

SILICON POWER MOS FET NE5510279A

4.8 V OPERATION SILICON RF POWER LD-MOS FET FOR 1.8 GHz 2 W TRANSMISSION AMPLIFIERS

DESCRIPTION

The NE5510279A is an N-channel silicon power MOS FET specially designed as the transmission power amplifier for 4.8 V GSM 1 800 handsets. Dies are manufactured using our NEWMOS technology (our 0.6 μ m WSi gate lateral-diffusion MOS FET) and housed in a surface mount package. The device can deliver 33.0 dBm output power with 47% power added efficiency at 1.8 GHz under the 4.8 V supply voltage.

FEATURES

High output power
 Pout = 35.5 dBm TYP. (VDS = 4.8 V, IDset = 300 mA, f = 900 MHz, Pin = 25 dBm)

: Pout = 33.0 dBm TYP. (VDS = 4.8 V, IDset = 300 mA, f = 1.8 GHz, Pin = 25 dBm)

• High power added efficiency : $\eta_{add} = 65\%$ TYP. (VDS = 4.8 V, IDset = 300 mA, f = 900 MHz, Pin = 25 dBm)

: $\eta_{add} = 47\%$ TYP. (VDS = 4.8 V, IDset = 300 mA, f = 1.8 GHz, Pin = 25 dBm)

High linear gain
 G_L = 16.0 dB TYP. (V_{DS} = 4.8 V, I_{Dset} = 300 mA, f = 900 MHz, P_{in} = 10 dBm)

: GL = 10.0 dB TYP. (VDS = 4.8 V, IDset = 300 mA, f = 1.8 GHz, Pin = 10 dBm)

Surface mount package : 5.7 × 5.7 × 1.1 mm MAX.

• Single supply : V_{DS} = 3.0 to 6.0 V

APPLICATIONS

• Digital cellular phones : 4.8 V GSM 1 800 class 1 handsets

Others : General purpose amplifiers for 1.6 to 2.0 GHz TDMA applications

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
NE5510279A-T1	79A	W2	12 mm wide embossed taping Gate pin face the perforation side of the tape Qty 1 kpcs/reel

Remark To order evaluation samples, consult your NEC sales representative.

Part number for sample order: NE5510279A

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	Vos	20.0	V
Gate to Source Voltage	Vgs	5.0	V
Drain Current	Ips	1.0	Α
Drain Current (Pulse Test)	IDS Note	2.0	Α
Total Power Dissipation	Ptot	20	W
Channel Temperature	Tch	125	°C
Storage Temperature	Tstg	-65 to +125	°C

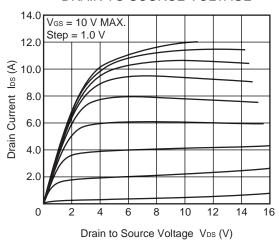
Note Duty Cycle $\leq 50\%$, Ton $\leq 1 \text{ s}$

RECOMMENDED OPERATING CONDITIONS

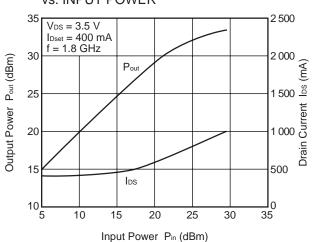
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	Vos		3.0	4.8	6.0	V
Gate to Source Voltage	Vgs		0	2.0	3.5	V
Drain Current (Pulse Test)	Ids	Duty Cycle ≤ 50%, Ton ≤ 1 s	-	1.0	1.5	Α
Input Power	Pin	f = 1.8 GHz, V _{DS} = 4.8 V	25	-	27	dBm

ELECTRICAL CHARACTERISTICS (TA = +25°C)

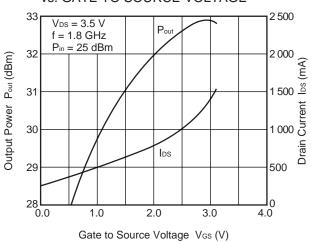
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	Igss	Vgss = 5.0 V	-	-	100	nA
Saturated Drain Current (Zero Gate Voltage Drain Current)	Ipss	V _{DSS} = 8.5 V	-	-	100	nA
Gate Threshold Voltage	Vth	V _{DS} = 4.8 V, I _{DS} = 1 mA	1.0	1.35	2.0	V
Transconductance	gm	V _{DS} = 4.8 V, I _{DS} = 600 mA	-	1.50	-	S
Drain to Source Breakdown Voltage	BVDSS	$loss = 10 \mu A$	20	24	-	V
Thermal Resistance	Rth	Channel to Case	-	5	-	°C/W
Linear Gain	GL	f = 900 MHz, P _{in} = 10 dBm, V _{DS} = 4.8 V, I _{Dset} = 300 mA, Note 1, 2	-	16.0	-	dB
Output Power	Pout	f = 900 MHz, Pin = 25 dBm,	_	35.5	-	dBm
Operating Current	lop	V _{DS} = 4.8 V, I _{Dset} = 300 mA, Note 1, 2	_	1 000	-	mA
Power Added Efficiency	η add		-	65	-	%
Linear Gain	GL	f = 1.8 GHz, P _{in} = 10 dBm, V _{DS} = 4.8 V, I _{Dset} = 300 mA, Note 1, 2	-	10.0	-	dB
Output Power	Pout	f = 1.8 GHz, Pin = 25 dBm,	32.0	33.0	-	dBm
Operating Current	lop	V _{DS} = 4.8 V, I _{Dset} = 300 mA, Note 1, 2	_	750	-	mA
Power Added Efficiency	η add		38	47		%

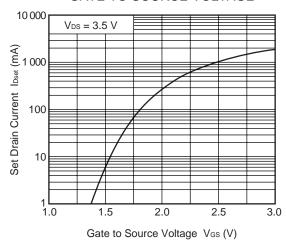

Notes 1. Peak measurement at Duty Cycle \leq 50%, $T_{on} \leq$ 1 s.

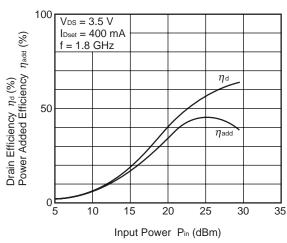
2. DC performance is 100% testing. RF performance is testing several samples per wafer. Wafer rejection criteria for standard devices is 1 reject for several samples.

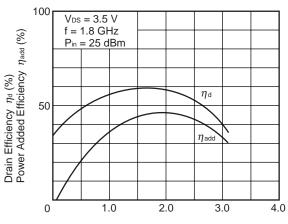

Data Sheet PU10121EJ02V0DS

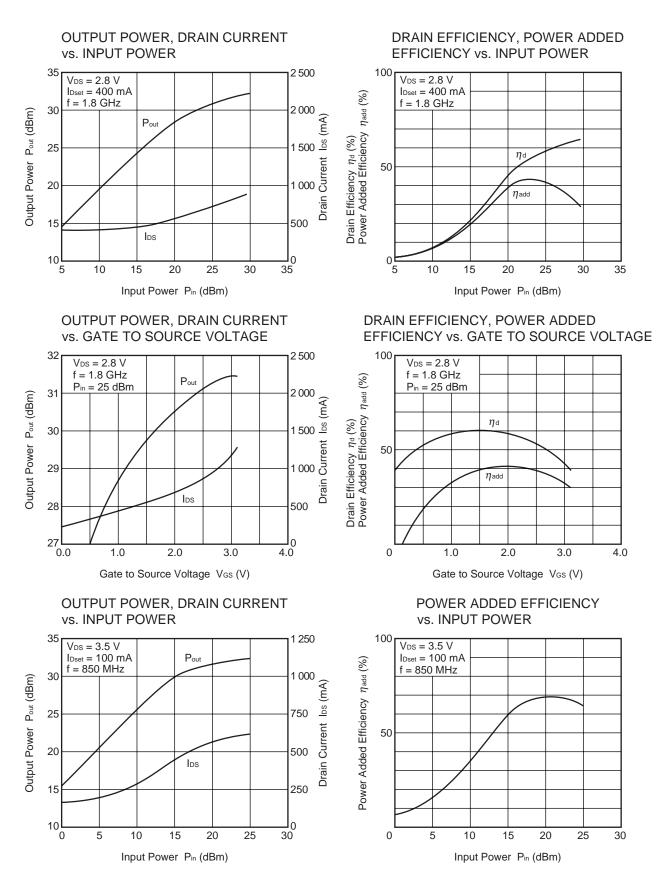
TYPICAL CHARACTERISTICS (TA = +25°C)


DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE


OUTPUT POWER, DRAIN CURRENT vs. INPUT POWER


OUTPUT POWER, DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE


SET DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE


DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. INPUT POWER

DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. GATE TO SOURCE VOLTAGE

Gate to Source Voltage Vgs (V)

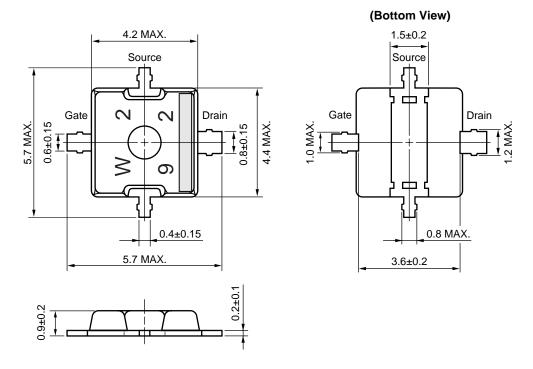
Remark The graphs indicate nominal characteristics.

S-PARAMETERS

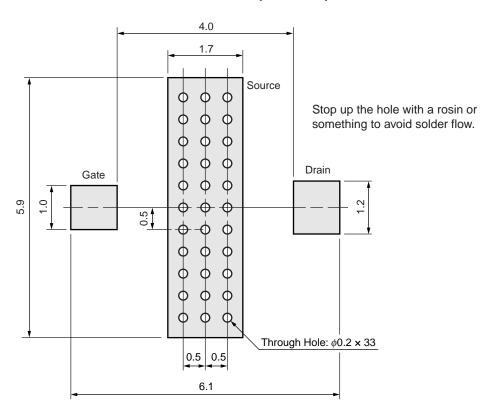
Test Conditions: VDS = 3.5 V, IDset = 400 mA

Frequency	5	S ₁₁		S ₂₁			S 12		S	S ₂₂	MAG Note	MSG Note	K
GHz	MAG.	ANG.	dB	MAG.	ANG.	dB	MAG.	ANG.	MAG.	ANG.	dB	dB	
0.1	0.889	-149.7	18.8	8.66	99.8	-34.4	0.019	14.6	0.854	-173.8		26.6	
0.2	0.872	-165.4	12.9	4.41	87.5	-34.0	0.020	3.4	0.861	–177.7		23.4	
0.3	0.871	-170.9	9.3	2.91	82.0	-34.0	0.020	-1.8	0.875	-178.6		21.6	
0.4	0.871	-173.7	6.6	2.13	76.1	-34.4	0.019	-4.1	0.869	-179.6		20.5	
0.5	0.873	-175.6	4.6	1.69	71.5	-34.4	0.019	-9.5	0.886	179.7		19.5	0.04
0.6	0.880	-176.9	2.7	1.37	67.7	-34.9	0.018	-11.8	0.886	179.2		18.8	0.22
0.7	0.884	-177.9	1.4	1.17	63.9	-35.9	0.016	-10.6	0.893	178.9		18.6	0.40
0.8	0.897	-179.1	-0.1	0.99	60.5	-35.9	0.016	-10.2	0.898	178.0		17.9	0.40
0.9	0.905	-179.9	-1.2	0.87	56.3	-37.1	0.014	-15.0	0.914	177.6		17.9	0.41
1.0	0.919	178.1	-2.3	0.77	53.8	-37.1	0.014	-7.8	0.928	176.0		17.4	0.16
1.1	0.930	175.9	-3.2	0.69	48.8	-38.4	0.012	-13.7	0.938	174.8		17.6	0.11
1.2	0.923	174.2	-4.4	0.60	46.9	-38.4	0.012	-11.0	0.927	172.9		17.0	0.59
1.3	0.919	172.9	-5.4	0.54	42.6	-40.0	0.010	-10.5	0.923	171.8	14.1		1.29
1.4	0.918	171.8	-6.4	0.48	41.0	-40.0	0.010	-4.7	0.922	170.6	12.2		1.62
1.5	0.918	170.6	-7.1	0.44	37.6	-39.2	0.011	-8.0	0.924	170.1	11.7		1.53
1.6	0.920	168.9	-7.7	0.41	36.7	-41.9	0.008	-5.5	0.927	168.7	10.4		2.46
1.7	0.918	167.5	-8.9	0.36	33.6	-41.9	0.008	4.3	0.922	167.9	8.5		3.27
1.8	0.927	166.2	-9.1	0.35	30.9	-40.9	0.009	12.5	0.935	165.9	10.3		1.95
1.9	0.922	164.1	-10.2	0.31	28.2	-43.1	0.007	20.9	0.932	164.9	7.9		3.67
2.0	0.923	162.6	-10.5	0.30	27.8	-43.1	0.007	32.4	0.942	163.0	8.6		3.08
2.1	0.928	159.9	-11.7	0.26	25.2	-43.1	0.007	48.5	0.928	161.8	6.2		4.46
2.2	0.926	158.6	-12.0	0.25	23.2	-44.4	0.006	36.8	0.938	160.0	6.3		4.89
2.3	0.929	156.6	-13.2	0.22	20.0	-41.9	0.008	50.0	0.935	157.6	5.4		4.01
2.4	0.925	154.5	-13.2	0.22	18.0	-40.9	0.009	45.1	0.945	156.2	6.2		3.01
2.5	0.928	152.2	-14.0	0.20	18.1	-43.1	0.007	61.4	0.941	154.5	4.8		4.77
2.6	0.933	150.4	-14.0	0.20	17.2	-40.9	0.009	56.3	0.938	152.5	5.2		3.43
2.7	0.930	148.4	-15.9	0.16	15.0	-39.2	0.011	70.0	0.933	150.3	2.5		4.13
2.8	0.929	146.2	-15.4	0.17	11.1	-37.7	0.013	59.4	0.952	148.1	5.4		2.01
2.9	0.931	144.4	-15.9	0.16	11.6	-37.7	0.013	74.0	0.937	146.9	3.2		3.01
3.0	0.933	142.6	-16.5	0.15	10.0	-37.1	0.014	67.5	0.950	145.0	4.3		2.10

Note When K \geq 1, the MAG (Maximum Available Gain) is used. $MAG = \left| \frac{S_{21}}{S_{12}} \right| \left(K - \sqrt{(K^2 - 1)} \right)$ When K < 1, the MSG (Maximum Stable Gain) is used. $MSG = \left| \frac{S_{21}}{S_{12}} \right|, K = \frac{1 + \left| \Delta \right|^2 - \left| S_{11} \right|^2 - \left| S_{22} \right|^2}{2 \cdot \left| S_{12} \right| \cdot \left| S_{21} \right|},$ $\Delta = S_{11} \cdot S_{22} - S_{21} \cdot S_{12}$


LARGE SIGNAL IMPEDANCE (VDS = 3.5 V, IDset = 400 mA, Pin = 25 dBm)

f (GHz)	Zin (Ω)	Z OL $(\Omega)^{Note}$
1.8	TBD	TBD


Note ZoL is the conjugate of optimum load impedance at given voltage, idling current, input power and frequency.

PACKAGE DIMENSIONS

79A (UNIT: mm)

79A PACKAGE RECOMMENDED P.C.B. LAYOUT (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per pin of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350-P3

Caution Do not use different soldering methods together (except for partial heating).

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- (Note)
- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

▶Business issue

NEC Compound Semiconductor Devices, Ltd.

 $5 th \ Sales \ Group, \ Sales \ Division \ \ TEL: +81-3-3798-6372 \ \ FAX: +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ E-mail: \\ sales info @ csd-nec.com \ \ Axis +81-3-3798-6783 \ \ Axis +81-3798-6783 \ \ Axis +81-3798-$

NEC Compound Semiconductor Devices Hong Kong Limited

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-528-0301 FAX: +82-2-528-0302

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-01 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279

▶Technical issue

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

Sales Engineering Group, Sales Division

E-mail: techinfo@csd-nec.com FAX: +81-44-435-1918