TEST REPORT Test Report No.: UL-RPT-RP11287331JD07A Manufacturer : Raspberry Pi (Trading) Ltd Model No. : v1.1 FCC ID : 2ABCB-RPIOW Technology : WLAN **Test Standard(s)** : FCC Parts 15.209(a) & 15.247 1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD. - 2. The results in this report apply only to the sample(s) tested. - 3. The sample tested is in compliance with the above standard(s). - 4. The test results in this report are traceable to the national or international standards. 5. Version 2.0 supersedes all previous versions. Date of Issue: 21 December 2016 Checked by: Ian Watch Senior Engineer, Radio Laboratory **Company Signatory:** Sarah Williams 30ch Willang Senior Engineer, Radio Laboratory UL VS LTD This laboratory is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation. Facsimile: +44 (0)1256 312001 ISSUE DATE: 21 DECEMBER 2016 VERSION 2.0 This page has been left intentionally blank. Page 2 of 56 UL VS LTD ## **Table of Contents** | 1. Customer Information | . 4 | |---|--| | 2. Summary of Testing | . 5 5 5 5 | | 3. Equipment Under Test (EUT) | . 6
6
6
7
8 | | 4. Operation and Monitoring of the EUT during Testing | 9
9
9 | | 5.1. General Comments 5.2. Test Results 5.2.1. Transmitter Minimum 6 dB Bandwidth 5.2.2. Transmitter Duty Cycle 5.2.3. Transmitter Power Spectral Density 5.2.4. Transmitter Maximum (Average) Output Power 5.2.5. Transmitter Radiated Emissions | 10
11
11
16
22
27
34
42 | | 6. Measurement Uncertainty | 55 | | 7. Report Revision History5 | 56 | UL VS LTD Page 3 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 ## 1. Customer Information | Company Name: | Raspberry Pi (Trading) Ltd | |---------------|--| | Address: | 30 Station Road Cambridge CB1 2JH United Kingdom | Page 4 of 56 UL VS LTD ## 2. Summary of Testing ## 2.1. General Information | Specification Reference: | 47CFR15.247 | | |--------------------------|---|--| | Specification Title: | Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247 | | | Specification Reference: | 47CFR15.209 | | | Specification Title: | Code of Federal Regulations Volume 47 (Telecommunications):
Part 15 Subpart C (Intentional Radiators) – Section 15.209 | | | Site Registration: | 209735 | | | Location of Testing: | UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom | | | Test Dates: | 22 September 2016 to 28 September 2016 | | ## 2.2. Summary of Test Results | FCC Reference (47CFR) | Measurement | Result | |----------------------------|--|----------| | Part 15.247(a)(2) | Transmitter Minimum 6 dB Bandwidth | Ø | | Part 15.35(c) | Transmitter Duty Cycle | Note 1 | | Part 15.247(e) | Transmitter Power Spectral Density | Ø | | Part 15.247(b)(3) | Transmitter Maximum (Average) Output Power | Ø | | Part 15.247(d) / 15.209(a) | Transmitter Radiated Emissions | Ø | | Part 15.247(d) / 15.209(a) | Transmitter Band Edge Radiated Emissions | Ø | | Key to Results | | · | | _ | | | #### Note(s): = Complied 1. The measurement was performed to assist in the calculation of the level of maximum conducted output power, power spectral density and emissions. The EUT cannot transmit continuously and sweep triggering/signal gating cannot be implemented. ## 2.3. Methods and Procedures | Reference: | ANSI C63.10-2013 | |------------|---| | Title: | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | | Reference: | KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016 | | Title: | Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 | ## 2.4. Deviations from the Test Specification = Did not comply For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above. UL VS LTD Page 5 of 56 ## 3. Equipment Under Test (EUT) ## 3.1. Identification of Equipment Under Test (EUT) | Brand Name: | Raspberry Pi Zero W | |----------------------------|------------------------------------| | Model Name or Number: | v1.1 | | Test Sample Serial Number: | UL Sample ID # 3 (Radiated sample) | | Hardware Version: | 1.1 | | Software Version: | 4.4 | | FCC ID: | 2ABCB-RPI0W | | Brand Name: | Raspberry Pi Zero W | | |----------------------------|--|--| | Model Name or Number: | v1.1 | | | Test Sample Serial Number: | 3F09ED53 (Conducted sample with RF port) | | | Hardware Version: | 1.1 | | | Software Version: | 4.4 | | | FCC ID: | 2ABCB-RPI0W | | ## 3.2. Description of EUT The Equipment Under Test was a single board computer. It contains a Bluetooth and 2.4 GHz WLAN module. It is powered from an AC/DC power supply. ## 3.3. Modifications Incorporated in the EUT No modifications were applied to the EUT during testing. Page 6 of 56 ISSUE DATE: 21 DECEMBER 2016 ## 3.4. Additional Information Related to Testing | Technology Tested: | WLAN (IEEE 802.11b,g,n) / Digital Transmission System | | | |------------------------------|---|-----------------------|-------------------------------| | Type of Unit: | Transceiver | | | | Modulation Type: | DBPSK, DQPSK, BPSK, QPSK, 16QAM & 64QAM | | | | Data Rates: | 802.11b 1, 2, 5.5 & 11 Mbps | | 3 | | | 802.11g | 6, 9, 12, 18, 24, 36, | 48 & 54 Mbps | | | 802.11n HT20 | MCS0 to MCS7 | | | Power Supply Requirement(s): | Nominal 5 VDC from AC/DC power supply | | power supply | | Antenna Gain: | 2.0 dBi | | | | Channel Spacing: | 20 MHz | | | | Transmit Frequency Range: | 2412 MHz to 2462 MHz | | | | Transmit Channels Tested: | Channel | RF Channel | Channel
Frequency
(MHz) | | | Bottom | 1 | 2412 | | | Middle | 6 | 2437 | | | Тор | 11 | 2462 | UL VS LTD Page 7 of 56 ## 3.5. Support Equipment The following support equipment was used to exercise the EUT during testing: | | · | | |-----------------------|--|--| | Description: | Power Supply. 120 VAC Input / 5 VDC output | | | Brand Name: | Strontronics Ltd | | | Model Name or Number: | DSA-12CA-05 | | | Serial Number: | Not marked or stated | | | | | | | Description: | LCD Monitor | | | Brand Name: | Asus | | | Model Name or Number: | PA238 | | | Serial Number: | Not marked or stated | | | | | | | Description: | USB Keyboard | | | Brand Name: | Microsoft | | | Model Name or Number: | Not marked or stated | | | Serial Number: | Not marked or stated | | | | | | | Description: | USB Hub | | | Brand Name: | Not marked or stated | | | Model Name or Number: | Not marked or stated | | | Serial Number: | Not marked or stated | | | | | | | Description: | HDMI B to HDMI C cable | | | Brand Name: | Not marked or stated | | | Model Name or Number: | Not marked or stated | | | Serial Number: | Not marked or stated | | | | | | | Description: | Cyclone Micro Media Player Adaptor | | | Brand Name: | Sumvision | | | Model Name or Number: | Cyclone Micro | | | Serial Number: | SUM091104017 | | | | | | Page 8 of 56 UL VS LTD ## 4. Operation and Monitoring of the EUT during Testing #### 4.1. Operating Modes The EUT was tested in the following operating mode(s): Continuously transmitting with a modulated carrier at maximum power on the bottom, middle and top channels as required using the supported data rates/modulation types. ## 4.2. Configuration and Peripherals The EUT was tested in the following configuration(s): - Controlled using a terminal application, either remotely or on the EUT, to select and configure the chipset manufacturer's test commands which are built into the driver. They enabled the test engineer to start a continuous transmission mode and to select the test channels, data rates and modulation schemes as required. - The radiated spurious emissions test was performed with the EUT in the worst-case orientation/position. The Cyclone Micro Media Player Adaptor was used as a termination for the HDMI cable. All other ports were terminated with suitable terminations. - The LCD monitor was connected to the EUT using a 2 metre long HDMI cable. - The keyboard and mouse were connected to the USB hub and the hub connected to the USB port on the EUT. - The EUT was powered via an AC/DC switch mode power supply for all tests. - For minimum 6 dB bandwidth, duty cycle, power spectral density and maximum (average) power tests, the EUT was tested in all supported 802.11 modes on top middle and bottom channels. Only the worst-case modes are presented in this report, these are based on the highest measured level of all three channels. Results for other modes are archived on the UL VS LTD IT server and available for inspection upon request. - For radiated spurious emissions tests, the EUT was tested in the mode which was found to give the highest level emissions: - o 802.11b- DQPSK / 2 Mbps - For band edge radiated emissions tests, the EUT was tested in the modes that exhibited the highest power and widest bandwidths on the channels closest to the band edge: - o 802.11b DQPSK / 2 Mbps - 802.11g QPSK / 12 Mbps - o 802.11g 64QAM / 54 Mbps - o 802.11n / HT20 16QAM / MCS3 - The conducted sample with
serial number 3F09ED53 was used for minimum 6 dB bandwidth, duty cycle, maximum output power and power spectral density tests. - The EUT radiated sample UL Sample ID # 3 was used for all other tests. UL VS LTD Page 9 of 56 ## 5. Measurements, Examinations and Derived Results #### **5.1. General Comments** Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6. Measurement Uncertainty for details. In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing. Page 10 of 56 UL VS LTD #### 5.2. Test Results #### 5.2.1. Transmitter Minimum 6 dB Bandwidth #### **Test Summary:** | Test Engineer: | Philip Harrison | Test Date: | 28 September 2016 | |----------------------------|-----------------|------------|-------------------| | Test Sample Serial Number: | 3F09ED53 | | | | FCC Reference: | Part 15.247(a)(2) | |-------------------|----------------------------| | Test Method Used: | FCC KDB 558074 Section 8.1 | #### **Environmental Conditions:** | Temperature (°C): | 24 | |------------------------|----| | Relative Humidity (%): | 46 | ### Note(s): - 1. All configurations supported by the EUT were investigated on one channel in accordance with KDB 558074 Section 8.1 Option 1 measurement procedure. The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used. The DTS bandwidth was measured at 6 dB down from the peak of the signal. The span was set to 30 MHz, sweep time was set to auto and the trace mode was Max Hold. The data rates that produced the narrowest bandwidth and therefore deemed worst-case were: - o 802.11b DBPSK / 1 Mbps - o 802.11g BPSK / 6 Mbps - 802.11n HT20 BPSK / MCS0 - 2. Final measurements were performed using the above configurations on the bottom, middle and top channels in accordance with KDB 558074 Section 8.1 Option 1 measurement procedure. - 3. Plots for all data rates are archived on the UL VS LTD IT server and available for inspection upon request. - 4. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. #### **Test setup:** UL VS LTD Page 11 of 56 #### **Transmitter Minimum 6 dB Bandwidth (continued)** ## Results: 802.11b / DBPSK / 1 Mbps | Channel | 6 dB Bandwidth
(kHz) | Limit
(kHz) | Margin
(kHz) | Result | |---------|-------------------------|----------------|-----------------|----------| | Bottom | 8162 | ≥500 | 7662 | Complied | | Middle | 9117 | ≥500 | 8617 | Complied | | Тор | 9117 | ≥500 | 8617 | Complied | **Bottom Channel** Middle Channel Top Channel Page 12 of 56 UL VS LTD ## **Transmitter Minimum 6 dB Bandwidth (continued)** ## Results: 802.11g / BPSK / 6 Mbps | Channel | 6dB Bandwidth
(kHz) | Limit
(kHz) | Margin
(kHz) | Result | |---------|------------------------|----------------|-----------------|----------| | Bottom | 15152 | ≥500 | 14652 | Complied | | Middle | 15195 | ≥500 | 14695 | Complied | | Тор | 15195 | ≥500 | 14695 | Complied | **Bottom Channel** Middle Channel Top Channel UL VS LTD Page 13 of 56 ## VERSION 2.0 #### **Transmitter Minimum 6 dB Bandwidth (continued)** ## Results: 802.11n / BPSK / MCS0 | Channel | 6dB Bandwidth
(kHz) | Limit
(kHz) | Margin
(kHz) | Result | |---------|------------------------|----------------|-----------------|----------| | Bottom | 15195 | ≥500 | 14695 | Complied | | Middle | 15195 | ≥500 | 14695 | Complied | | Тор | 15195 | ≥500 | 14695 | Complied | **Bottom Channel** Middle Channel Top Channel Page 14 of 56 UL VS LTD ## Transmitter Minimum 6 dB Bandwidth (continued) ## **Test Equipment Used:** | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|----------|------------|----------------------------|------------------------------| | M2001 | Thermohygrometer | Testo | 608-H1 | 45041824 | 02 Apr 2017 | 12 | | M1883 | Signal Analyser | Rohde & Schwarz | FSV-30 | 103084 | 09 May 2017 | 12 | | G0614 | Signal Generator | Rohde & Schwarz | SMB100A | 177687 | 01 May 2017 | 36 | | A2143 | 20 dB Attenuator | AtlanTecRF | AN18-20 | 081120-23 | Calibrated before use | - | UL VS LTD Page 15 of 56 ISSUE DATE: 21 DECEMBER 2016 #### 5.2.2. Transmitter Duty Cycle #### **Test Summary:** | Test Engineer: | Philip Harrison | Test Date: | 28 September 2016 | |----------------------------|-----------------|------------|-------------------| | Test Sample Serial Number: | 3F09ED53 | | | | FCC Reference: | Part 15.35(c) | |-------------------|----------------------------| | Test Method Used: | FCC KDB 558074 Section 6.0 | #### **Environmental Conditions:** | Temperature (°C): | 24 | |------------------------|----| | Relative Humidity (%): | 46 | #### Note(s): 1. In order to assist with the determination of the average level of fundamental and spurious emissions field strength, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a signal analyser in the time domain and the duty cycle correction figure calculated by using the following calculation: 10 log (1 / (On Time / [Period or 100 ms whichever is the lesser]) For all 802.11 devices the period is always less than 100 ms and therefore the calculation simplifies to: 10 log (Period / On Time) #### Test setup: Page 16 of 56 UL VS LTD ## Results: 802.11b / DQPSK / 2 Mbps | Channel | Pulse Width
(ms) | Pulse Period
(ms) | Duty Cycle
Correction factor
(dB) | |---------|---------------------|----------------------|---| | Middle | 4.1881 | 4.2411 | 0.0 | Middle Channel UL VS LTD Page 17 of 56 ## Results: 802.11b / DQPSK / 11 Mbps | Channel | Pulse Width
(ms) | Pulse Period
(ms) | Duty Cycle
Correction factor
(dB) | |---------|---------------------|----------------------|---| | Middle | 0.8418 | 0.8835 | 0.2 | Middle Channel Page 18 of 56 UL VS LTD ## Results: 802.11g / QPSK / 12 Mbps | Channel | Pulse Width
(ms) | Pulse Period
(ms) | Duty Cycle
Correction factor
(dB) | |---------|---------------------|----------------------|---| | Middle | 0.7054 | 0.7483 | 0.3 | Middle Channel UL VS LTD Page 19 of 56 ## Results: 802.11g / 64QAM / 54 Mbps | Channel | Pulse Width
(ms) | Pulse Period
(ms) | Duty Cycle
Correction factor
(dB) | |---------|---------------------|----------------------|---| | Middle | 0.1755 | 0.2158 | 0.9 | Middle Channel Page 20 of 56 UL VS LTD ## Results: 802.11n / 16QAM / MCS3 | Channel | Pulse Width
(ms) | Pulse Period
(ms) | Duty Cycle
Correction factor
(dB) | |---------|---------------------|----------------------|---| | Middle | 0.3550 | 0.3972 | 0.5 | Middle Channel ## **Test Equipment Used:** | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|----------|------------|----------------------------|------------------------------| | M2001 | Thermohygrometer | Testo | 608-H1 | 45041824 | 02 Apr 2017 | 12 | | M1883 | Signal Analyser | Rohde & Schwarz | FSV-30 | 103084 | 09 May 2017 | 12 | | G0614 | Signal Generator | Rohde & Schwarz | SMB100A | 177687 | 01 May 2017 | 36 | | A2143 | 20 dB Attenuator | AtlanTecRF | AN18-20 | 081120-23 | Calibrated before use | - | UL VS LTD Page 21 of 56 ### 5.2.3. Transmitter Power Spectral Density #### **Test Summary:** | Test Engineer: | Philip Harrison | Test Date: | 28 September 2016 | |----------------------------|-----------------|------------|-------------------| | Test Sample Serial Number: | 3F09ED53 | | | | FCC Reference: | Part 15.247(e) | |-------------------|------------------------------------| | Test Method Used: | FCC KDB 558074 Sections 10.3 &10.5 | #### **Environmental Conditions:** | Temperature (°C): | 24 | |------------------------|----| | Relative Humidity (%): | 46 | #### Note(s): - 1. All configurations supported by the EUT were investigated. The configurations that produced the highest power spectral density and therefore deemed worst-case were: - o 802.11b DQPSK / 2 Mbps - o 802.11g 64QAM / 54 Mbps - o 802.11n HT20 16QAM / MCS3 - Final measurements were performed using the above configurations on the bottom, middle and top channels. Results for all other modes are archived on the UL VS LTD IT server and are available for inspection if required. - 3. For modes where the EUT was transmitting at ≥98% duty cycle and testing was performed in accordance with KDB 558074 Section 10.3 Method AVGPSD-1. The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. An RMS detector was used and sweep time set manually to perform trace averaging over 300 traces. The span was set to >1.5 times the 99% occupied bandwidth. The highest peak of the measured signal was recorded. - 4. For modes where the EUT was transmitting at <98% duty cycle and testing was performed in accordance with KDB 558074 Section 10.5 Method AVGPSD-2. The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. An RMS detector was used and sweep time set manually to perform trace averaging over 300 traces. The span was set to >1.5 times the 99% occupied bandwidth. The highest peak of the measured signal was recorded. The duty cycle calculated in Section 5.2.2 of this test report was added to the measured average power spectral density in order to
compute the average power spectral density during the actual transmission time. - 5. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cable. #### Test setup: Page 22 of 56 UL VS LTD #### **Transmitter Power Spectral Density (continued)** ## Results: 802.11b / DQPSK / 2 Mbps | Channel | Output Power
(dBm/100
kHz) | Duty Cycle
Correction
(dB) | Output Power
(dBm/100
kHz) | Limit
(dBm/3kHz) | Margin
(dB) | Result | |---------|----------------------------------|----------------------------------|----------------------------------|---------------------|----------------|----------| | Bottom | -2.2 | 0.0 | -2.2 | 8.0 | 10.2 | Complied | | Middle | -2.1 | 0.0 | -2.1 | 8.0 | 10.1 | Complied | | Тор | -2.5 | 0.0 | -2.5 | 8.0 | 10.5 | Complied | **Bottom Channel** Middle Channel Top Channel UL VS LTD Page 23 of 56 ## **Transmitter Power Spectral Density (continued)** ## Results: 802.11g / 64QAM / 54 Mbps | Channel | Output Power
(dBm/100
kHz) | Duty Cycle
Correction
(dB) | Corrected
Output Power
(dBm/100
kHz) | Limit
(dBm/3kHz) | Margin
(dB) | Result | |---------|----------------------------------|----------------------------------|---|---------------------|----------------|----------| | Bottom | -7.1 | 0.9 | -6.2 | 8.0 | 14.2 | Complied | | Middle | -4.6 | 0.9 | -3.7 | 8.0 | 11.7 | Complied | | Тор | -8.2 | 0.9 | -7.3 | 8.0 | 15.3 | Complied | -4.57 dBr 2.4357410 GH 10 dBmmanning manning -10 dBm--60 dBm-Span 30.0 MHz CF 2.437 G 1287331 ate: 28.SEP.2016 18:23:02 **Bottom Channel** Middle Channel Top Channel Page 24 of 56 UL VS LTD ## **Transmitter Power Spectral Density (continued)** #### Results: 802.11n / 16QAM / MCS3 | Channel | Output Power
(dBm/100
kHz) | Duty Cycle
Correction
(dB) | Corrected
Output Power
(dBm/100
kHz) | Limit
(dBm/3kHz) | Margin
(dB) | Result | |---------|----------------------------------|----------------------------------|---|---------------------|----------------|----------| | Bottom | -7.0 | 0.5 | -6.5 | 8.0 | 14.5 | Complied | | Middle | -4.5 | 0.5 | -4.0 | 8.0 | 12.0 | Complied | | Тор | -8.0 | 0.5 | -7.5 | 8.0 | 15.5 | Complied | -4.52 dBr 2.4357410 GF www.managaman CF 2.437 G 1287331 ite: 28.SEP.2016 19:00:05 **Bottom Channel** Middle Channel **Top Channel** UL VS LTD Page 25 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 ## **Transmitter Power Spectral Density (continued)** ## **Test Equipment Used:** | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|----------|------------|----------------------------|------------------------------| | M2001 | Thermohygrometer | Testo | 608-H1 | 45041824 | 02 Apr 2017 | 12 | | M1883 | Signal Analyser | Rohde & Schwarz | FSV-30 | 103084 | 09 May 2017 | 12 | | G0614 | Signal Generator | Rohde & Schwarz | SMB100A | 177687 | 01 May 2017 | 36 | | A2143 | 20 dB Attenuator | AtlanTecRF | AN18-20 | 081120-23 | Calibrated before use | - | Page 26 of 56 UL VS LTD ### 5.2.4. Transmitter Maximum (Average) Output Power #### **Test Summary:** | Test Engineer: | Philip Harrison | Test Date: | 28 September 2016 | |----------------------------|-----------------|------------|-------------------| | Test Sample Serial Number: | 3F09ED53 | | | | FCC Reference: | Part 15.247(b)(3) | | | |-------------------|--------------------------------|--|--| | Test Method Used: | FCC KDB 558074 Section 9.2.2.4 | | | #### **Environmental Conditions:** | Temperature (°C): | 24 | |------------------------|----| | Relative Humidity (%): | 46 | #### Note(s): - 1. All configurations supported by the EUT were investigated. The configurations that produced the highest power and therefore deemed worst-case were: - o 802.11b DQPSK / 11 Mbps - 802.11g QPSK / 12 Mbps - 802.11n HT20 16QAM / MCS3 - 2. Measurements were performed using the above configurations on the bottom, middle and top channels. Results for all other modes are archived on the UL VS LTD IT server and are available for inspection if required. - 3. For the worst-case configurations shown above, the EUT was transmitting at <98% duty cycle and testing was performed in accordance with KDB 558074 Section 9.2.2.4 Method AVGSA-2. The signal analyser's integration function was used to integrate across the 99% occupied bandwidth. The signal analyser resolution bandwidth was set to 300 kHz and video bandwidth 1 MHz for 802.11b measurements. The signal analyser resolution bandwidth was set to 500 kHz and video bandwidth 2 MHz for 802.11g / 802.11n measurements. An RMS detector was used and sweep time set to auto. The span was set to >1.5 times the 99% occupied bandwidth. The duty cycle calculated in Section 5.2.2 of this test report was added to the measured average power in order to compute the average power density during the actual transmission time. - 4. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cable. #### Test setup: UL VS LTD Page 27 of 56 ## **Transmitter Maximum (Average) Output Power (continued)** ## Results: 802.11b / DQPSK / 11 Mbps ## **Conducted Limit Comparison** | Channel | Conducted
Power
(dBm) | Duty Cycle
Correction
(dB) | Corrected
Conducted
Power
(dBm) | Conducted
Power Limit
(dBm) | Margin
(dB) | Result | |---------|-----------------------------|----------------------------------|--|-----------------------------------|----------------|----------| | Bottom | 14.5 | 0.2 | 14.7 | 30.0 | 15.3 | Complied | | Middle | 14.1 | 0.2 | 14.3 | 30.0 | 15.7 | Complied | | Тор | 14.1 | 0.2 | 14.3 | 30.0 | 15.7 | Complied | #### De Facto EIRP Limit Comparison | Channel | Conducted
Power
(dBm) | Declared
Antenna Gain
(dBi) | EIRP
(dBm) | De Facto
EIRP Limit
(dBm) | Margin
(dB) | Result | |---------|-----------------------------|-----------------------------------|---------------|---------------------------------|----------------|----------| | Bottom | 14.7 | 2.0 | 16.7 | 36.0 | 19.3 | Complied | | Middle | 14.3 | 2.0 | 16.3 | 36.0 | 19.7 | Complied | | Тор | 14.3 | 2.0 | 16.3 | 36.0 | 19.7 | Complied | Page 28 of 56 UL VS LTD #### **Transmitter Maximum (Average) Output Power (continued)** #### Results: 802.11b / DQPSK / 11 Mbps **Bottom Channel** **Top Channel** Middle Channel UL VS LTD Page 29 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 ## **Transmitter Maximum (Average) Output Power (continued)** ## Results: 802.11g / QPSK / 12 Mbps ## **Conducted Peak Limit Comparison** | Channel | Conducted
Power
(dBm) | Duty Cycle
Correction
(dB) | Corrected
Conducted
Power
(dBm) | Conducted
Power Limit
(dBm) | Margin
(dB) | Result | |---------|-----------------------------|----------------------------------|--|-----------------------------------|----------------|----------| | Bottom | 12.2 | 0.3 | 12.5 | 30.0 | 17.5 | Complied | | Middle | 14.6 | 0.3 | 14.9 | 30.0 | 15.1 | Complied | | Тор | 11.3 | 0.3 | 11.6 | 30.0 | 18.4 | Complied | ## **De Facto EIRP Limit Comparison** | Channel | Conducted
Power
(dBm) | Declared
Antenna Gain
(dBi) | EIRP
(dBm) | De Facto
EIRP Limit
(dBm) | Margin
(dB) | Result | |---------|-----------------------------|-----------------------------------|---------------|---------------------------------|----------------|----------| | Bottom | 12.5 | 2.0 | 14.5 | 36.0 | 21.5 | Complied | | Middle | 14.9 | 2.0 | 16.9 | 36.0 | 19.1 | Complied | | Тор | 11.6 | 2.0 | 13.6 | 36.0 | 22.4 | Complied | Page 30 of 56 UL VS LTD ## **Transmitter Maximum (Average) Output Power (continued)** #### **Results: 802.11g / QPSK / 12 Mbps** **Top Channel** Middle Channel UL VS LTD Page 31 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 ## **Transmitter Maximum (Average) Output Power (continued)** ## Results: 802.11n / 16QAM / MCS3 ## **Conducted Peak Limit Comparison** | Channel | Conducted
Power
(dBm) | Duty Cycle
Correction
(dB) | Corrected
Conducted
Power
(dBm) | Conducted
Power Limit
(dBm) | Margin
(dB) | Result | |---------|-----------------------------|----------------------------------|--|-----------------------------------|----------------|----------| | Bottom | 11.9 | 0.5 | 12.4 | 30.0 | 17.6 | Complied | | Middle | 14.3 | 0.5 | 14.8 | 30.0 | 15.2 | Complied | | Тор | 10.8 | 0.5 | 11.3 | 30.0 | 18.7 | Complied | ## **De Facto EIRP Limit Comparison** | Channel | Conducted
Power
(dBm) | Declared
Antenna Gain
(dBi) | | De Facto EIRP
Limit
(dBm) | Margin
(dB) | Result | |---------|-----------------------------|-----------------------------------|------|---------------------------------|----------------|----------| | Bottom | 12.4 | 2.0 | 14.4 | 36.0 | 21.6 | Complied | | Middle | 14.8 | 2.0 | 16.8 | 36.0 | 19.2 | Complied | | Тор | 11.3 | 2.0 | 13.3 | 36.0 | 22.7 | Complied | Page 32 of 56 UL VS LTD **TEST REPORT** ## **Transmitter Maximum (Average) Output Power (continued)** #### Results: 802.11n / 16QAM / MCS3 **Bottom Channel** Top Channel #### **Test Equipment Used:** | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|----------|------------|----------------------------|------------------------------| | M2001 | Thermohygrometer | Testo | 608-H1 | 45041824 | 02 Apr 2017 | 12 | | M1883 | Signal Analyser | Rohde & Schwarz |
FSV-30 | 103084 | 09 May 2017 | 12 | | G0614 | Signal Generator | Rohde & Schwarz | SMB100A | 177687 | 01 May 2017 | 36 | | A2143 | 20 dB Attenuator | AtlanTecRF | AN18-20 | 081120-23 | Calibrated before use | - | UL VS LTD Page 33 of 56 ISSUE DATE: 21 DECEMBER 2016 #### 5.2.5. Transmitter Radiated Emissions #### **Test Summary:** | Test Engineer: | David Doyle | Test Date: | 28 September 2016 | |----------------------------|------------------|------------|-------------------| | Test Sample Serial Number: | UL Sample ID # 3 | | | | FCC Reference: | Parts 15.247(d) & 15.209(a) | |-------------------|----------------------------------| | Test Method Used: | ANSI C63.10 Sections 6.3 and 6.5 | | Frequency Range | 30 MHz to 1000 MHz | #### **Environmental Conditions:** | Temperature (°C): | 23 | |------------------------|----| | Relative Humidity (%): | 45 | #### Note(s): - 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss. - 2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only. - 3. All other emissions shown on the pre-scan plots were investigated and found to be ambient, or >20 dB below the applicable limit or below the measurement system noise floor and therefore not recorded. - 4. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres. - 5. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. - 6. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and span wide enough to see the whole emission. Page 34 of 56 UL VS LTD #### **Transmitter Radiated Emissions (continued)** #### **Test setup for radiated measurements:** #### Semi-anechoic chamber #### **Anechoic chamber** UL VS LTD Page 35 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 ## **Transmitter Radiated Emissions (continued)** ## Results: Middle Channel / 802.11b / DQPSK / 2 Mbps | Frequency | Antenna | Level | Limit | Margin | Result | |-----------|----------|----------|----------|--------|----------| | (MHz) | Polarity | (dBμV/m) | (dBμV/m) | (dB) | | | 125.015 | Vertical | 23.6 | 43.5 | 19.9 | Complied | ## **Test Equipment Used:** | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|------------|-------------|----------------------------|------------------------------| | M1625 | Thermohygrometer | JM Handelspunkt | 30.5015.06 | None stated | 11 Jan 2017 | 12 | | K0001 | 5m RSE Chamber | Rainford EMC | N/A | N/A | 12 Jan 2017 | 12 | | A1834 | Attenuator | Hewlett Packard | 8491B | 10444 | 30 Mar 2017 | 12 | | G0543 | Amplifier | Sonoma | 310N | 230801 | 09 Dec 2016 | 6 | | M1273 | Test Receiver | Rohde & Schwarz | ESIB26 | 100275 | 11 Apr 2017 | 12 | | A2959 | Antenna | Schwarzbeck | VULB 9163 | 9163-967 | 08 Sep 2017 | 12 | Page 36 of 56 UL VS LTD VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 #### **Transmitter Radiated Emissions (continued)** #### **Test Summary:** | Test Engineer: | David Doyle | Test Date: | 27 September 2016 | |----------------------------|------------------|------------|-------------------| | Test Sample Serial Number: | UL Sample ID # 3 | | | | Parts 15.247(d) & 15.209(a) | | |-----------------------------|----------------------------------| | Test Method Used: | ANSI C63.10 Sections 6.3 and 6.6 | | Frequency Range | 1 GHz to 25 GHz | #### **Environmental Conditions:** | Temperature (°C): | 25 | |------------------------|----| | Relative Humidity (%): | 47 | #### Note(s): - 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss. - 2. All emissions shown on the precscan plots were investigated and found to be >20 dB below the applicable limit, therefore the highest peak and average noise floor readings of the measuring receiver were recorded as shown in the tables below. - 3. The emission shown approximately at 2437 MHz on the 1 GHz to 3 GHz plot is the EUT fundamental. - 4. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. - 5. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. UL VS LTD Page 37 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 # **Transmitter Radiated Emissions (continued)** # Results: Peak | Frequency
(MHz) | Antenna
Polarity | Peak Level
(dBμV/m) | Peak Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|---------------------|------------------------|------------------------|----------------|----------| | 2836.000 | Vertical | 55.5 | 74.0 | 18.5 | Complied | # **Results: Average** | Frequency | Antenna | Average Level | Average Limit | Margin | Result | |-----------|----------|---------------|---------------|--------|----------| | (MHz) | Polarity | (dBμV/m) | (dBμV/m) | (dB) | | | 2985.500 | Vertical | 43.6 | 54.0 | 10.4 | Complied | Page 38 of 56 UL VS LTD # **Transmitter Radiated Emissions (continued)** UL VS LTD Page 39 of 56 VERSION 2.0 # **Transmitter Radiated Emissions (continued)** Page 40 of 56 UL VS LTD # **Transmitter Radiated Emissions (continued)** # **Test Equipment Used:** | Asset
No | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |-------------|------------------|-----------------|------------|------------|----------------------------|------------------------------| | M1656 | Thermohygrometer | JM Handelspunkt | 30.5015.13 | Not stated | 02 Apr 2017 | 12 | | K0002 | 3m RSE Chamber | Rainford EMC | N/A | N/A | 21 Dec 2016 | 12 | | M1886 | Test Receiver | Rohde & Schwarz | ESU26 | 100554 | 21 May 2017 | 12 | | A1534 | Pre Amplifier | Hewlett Packard | 8449B | 3008A00405 | 19 Dec 2016 | 12 | | A1818 | Antenna | EMCO | 3115 | 00075692 | 17 Dec 2016 | 12 | | A253 | Antenna | Flann Microwave | 12240-20 | 128 | 17 Dec 2016 | 12 | | A254 | Antenna | Flann Microwave | 14240-20 | 139 | 17 Dec 2016 | 12 | | A255 | Antenna | Flann Microwave | 16240-20 | 519 | 17 Dec 2016 | 12 | | A256 | Antenna | Flann Microwave | 18240-20 | 400 | 17 Dec 2016 | 12 | | A436 | Antenna | Flann Microwave | 20240-20 | 330 | 19 Dec 2016 | 12 | | A1396 | Attenuator | Huber & Suhner | 6810.17.B | 757987 | 26 Apr 2017 | 12 | | A1975 | High Pass Filter | AtlanTecRF | AFH-03000 | 090424010 | 26 Apr 2017 | 12 | UL VS LTD Page 41 of 56 ISSUE DATE: 21 DECEMBER 2016 ### 5.2.6. Transmitter Band Edge Radiated Emissions ## **Test Summary:** | Test Engineer: | David Doyle | Test Dates: | 22 September 2016,
23 September 2016 &
28 September 2016 | |----------------------------|------------------|-------------|--| | Test Sample Serial Number: | UL Sample ID # 3 | | | | FCC Reference: | Parts 15.247(d) & 15.209(a) | |-------------------|--| | Test Method Used: | ANSI C63.10 Section 6.10 & FCC KDB 558074 Sections 11, 12 & 13 | ### **Environmental Conditions:** | Temperature (°C): | 23 to 27 | |------------------------|----------| | Relative Humidity (%): | 45 to 51 | #### Note(s): - 1. Tests were performed in the following modes as they produced the highest power, highest power spectral density, and widest occupied bandwidth: - o 802.11b DQPSK / 2 Mbps - o 802.11g QPSK / 12 Mbps - o 802.11g 64QAM / 54 Mbps - o 802.11n HT20 16QAM / MCS3 - 2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss. - 3. As the lower band edge falls within a non-restricted band, only peak measurements are required. In accordance with FCC KDB 558074 Section 11.1, the test method in Section 11.3 was followed: the test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. As the maximum conducted (average) output power was measured using an RMS detector in accordance with FCC KDB 558074 Section 9.2.2.4 an out-of-band limit line was placed 30 dB (FCC KDB 558074 Section 11.1(b)) below the peak level. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent non-restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded. - NOTE: The lower band edge plot for 802.11b / DQPSK / 2 Mbps incorrectly shows the limit line at -20 dBc. The result table shows the correct limit. - 4. As the upper band edge falls within a restricted band, both peak and
average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak and average detectors were used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded. Page 42 of 56 UL VS LTD #### Note(s): 5. *The integration method was used in accordance with FCC KDB 558074 Section 13.3.2, in order to meet the average limit when transmitting in 802.11g and 802.11n modes. As the EUT had a duty cycle <98%, in some configurations, the duty cycle correction factor has been applied to the band edge and 2310 to 2390 MHz restricted band average results. The corrected average levels are shown below and in the result tables: Integration method result + duty cycle = Corrected band edge level 802.11g / QPSK / 12 Mbps at 2483.5 MHz: 52.1 + 0.3 dB = 52.4 802.11g / 64QAM / 54 Mbps at 2483.5 MHz: 51.3 + 0.9 dB = 52.2 802.11n HT20 / 16QAM / MCS3 at 2483.5 MHz: 51.1 + 0.5 dB = 51.6 Integration method result + duty cycle = Corrected restricted band level 802.11g / QPSK / 12 Mbps at 2483.5 MHz: 50.8 + 0.3 dB = 51.1 802.11g / 64QAM / 54 Mbps at 2483.5 MHz: 48.8 + 0.9 dB = 49.7 802.11n HT20 / 16QAM / MCS3 at 2483.5 MHz: 53.0 + 0.5 dB = 53.5 UL VS LTD Page 43 of 56 VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016 # **Transmitter Band Edge Radiated Emissions (continued)** ### Results: 802.11b / DQPSK / 2 Mbps / Lower Band Edge | Frequency
(MHz) | Level
(dBμV/m) | -30 dBc Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|-------------------|---------------------------|----------------|----------| | 2399.519 | 59.8 | 71.7 | 31.9 | Complied | | 2400.000 | 57.1 | 71.7 | 34.6 | Complied | # Results: 802.11b / DQPSK / 2 Mbps / Upper Band Edge / Peak | Frequency
(MHz) | Level
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Result | |--------------------|-------------------|-------------------|----------------|----------| | 2483.500 | 58.1 | 74.0 | 15.9 | Complied | | 2491.272 | 60.1 | 74.0 | 13.9 | Complied | # Results: 802.11b / DQPSK / 2 Mbps / Upper Band Edge / Average | Frequency
(MHz) | Level
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Result | |--------------------|-------------------|-------------------|----------------|----------| | 2483.500 | 50.8 | 54.0 | 3.2 | Complied | | 2491.192 | 53.6 | 54.0 | 0.4 | Complied | # Results: 2310 to 2390 MHz Restricted Band | Frequency (MHz) | Peak Level
(dBµV/m) | Peak Limit
(dΒμV/m) | Margin
(dB) | Result | |-----------------|------------------------|------------------------|----------------|----------| | 2386.538 | 57.0 | 74.0 | 17.0 | Complied | | Frequency (MHz) | Average Level
(dΒμV/m) | Average Limit
(dΒμV/m) | Margin
(dB) | Result | |-----------------|---------------------------|---------------------------|----------------|----------| | 2383.974 | 51.5 | 54.0 | 2.5 | Complied | Page 44 of 56 UL VS LTD ### Results: 802.11b / DQPSK / 2 Mbps **Lower Band Edge Peak Measurement** 2310 MHz to 2390 MHz Restricted Band **Upper Band Edge Peak Measurement** **Upper Band Edge Average Measurement** UL VS LTD Page 45 of 56 ### Results: 802.11g / QPSK / 12 Mbps / Lower Band Edge | Frequency
(MHz) | Level
(dBμV/m) | -30 dBc Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|-------------------|---------------------------|----------------|----------| | 2399.840 | 67.4 | 69.3 | 1.9 | Complied | | 2400.000 | 66.5 | 69.3 | 2.8 | Complied | # Results: 802.11g / QPSK / 12 Mbps / Upper Band Edge / Peak | Frequency
(MHz) | Level
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Result | |--------------------|-------------------|-------------------|----------------|----------| | 2483.500 | 70.5 | 74.0 | 3.5 | Complied | | 2483.580 | 71.1 | 74.0 | 2.9 | Complied | ## Results: 802.11g / QPSK / 12 Mbps / Upper Band Edge / Average | Frequency | Level | Limit | Margin | Result | |-----------|----------|----------|--------|----------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | | | 2483.500 | 52.4* | 54.0 | 1.6 | Complied | ### Results: 2310 to 2390 MHz Restricted Band | Frequency (MHz) | Peak Level
(dBµV/m) | Peak Limit
(dΒμV/m) | Margin
(dB) | Result | |-----------------|------------------------|------------------------|----------------|----------| | 2386.154 | 72.6 | 74.0 | 1.4 | Complied | | Frequency (MHz) | Average Level
(dBµV/m) | Average Limit
(dBµV/m) | Margin
(dB) | Result | |-----------------|---------------------------|---------------------------|----------------|----------| | 2388.590 | 51.1* | 54.0 | 2.9 | Complied | Page 46 of 56 UL VS LTD # Results: 802.11g / QPSK / 12 Mbps **Lower Band Edge Peak Measurement** 2310 MHz to 2390 MHz Restricted Band **Upper Band Edge Average / Integrated** UL VS LTD Page 47 of 56 # Results: 802.11g / QPSK / 12 Mbps 2310 MHz to 2390 MHz Restricted Band Average / Integrated Page 48 of 56 UL VS LTD ### Results: 802.11g / 64QAM / 54 Mbps / Lower Band Edge | Frequency
(MHz) | Level
(dBμV/m) | -30 dBc Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|-------------------|---------------------------|----------------|----------| | 2400.000 | 67.9 | 69.9 | 2.0 | Complied | # Results: 802.11g / 64QAM / 54 Mbps / Upper Band Edge / Peak | Frequency
(MHz) | Level
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Result | |--------------------|-------------------|-------------------|----------------|----------| | 2483.500 | 68.8 | 74.0 | 5.2 | Complied | | 2484.702 | 73.4 | 74.0 | 0.6 | Complied | ### Results: 802.11g / 64QAM / 54 Mbps / Upper Band Edge / Average | Frequency | Level | Limit | Margin | Result | |-----------|----------|----------|--------|----------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | | | 2483.500 | 52.2* | 54.0 | 1.8 | Complied | ### Results: 2310 to 2390 MHz Restricted Band | Frequency (MHz) | Peak Level
(dBµV/m) | Peak Limit
(dΒμV/m) | Margin
(dB) | Result | |-----------------|------------------------|------------------------|----------------|----------| | 2388.333 | 73.3 | 74.0 | 0.7 | Complied | | Frequency (MHz) | Average Level
(dBµV/m) | Average Limit
(dBµV/m) | Margin
(dB) | Result | |-----------------|---------------------------|---------------------------|----------------|----------| | 2389.231 | 49.7* | 54.0 | 4.3 | Complied | UL VS LTD Page 49 of 56 # Results: 802.11g / 64QAM / 54 Mbps **Lower Band Edge Peak Measurement** **Upper Band Edge Peak Measurement** 2310 MHz to 2390 MHz Restricted Band **Upper Band Edge Average / Integrated** Page 50 of 56 UL VS LTD ### Results: 802.11g / 64QAM / 54 Mbps 2310 MHz to 2390 MHz Restricted Band Average / Integrated UL VS LTD Page 51 of 56 ### Results: 802.11n HT20 / 16QAM / MCS3 / Lower Band Edge | Frequency
(MHz) | Level
(dBμV/m) | -30 dBc Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|-------------------|---------------------------|----------------|----------| | 2399.840 | 68.8 | 70.2 | 1.4 | Complied | | 2400.000 | 67.8 | 70.2 | 2.4 | Complied | # Results: 802.11n HT20 / 16QAM / MCS3 / Upper Band Edge / Peak | Frequency
(MHz) | Level
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Result | |--------------------|-------------------|-------------------|----------------|----------| | 2483.500 | 70.5 | 74.0 | 3.5 | Complied | | 2484.221 | 71.8 | 74.0 | 2.2 | Complied | ## Results: 802.11n HT20 / 16QAM / MCS3 / Upper Band Edge / Average | Frequency
(MHz) | Level
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Result | |--------------------|-------------------|-------------------|----------------|----------| | 2483.500 | 51.6* | 54.0 | 2.4 | Complied | # Results: 2310 to 2390 MHz Restricted Band | Frequency (MHz) | Peak Level
(dBµV/m) | Peak Limit
(dΒμV/m) | Margin
(dB) | Result | |-----------------|------------------------|------------------------|----------------|----------| | 2387.436 | 72.4 | 74.0 | 1.6 | Complied | | Frequency (MHz) | Average Level
(dBµV/m) | Average Limit
(dBµV/m) | Margin
(dB) | Result | |-----------------|---------------------------|---------------------------|----------------|----------| | 2389.615 | 53.5* | 54.0 | 0.5 | Complied | Page 52 of 56 UL VS LTD ### Results: 802.11n HT20 / 16QAM / MCS3 **Lower Band Edge Peak Measurement** 2310 MHz to 2390 MHz Restricted Band **Upper Band Edge Peak Measurement** **Upper Band Edge Average / Integrated** UL VS LTD Page 53 of 56 ### Results: 802.11n HT20 / 16QAM / MCS3 2310 MHz to 2390 MHz Restricted Band Average / Integrated ### **Test Equipment Used:** | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|-------------|-----------------|----------------------------|------------------------------| | M2003 | Thermohygrometer | Testo | 608-H1 | 45046641 | 22 Apr 2017 | 12 | | K0017 | 3m RSE Chamber | Rainford | N/A | N/A | 17 May 2017 | 12 | | M1995 | Test Receiver | Rohde & Schwarz | ESU40 | 100428 | 21 Mar 2017 | 12 | | A2863 | Pre-Amplifier | Agilent | 8449B | 3008A02100 | 07 Jan 2017 | 12 | | A2889 | Antenna | Schwarzbeck | BBHA 9120 B | BBHA 9120 B 653 | 07 Apr 2017 | 12 | | A2916 | Attenuator | AtlanTecRF | AN18W5-10 | 832827#1 | 19 May 2017 | 12 | Page 54 of 56 UL VS LTD # 6. Measurement Uncertainty No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to
measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation. The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards. The uncertainty of the result may need to be taken into account when interpreting the measurement results. The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes". | Measurement Type | Range | Confidence
Level (%) | Calculated
Uncertainty | |--------------------------------|-----------------------|-------------------------|---------------------------| | Minimum 6 dB Bandwidth | 2.4 GHz to 2.4835 GHz | 95% | ±4.59 % | | Duty Cycle | 2.4 GHz to 2.4835 GHz | 95% | ±1.14 % | | Spectral Power Density | 2.4 GHz to 2.4835 GHz | 95% | ±1.13 dB | | Conducted Maximum Output Power | 2.4 GHz to 2.4835 GHz | 95% | ±1.13 dB | | Radiated Spurious Emissions | 30 MHz to 1 GHz | 95% | ±5.65 dB | | Radiated Spurious Emissions | 1 GHz to 25 GHz | 95% | ±2.94 dB | The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed. UL VS LTD Page 55 of 56 ISSUE DATE: 21 DECEMBER 2016 VERSION 2.0 7. Report Revision History | Version | Revision Details | | | | |---------|------------------|-------------------|--|--| | Number | Page No(s) | s) Clause Details | | | | 1.0 | - | - | Initial Version | | | 2.0 | 1 6 | - | Changed Model No. to v1.1
Changed Model No. to v1.1 & Brand name to Raspberry Pi Zero W | | ⁻⁻⁻ END OF REPORT --- Page 56 of 56 UL VS LTD