### 78\_LTE Band 7\_20M\_QPSK\_1RB\_0Offset\_Front\_0mm\_Ch20850 Communication System: UID 0, FDD\_LTE (0); Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: MSL\_2600 Medium parameters used: f = 2510 MHz; $\sigma = 2.084$ S/m; $\varepsilon_r = 53.192$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.8 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(6.52, 6.52, 6.52); Calibrated: 2016.6.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM2; Type: SAM; Serial: TP-1542 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch20850/Area Scan (91x161x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 13.2 W/kg Ch20850/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.409 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 21.5 W/kg SAR(1 g) = 9.4 W/kg; SAR(10 g) = 3.4 W/kg Maximum value of SAR (measured) = 15.1 W/kg ### 79\_WLAN5.3GHz\_802.11a 6Mbps\_Back\_0mm\_Ch52\_Ant 1 Communication System: UID 0, WIFI (0); Frequency: 5260 MHz; Duty Cycle: 1:1.071 Medium: MSL\_5000 Medium parameters used: f = 5260 MHz; $\sigma = 5.538$ S/m; $\varepsilon_r = 47.83$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.12 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(3.95, 3.95, 3.95); Calibrated: 2016.6.27; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch52/Area Scan (101x181x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.0 W/kg Ch52/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.588 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 5.84 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 14.7 W/kg ### 80\_WLAN5.3GHz\_802.11a 6Mbps\_Back\_0mm\_Ch56\_Ant 2 Communication System: UID 0, WIFI (0); Frequency: 5280 MHz; Duty Cycle: 1:1.076 Medium: MSL\_5000 Medium parameters used: f = 5280 MHz; $\sigma = 5.565$ S/m; $\varepsilon_r = 47.792$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.12 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(3.95, 3.95, 3.95); Calibrated: 2016.6.27; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch56/Area Scan (101x181x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.6 W/kg Ch56/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.485 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 4.6 W/kg; SAR(10 g) = 1.14 W/kg Maximum value of SAR (measured) = 12.0 W/kg ### 81\_WLAN5.3GHz\_ 802.11n-HT20 MCS0\_Back\_0mm\_Ch52\_Ant 1+2 Communication System: UID 0, WIFI (0); Frequency: 5260 MHz; Duty Cycle: 1:1.067 Medium: MSL\_5000 Medium parameters used: f = 5260 MHz; $\sigma = 5.538$ S/m; $\varepsilon_r = 47.83$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.12 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(3.95, 3.95, 3.95); Calibrated: 2016.6.27; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch52/Area Scan (101x181x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.4 W/kg Ch52/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.130 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 1.89 W/kg Maximum value of SAR (measured) = 16.8 W/kg ### 82\_WLAN5.5GHz\_802.11a 6Mbps\_Back\_0mm\_Ch100\_Ant 1 Communication System: UID 0, WIFI (0); Frequency: 5500 MHz; Duty Cycle: 1:1.071 Medium: MSL\_5000 Medium parameters used: f = 5500 MHz; $\sigma = 5.848$ S/m; $\epsilon_r = 47.418$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.13 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(3.71, 3.71, 3.71); Calibrated: 2016.6.27; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch100/Area Scan (101x181x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.74 W/kg Ch100/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.409 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 23.3 W/kg SAR(1 g) = 4.12 W/kg; SAR(10 g) = 0.826 W/kg Maximum value of SAR (measured) = 12.4 W/kg ### 83\_WLAN5.5GHz\_802.11n-HT20 MCS0\_Back\_0mm\_Ch116\_Ant 2 Communication System: UID 0, WIFI (0); Frequency: 5580 MHz; Duty Cycle: 1:1.084 Medium: MSL\_5000 Medium parameters used: f = 5580 MHz; $\sigma = 5.969$ S/m; $\varepsilon_r = 47.282$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.28 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(3.92, 3.92, 3.92); Calibrated: 2016.11.28; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM2; Type: SAM; Serial: TP-1542 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch116/Area Scan (101x171x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 14.1 W/kg Ch116/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.316 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 39.5 W/kg SAR(1 g) = 6.19 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 19.5 W/kg ### 84\_WLAN5.5GHz\_802.11n-HT20 MCS0\_Back\_0mm\_Ch116\_Ant 1+2 Communication System: UID 0, WIFI (0); Frequency: 5580 MHz; Duty Cycle: 1:1.067 Medium: MSL\_5000 Medium parameters used: f = 5580 MHz; $\sigma = 5.969$ S/m; $\varepsilon_r = 47.282$ ; $\rho = 1000$ kg/m<sup>3</sup> Date: 2016.12.13 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(3.54, 3.54, 3.54); Calibrated: 2016.6.27; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch116/Area Scan (101x181x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.5 W/kg Ch116/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.416 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 6.96 W/kg; SAR(10 g) = 1.84 W/kg Maximum value of SAR (measured) = 16.0 W/kg ### 85\_Bluetooth\_1Mbps\_Back\_0mm\_Ch39 Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.302 Medium: MSL\_2450 Medium parameters used: f = 2441 MHz; $\sigma$ = 2.002 S/m; $\epsilon_r$ = 53.547; $\rho$ = 1000 Date: 2016.12.16 $kg/m^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(6.79, 6.79, 6.79); Calibrated: 2016.6.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch39/Area Scan (91x151x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.385 W/kg **Ch39/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.593 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.685 W/kg SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.089 W/kgMaximum value of SAR (measured) = 0.451 W/kg 0 dB = 0.451 W/kg = -3.46 dBW/kg # Appendix C. DASY Calibration Certificate Report No.: FA672003 The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: D750V3-1078\_Jun16 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1078 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 22, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sid Illan | | Approved by: | Katja Pokovic | Technical Manager | ALM. | Issued: June 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1078\_Jun16 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1078\_Jun16 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | the following parameters and edicalations were appli- | Temperature | Permittivity | Conductivity | |-------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.18 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.39 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | To rollowing parameters and same same | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.6 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.63 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.67 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1078\_Jun16 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.5 Ω - 0.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.4 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.9 Ω - 2.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.9 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.034 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 15, 2012 | Certificate No: D750V3-1078\_Jun16 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 22.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1078 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$ ; $\varepsilon_r = 41.3$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.85 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.07 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.73 W/kg 0 dB = 2.73 W/kg = 4.36 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 22.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1078 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$ ; $\varepsilon_r = 54.6$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.86 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.91 W/kg 0 dB = 2.91 W/kg = 4.64 dBW/kg # Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 DOOFNO ANTES BA- Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) | Certificate No: | DOSOV | 2-401 | ם ו ַו | viari | O | |-----------------|-------|-------|--------|-------|---| | | | | | | | | | IDDATI | ON OFF | TILLOATE | |-----|--------|--------|-----------| | CAL | IDRAII | UN CER | RTIFICATE | Object D835V2 - SN:4d151 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 16, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Function Jeton Kastrati Laboratory Technician Signature ounclated by. Approved by: Katja Pokovic Technical Manager Issued: March 16, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d151\_Mar16 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d151\_Mar16 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|---------------------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 2000 NOVE - 100 000 000 000 000 000 000 000 000 0 | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.7 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | 4144 | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.26 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.05 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 2522/ | nana: | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.52 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.28 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d151\_Mar16 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2 Ω - 3.3 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 28.3 dB | | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.9 Ω - 4.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.9 dB | | # General Antenna Parameters and Design | 1.390 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | March 27, 2012 | | Certificate No: D835V2-4d151\_Mar16 ### **DASY5 Validation Report for Head TSL** Date: 16.03.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d151 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.7$ ; $\rho = 1000$ kg/m<sup>3</sup> Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.83, 9.83, 9.83); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom Type: QD000P49AA - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.40 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg 0 dB = 3.18 W/kg = 5.02 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 16.03.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d151 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 54.5$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Body Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.04 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.26 W/kg 0 dB = 3.26 W/kg = 5.13 dBW/kg # Impedance Measurement Plot for Body TSL Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn CALIBRATION CNAS L0570 Client Sporton CN Certificate No: Z16-97070 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1137 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: May 18, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | Power sensor NRP-Z91 | 101547 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-16(SPEAG,No.EX3-7307_Feb16) | Feb-17 | | DAE4 | SN 771 | 02-Feb-16(CTTL-SPEAG,No.Z16-97011) | Feb-17 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-16 (CTTL, No.J16X00893) | Jan-17 | | Network Analyzer E5071C | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894) | Jan-17 | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是意 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 2000 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | Be also | Issued: May 20, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z16-97070 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.18 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.04 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.1 mW /g ± 20.4 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.3 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.27 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 37.4 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.96 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.0 mW /g ± 20.4 % (k=2) | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ### Appendix ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.3Ω+ 0.73jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 42.0dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.9Ω+ 1.29jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.2dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.321 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.388 \text{ S/m}$ ; $\epsilon r = 40.26$ ; $\rho = 1000 \text{ kg/m}3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(8.37, 8.37, 8.37); Calibrated: 2/19/2016; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 05.18.2016 # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.87V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 15.9W/kg SAR(1 g) = 9.18 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 05.18,2016 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r = 54.25$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(8.18, 8.18, 8.18); Calibrated: 2/19/2016; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.05 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.96 W/kg Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.14 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: D1900V2-5d018\_Jun16 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d018 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 21, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Cohodulad O. III. | |-------------------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Scheduled Calibration | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02292) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 05-Apr-16 (No. 217-02295) | Apr-17 | | DAE4 | SN: 601 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | | 314. 001 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Charle Date (in terms) | | | Power meter EPM-442A | SN: GB37480704 | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Circologo | | Calibrated by: | Michael Weber | | Signature | | ####<br>################################# | | Laboratory Technician | MBST | | | | | 77.100 | | Approved by: | Katja Pokovic | Technical Manager | 110 m | | | | | John Colon | Issued: June 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.1 ± 6 % | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | (man- | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) |