FCC TEST REPORT				
	FCC ID:2A2SV-CKC61W			
Report No. :	SSP25010049-1E			
Applicant :	Shenzhen Coolkit Technology Co., Ltd.			
Product Name :	CKC6-1-W			
Model Name :	CKC6-1-W-N16			
Test Standard :	FCC Part 15.247			
Date of Issue :	2025-02-12			
	CCUT			
	zhen CCUT Quality Technology Co., Ltd.			
	nology Industrial Park, Yutang Street, Guangming District, Shenzhen, (Tel.:+86-755-23406590 website: www.ccuttest.com)			
•	ove client company and the product model only. It may not be duplicated mitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Г

Test Report Basic Information

Applicant	Shenzhen Coolkit Technology Co., Ltd.				
	B11,2nd Floor,T6 Art Zone,No.6 Tongfa Road,Xili Town,Shenzhen,GuangDong,				
Address of Applicant	China				
Manufacturer	Shenzhen Coolkit Technology Co., Ltd.				
	B11,2nd Floor,T6 Art Zone,No.6 Tongfa Road,Xili Town,Shenzhen,GuangDong,				
Address of Manufacturer:	China				
Product Name	CKC6-1-W				
Brand Name:	Cookit				
Main Model	CKC6-1-W-N16				
Series Models	See section 1.1 (Page 5)				
	FCC Part 15 Subpart C				
	KDB 558074 D01 15.247 Meas Guidance v05r02				
	ANSI C63.4-2014				
Test Standard	ANSI C63.10-2013				
Date of Test	2024-12-23 to 2025-01-08				
Test Result	PASS				
Tested By	Lorrix Lua (Lorzix Luo)				
Reviewed By	Lieber Ouyang (Lieber Ouyang)				
Revieweu by					
	Lahm Peng (Lahm Peng)				
Authorized Signatory	Lahm Peng (Lahm Peng)				
Note : This test report is limited	to the above client company and the product model only. It may not be				
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in					
this test report is only applicabl					

CONTENTS

1. General Information	
1.1 Product Information	
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions(Radiated)	23
6.1 Standard and Limit	23
6.2 Test Procedure	23
6.3 Test Data and Results	23
7. Maximum Conducted Output Power	25
7.1 Standard and Limit	25
7.2 Test Procedure	25
7.3 Test Data and Results	
8. Occupied Bandwidth	26
8.1 Standard and Limit	26
8.2 Test Procedure	26
8.3 Test Data and Results	26
9. Maximum Power Spectral Density	29
9.1 Standard and Limit	29
9.2 Test Procedure	29
9.3 Test Data and Results	29
10. Band-edge Emission(Conducted)	32
10.1 Standard and Limit	32
10.2 Test Procedure	32
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	35
11.1 Standard and Limit	35
11.2 Test Procedure	35
11.3 Test Data and Results	35

Revision History

Revision	Issue Date	Description	Revised By	
V1.0	2025-02-12	Initial Release	Lahm Peng	

1. General Information

1.1 Product Information

Product Name:	CKC6-1-W	
Trade Name:	Cookit	
Main Model:	CKC6-1-W-N16	
Series Models:	CKC6-1-W-N8, CKC6-1-W-H4, CKC6-1-W-N4	
Rated Voltage:	3.0V-3.6V	
Power Adapter:	N/A	
Battery:	N/A	
Hardware Version:	CK-ESP32C6-WR-01 V1.1	
Software Version:	N/A	
Note 1: The test data is gathered from a production sample, provided by the manufacturer.		

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification				
Wireless Standard:	Bluetooth BLE			
Operating Frequency:	2402MHz ~ 2480MHz			
RF Output Power:	3.64dBm			
Number of Channel:	40			
Channel Separation:	2MHz			
Modulation:	GFSK			
Antenna Gain:	0.85dBi			
Type of Antenna:	Integral Antenna			
Type of Device:	Portable Device Device Mobile Device			

1.2 Test Setup Information

List of Test Modes							
Test Mode	Description			Remark			
TM1	BI	E_1Mbps		2402/2440/2480MHz			
TM2	BI	E_2Mbps		2402/2440/2480MHz			
TM3	0	Charging		AC 120V/60Hz			
List and Detai	List and Details of Auxiliary Cable						
Descri	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-			-				
List and Detai	List and Details of Auxiliary Equipment						
Descri	ption	Manufacturer		Model	Serial Number		
Adap	ter	EASTSUN		ES005-U120200XYC	ES2017103100047		
USB TC) TTL	Yeahbot		HW-597	-		

List of Chan	nels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
rec rait 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	methodology		
ECC Part 15 Submart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
KDB 558074 D01 15.247 Meas	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION		
Guidance v05r02	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM		
Guidance v05r02	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C03.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
	•	Radiated Emission	15				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
	Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A		

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dedicted Emissions	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the ess	ential requirements in the standard	
Failed: The EUT does not comply with	the essential requirements in the standard	
N/A: Not applicable		

3. Antenna Requirement

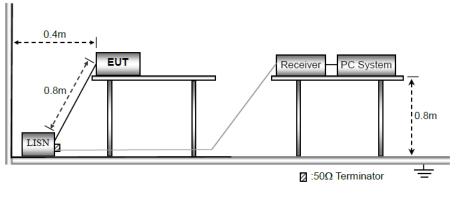
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an integral antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)					
(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56	56 to 46				
0.5-5	56	46				
5-30	60 50					
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz						
Note 2: The lower limit applies at the band edges						

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test	Plot	s and Data o	of Conduct	ed Emissi	ons								
Teste	ed M	lode:	TM2										
Test	Volt	age:	AC 12	C 120V/60Hz									
Test	Pow	ver Line:	Neut	leutral									
Rema	ark:												
90.0	d	Bu¥											
[
80								_					
70													
60													
50		++-											
40				F									
		1	3	5									
30	~~	- provide	~ range from	manihina k	malithmation	Munduluu						Мреа	ak
20	\sim			maria	-	Marin B	NHYWO AMAN	way when have a	44- 4 - 1 -	9 Mini / Mini Mini Mini Mini Mini Mini Min	11 X and a set the	when the second	~
10						and the second s	marking	······································	man	10	12 Xintu la do	AVE	
0													
-10													
0.	150		0.50	0		(MHz)		5.0)00			30.000	
No).	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark			1
1	+	0.2265	22.42	9.25	31.67	62.58	-30.91	QP	P				-
2	+	0.2265	12.61	9.25	21.86	52.58	-30.72	AVG	P				1
3		0.4515	22.59	9.39	31.98	56.85	-24.87	QP	Р				1
4		0.4515	10.51	9.39	19.90	46.85	-26.95	AVG	Ρ				
5	*	0.8565	26.63	9.39	36.02	56.00	-19.98	QP	Ρ				
6		0.8565	12.06	9.39	21.45	46.00	-24.55		Р				
7		1.8870	18.59	9.46	28.05	56.00	-27.95	QP	P				
8		1.8870	6.49	9.46	15.95	46.00	-30.05	AVG	P				
9		7.2285	10.83	9.57	20.40	60.00	-39.60	QP	P				
10	_	7.2285	-1.21	9.57	8.36	50.00	-41.64	AVG	P				
11		13.7670	10.84	9.54	20.38	60.00	-39.62	QP	P				
12		13.7670	-1.58	9.54	7.96	50.00	-42.04	AVG	Ρ				

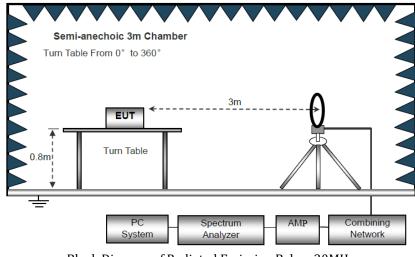
10 10 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ons</th><th>ed Emissi</th><th>of Conduct</th><th>s and Data o</th><th>Test Plo</th></th<>								ons	ed Emissi	of Conduct	s and Data o	Test Plo
Itive Remark: 90 dev 0 dev 0 dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		M2								TM2	ode:	Tested N
Remark: Image: Contract of the second s		C 120V/60Hz							AC 12	age:	Test Vol	
90.0 dBvV 80 70 60 60 60 60 60 60 60 60 60 6										Live	er Line:	Test Pov
80												Remark
70 60 77 78 0P P 70 70 70 70 75 71 70 73 70 70 71 70 71 70 75 71 70 71 71 71 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BuV</td><td>90.0 0</td></th<>											BuV	90.0 0
0 0												
60 60 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80</td></td<>				_								80
60 50 60 70 60 70 70 70 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70</td></th<>												70
50 60 1 3 5 6 6 6 6 6 6 6 7 <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<>												~ ~
40 1 3 5 1 1 1 3 20 1 3 5 1 <td></td> <td>60</td>												60
40 1 3 5 1 1 1 3 20 1 3 5 1 <td></td> <td>50</td>												50
30 1 3 5 1												30
No. Frequency (MHz) Reading (dBuV) Factor (dB) Level (dBuV) Limit (dB) Margin (dB) Detector P/F Remark 1 0.2805 23.47 9.55 33.02 60.80 -27.78 QP P 2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 * 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P									5	-	1	40
0 -10 0								www.www.	,	Mul main	min	30 ~~
0 -10 0	11 peak	9					Mr. Zur	N44	6	and the standard	2	
No. Frequency (MHz) Reading (dBuV) Factor (dBuV) Level (dBuV) Limit (dBuV) Margin (dB) Detector P/F Remark 1 0.2805 23.47 9.55 33.02 60.80 -27.78 QP P 2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P	AVG	wind states provides the design of the desig	manne	14 Judio	White bear to all the	"white the w	~~~. 8	www.array.org	upang ng katalang kat	**************************************		20
-10 0.150 0.500 (MHz) 5.000 No. Frequency (MHz) Reading (dBuV) Factor (dB) Level (dBuV) Limit (dBuV) Margin (dB) Detector P/F Remark 1 0.2805 23.47 9.55 33.02 60.80 -27.78 QP P 2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 * 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P	- Ander	10		everanture.		and and the						10
0.1500.500(MHz)5.000No.Frequency (MHz)Reading (dBUV)Factor (dB)Level (dBUV)Limit (dBUV)Margin (dB)DetectorP/FRemark10.280523.479.5533.0260.80-27.78QPP20.280511.979.5521.5250.80-29.28AVGP30.342822.729.5832.3059.14-26.84QPP40.342811.079.5820.6549.14-28.49AVGP5*0.865524.529.5834.1056.00-21.90QPP60.865512.039.5821.6146.00-24.39AVGP72.089515.549.6625.2056.00-30.80QPP												0
No. Frequency (MHz) Reading (dBuV) Factor (dB) Level (dBuV) Limit (dBuV) Margin (dB) Detector P/F Remark 1 0.2805 23.47 9.55 33.02 60.80 -27.78 QP P 2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 * 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P												-10
NO. (MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) (dBuV) (dBuV) (dB) betecht P/F Remark 1 0.2805 23.47 9.55 33.02 60.80 -27.78 QP P 2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P	30.000			00	5.0		(MHz))	0.50		0.150
NO. (MHz) (dBuV) (dB) (dBuV) (dBuV) (dBuV) (dB) betecht P/F Remark 1 0.2805 23.47 9.55 33.02 60.80 -27.78 QP P 2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P						Margin	Limit		Factor	Deading	Fraguanay	
2 0.2805 11.97 9.55 21.52 50.80 -29.28 AVG P 3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 * 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P		nark	Remark	P/F	Detector	(dB)						No.
3 0.3428 22.72 9.58 32.30 59.14 -26.84 QP P 4 0.3428 11.07 9.58 20.65 49.14 -28.49 AVG P 5 * 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P				Ρ	QP	-27.78	60.80	33.02	9.55	23.47	0.2805	1
40.342811.079.5820.6549.14-28.49AVGP5 *0.865524.529.5834.1056.00-21.90QPP60.865512.039.5821.6146.00-24.39AVGP72.089515.549.6625.2056.00-30.80QPP				Ρ	AVG	-29.28	50.80	21.52	9.55	11.97	0.2805	2
5 * 0.8655 24.52 9.58 34.10 56.00 -21.90 QP P 6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P				Ρ	QP	-26.84	59.14	32.30	9.58	22.72	0.3428	3
6 0.8655 12.03 9.58 21.61 46.00 -24.39 AVG P 7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P												
7 2.0895 15.54 9.66 25.20 56.00 -30.80 QP P												
				P P	QP AVG	-30.80	46.00	25.20 14.28	9.66	15.54 4.62	2.0895	7 8
8 2.0333 4.02 9.00 14.20 40.00 -31.72 AVG P 9 18.7529 11.13 9.97 21.10 60.00 -38.90 QP P												
10 18.7529 -2.26 9.97 7.71 50.00 -42.29 AVG P												
11 22.8389 13.24 10.13 23.37 60.00 -36.63 QP P												
12 22.8389 4.30 10.13 14.43 50.00 -35.57 AVG P												

5. Radiated Emissions

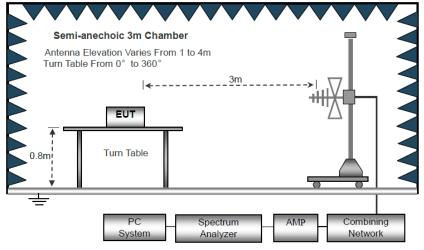
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

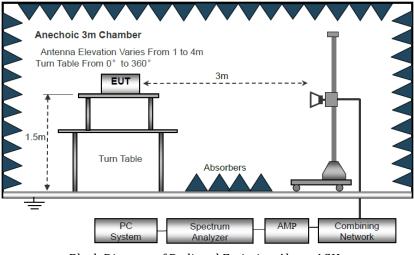
Frequency of Emission	Field Strength	Measurement Distance					
(MHz)	(micorvolts/meter)	(meters)					
0.009~0.490	2400/F(kHz)	300					
0.490~1.705	24000/F(kHz)	30					
1.705~30.0	30	30					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960 500 3							
Note: The more stringent limit applies at transition frequencies.							


According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

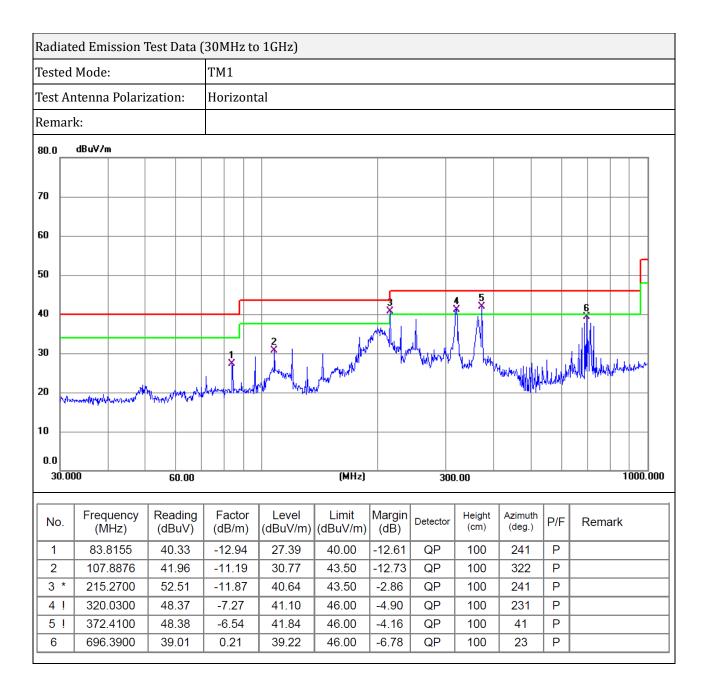
Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

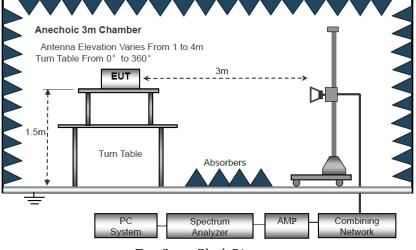
Radiated Emi	ssion Test Dat	ta (Above 1GH	z)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	el (2402MHz)			
		1	Horiz	zontal			-
1950	40.49	-16.34	24.15	54	-29.85	Н	AV
1970	46.47	-16.19	30.28	74	-43.72	Н	РК
2400	51.7	-14.09	37.61	74	-36.39	Н	РК
2400	42.18	-14.09	28.09	54	-25.91	Н	AV
3065	46.58	-10.92	35.66	74	-38.34	Н	РК
3095	38.91	-10.85	28.06	54	-25.94	Н	AV
3665	38.91	-9.56	29.35	54	-24.65	Н	AV
3740	43.71	-9.31	34.4	74	-39.6	Н	РК
			Ver	tical			-
1730	41.6	-17.49	24.11	54	-29.89	V	AV
1735	48.08	-17.49	30.59	74	-43.41	V	РК
2175	46.9	-14.85	32.05	74	-41.95	V	РК
2195	40.93	-14.73	26.2	54	-27.8	V	AV
2480	53.17	-13.69	39.48	74	-34.52	V	РК
2480	53.17	-13.69	39.48	74	-34.52	V	РК
2480	44	-13.69	30.31	54	-23.69	V	AV
3615	40.26	-9.72	30.54	54	-23.46	V	AV
3655	44.8	-9.59	35.21	74	-38.79	V	РК
			Middle Chann	el (2440MHz)			
			Horiz	zontal			
1740	47.07	-17.48	29.59	74	-44.41	Н	РК
1765	39.09	-17.46	21.63	54	-32.37	Н	AV
2440	49.89	-13.89	36	74	-38	Н	РК
2440	41.92	-13.89	28.03	54	-25.97	Н	AV
2950	45.82	-11.34	34.48	74	-39.52	Н	РК
2990	38.13	-11.13	27	54	-27	Н	AV
3540	39.16	-10.03	29.13	54	-24.87	Н	AV
3555	43.45	-9.96	33.49	74	-40.51	Н	РК
			Ver	tical			
1760	46.65	-17.46	29.19	74	-44.81	V	РК
1765	39.65	-17.46	22.19	54	-31.81	V	AV
2440	55.37	-13.89	41.48	74	-32.52	V	РК
2440	47.57	-13.89	33.68	54	-20.32	V	AV
3005	46.53	-11.07	35.46	74	-38.54	V	РК

3025	38.95	-11.02	27.93	54	-26.07	V	AV			
3525	38.64	-10.11	28.53	54	-25.47	V	AV			
3550	45.44	-9.98	35.46	74	-38.54	V	РК			
	Highest Channel (2480MHz)									
			Horiz	zontal						
1660	44.95	-17.58	27.37	74	-46.63	Н	РК			
1670	40.58	-17.56	23.02	54	-30.98	Н	AV			
1950	46.16	-16.34	29.82	74	-44.18	Н	РК			
1965	39.74	-16.23	23.51	54	-30.49	Н	AV			
2480	48.6	-13.69	34.91	74	-39.09	Н	РК			
2480	40.63	-13.69	26.94	54	-27.06	Н	AV			
3440	39.69	-10.38	29.31	54	-24.69	Н	AV			
3480	46.52	-10.28	36.24	74	-37.76	Н	РК			
			Ver	tical						
1925	40.2	-16.52	23.68	54	-30.32	V	AV			
1965	48.01	-16.23	31.78	74	-42.22	V	РК			
2190	46.92	-14.75	32.17	74	-41.83	V	РК			
2205	39.95	-14.7	25.25	54	-28.75	V	AV			
2480	60.74	-13.69	47.05	74	-26.95	V	РК			
2480	51.56	-13.69	37.87	54	-16.13	V	AV			
3060	46.57	-10.93	35.64	74	-38.36	V	РК			
3120	38.92	-10.78	28.14	54	-25.86	V	AV			

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

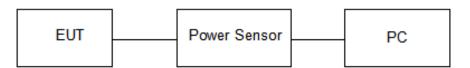
6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result	
iest mode	MHz dBuV/m		Nesuit	
Lowest	2310.00	<54 dBuV/m	Pass	
Lowest	2390.00	<54 dBuV/m	Pass	
Uighost	2483.50	<54 dBuV/m	Pass	
Highest	2500.00	<54dBuV/m	Pass	

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		BLE_1	Mbps Lowest	Channel (2402	2MHz)		
2310	69.47	-21.34	48.13	74	-25.87	Н	РК
2310	50.96	-21.34	29.62	54	-24.38	Н	AV
2390	68.37	-20.96	47.41	74	-26.59	Н	РК
2390	50.87	-20.96	29.91	54	-24.09	Н	AV
2400	73.85	-20.91	52.94	74	-21.06	Н	РК
2400	56.66	-20.91	35.75	54	-18.25	Н	AV
2310	65.14	-21.34	43.8	74	-30.2	V	РК
2310	52.42	-21.34	31.08	54	-22.92	V	AV
2390	66.76	-20.96	45.8	74	-28.2	V	РК
2390	52.88	-20.96	31.92	54	-22.08	V	AV
2400	67.75	-20.91	46.84	74	-27.16	V	РК
2400	56.15	-20.91	35.24	54	-18.76	V	AV
		BLE_1	Mbps Highest	Channel (248)MHz)		
2483.50	70.15	-20.51	49.64	74	-24.36	Н	РК
2483.50	55.35	-20.51	34.84	54	-19.16	Н	AV
2500	66.41	-20.43	45.98	74	-28.02	Н	РК
2500	50.19	-20.43	29.76	54	-24.24	Н	AV
2483.50	67.43	-20.51	46.92	74	-27.08	V	РК
2483.50	53.43	-20.51	32.92	54	-21.08	V	AV
2500	69.95	-20.43	49.52	74	-24.48	V	РК
2500	52.92	-20.43	32.49	54	-21.51	V	AV

Remark: Level = Reading + Factor, Margin = Level - Limit


7. Maximum Peak conducted output power

7.1 Standard and Limit

The Maximum Peak Output Power Measurement is 30dBm.

7.2 Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power Meter.

Test Setup Block Diagram

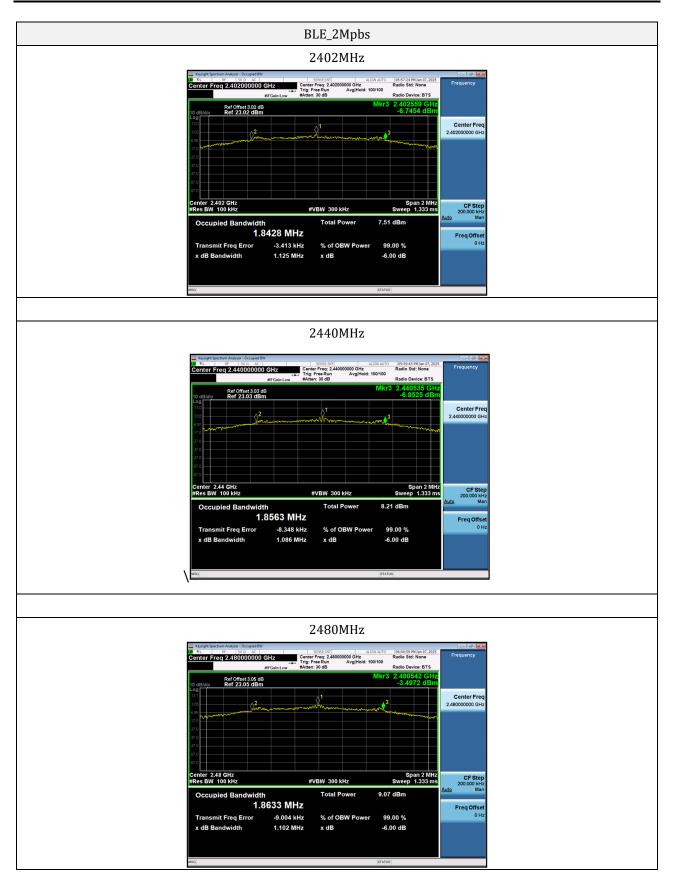
Test Mode	Test Channel	Peak Conducted Power	Limit	Test Result
Test mode	MHz	(dBm)	(dBm)	rest Result
	2402	2.24	30	Pass
BLE_1Mbps	2440	2.75	30	Pass
	2480	3.61	30	Pass
	2402	2.3	30	Pass
BLE_2Mbps	2440	2.89	30	Pass
	2480	3.64	30	Pass

8. DTS Bandwidth

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. Measured the 6dB bandwidth by related function of the spectrum analyzer.

Test Setup Block Diagram

Test Mode	Test Channel (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Test Result
	2402	0.657	0.5	Pass
BLE_1Mbps	2440	0.676	0.5	Pass
	2480	0.668	0.5	Pass
	2402	1.125	0.5	Pass
BLE_2Mbps	2440	1.086	0.5	Pass
	2480	1.102	0.5	Pass

9. Maximum Power Spectral Density

9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Test Result
	2402	1.28	8	Pass
BLE_1Mbps	2440	1.79	8	Pass
	2480	2.55	8	Pass
	2402	0.38	8	Pass
BLE_2Mbps	2440	1.39	8	Pass
	2480	2.31	8	Pass

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

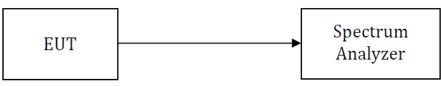
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

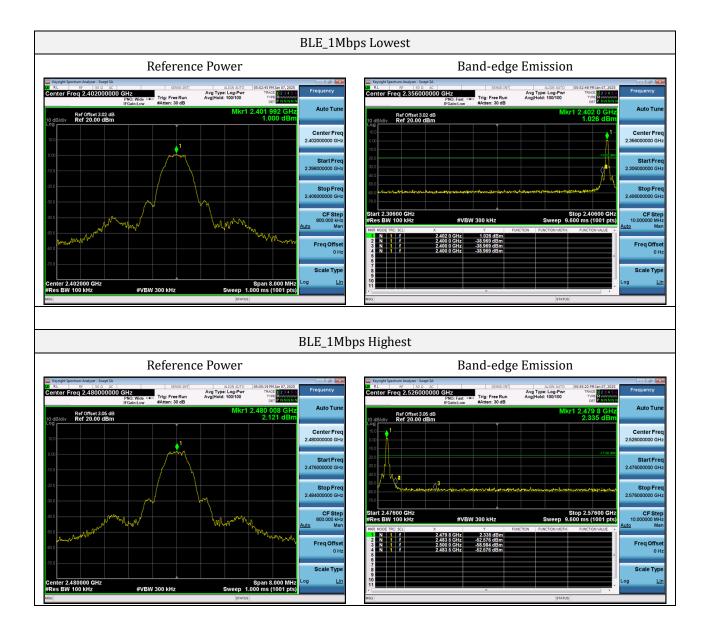
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

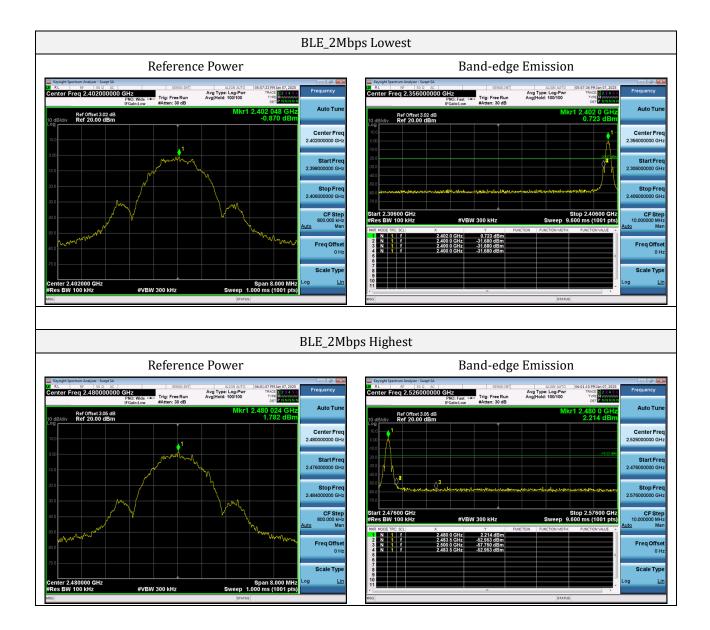
2) Set the spectrum analyzer to any one measured frequency within its operating range.


3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.


6) Measure the emission and marking the edge frequency.


7) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Band-edge	Test Channel	Max. Value	Limit	Test Result
		(MHz)	(dBc)	(dBc)	
BLE_1Mbps	Lowest	2402	-39.96	-20	Pass
	Highest	2480	-54.69	-20	Pass
BLE_2Mbps	Lowest	2402	-30.81	-20	Pass
	Highest	2480	-54.73	-20	Pass

11. Conducted RF Spurious Emissions

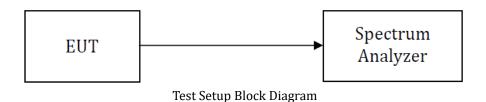
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

11.2 Test Procedure

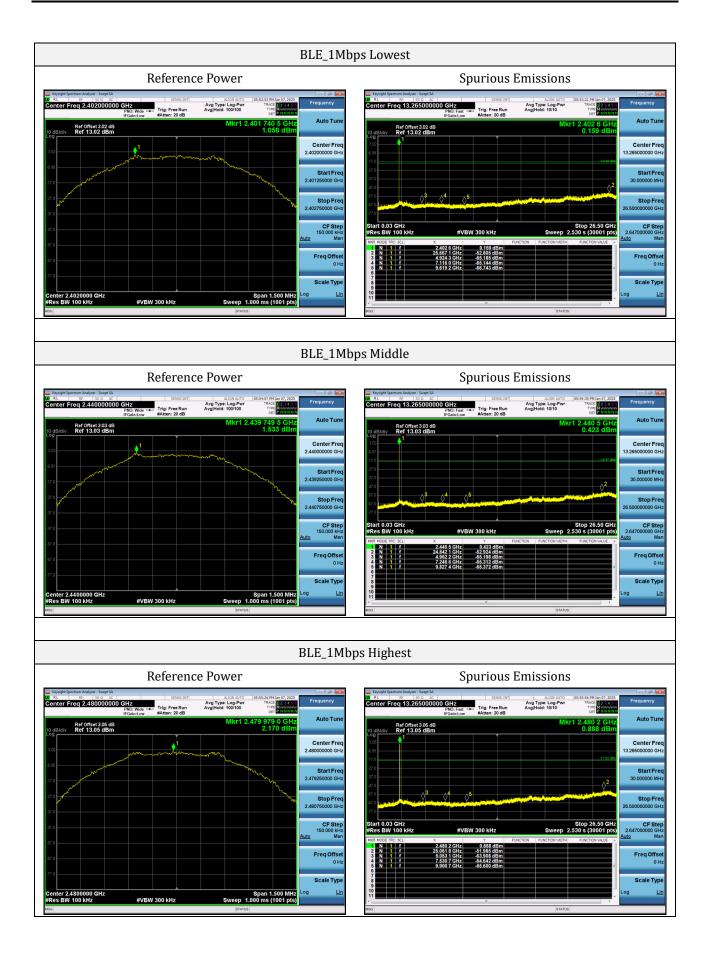
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

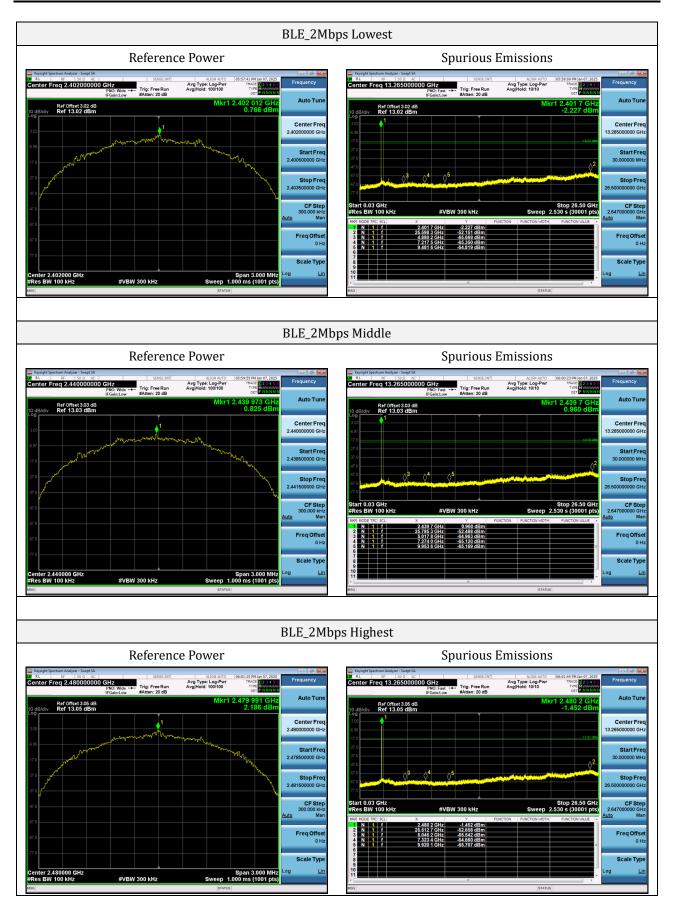
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.


6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

***** END OF REPORT *****