                          |  |
|---------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Right:  |                                                                          | CTATES !!                                                                                                                                                                     |                                                                                                                                                                                                                                                          |  |
| Channel | 6dB Bandwidth<br>(MHz)                                                   | Limit (KHz)                                                                                                                                                                   | Result                                                                                                                                                                                                                                                   |  |
| 00      | 0.692                                                                    |                                                                                                                                                                               | (en)                                                                                                                                                                                                                                                     |  |
| 19      | 0.656                                                                    | ≥500                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                     |  |
| 39      | 0.668                                                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                          |  |
| 00      | 1.144                                                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                          |  |
| 19      | 1.144                                                                    | ≥500                                                                                                                                                                          | Pass                                                                                                                                                                                                                                                     |  |
| GV 39   | 1.128                                                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                          |  |
|         | GIA CTATE                                                                | GA                                                                                                                                                                            | CTATESTING                                                                                                                                                                                                                                               |  |
|         | Channel           00           19           39           00           19 | Channel         6dB Bandwidth<br>(MHz)           00         0.692           19         0.656           39         0.668           00         1.144           19         1.128 | Channel         6dB Bandwidth<br>(MHz)         Limit (KHz)           00         0.692 $\geq$ 500           19         0.656 $\geq$ 500           39         0.668 $\geq$ 500           00         1.144 $\geq$ 500           39         1.128 $\geq$ 500 |  |










L.S.C











#### 4.6 **Out-of-band Emissions**

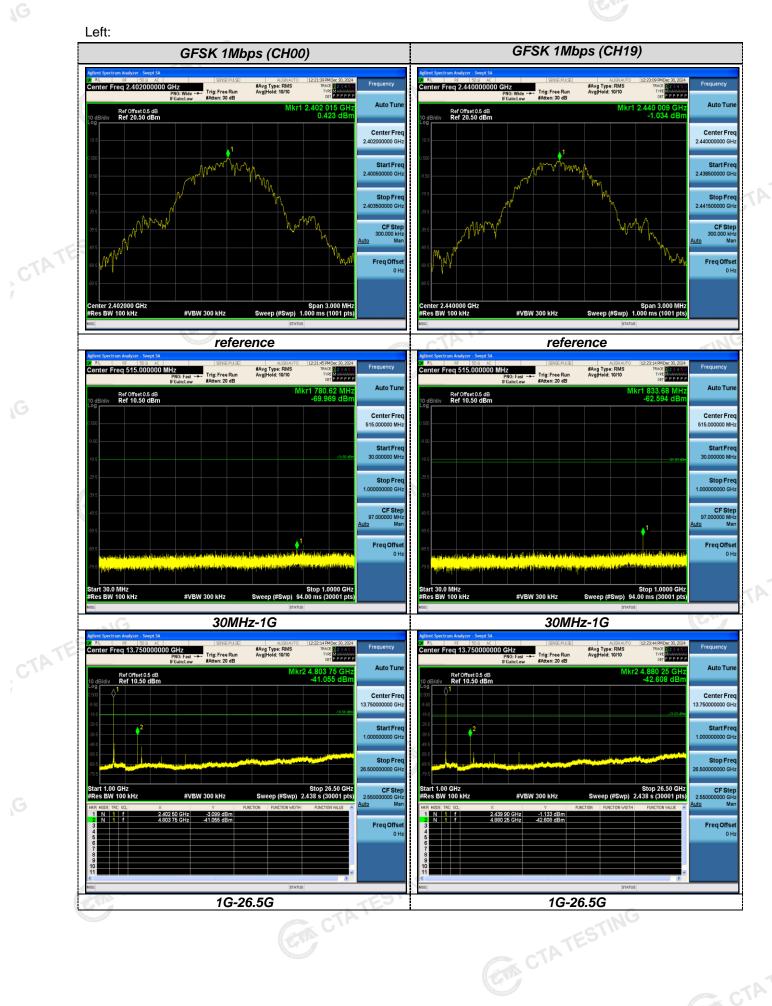
#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

#### **Test Procedure**

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are **GA** CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

#### **Test Configuration**




# ESTING Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

# Page 32 of 52

